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Abstract: In this paper we present and investigate a new class of nonparamet-

ric priors for modelling a cumulative distribution function. We take F (t) = 1 −
exp{−Z(t)}, where Z(t) =

∫ t

0
x(s) ds is continuous and x(·) is a Markov process.

This is in contrast to the widely used class of neutral to the right priors (Doksum

(1974)) for which Z(·) is discrete and has independent increments. The Markov

process allows the modelling of trends in Z(·), not possible with independent in-

crements. We derive posterior distributions and present a full Bayesian analysis.
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1. Introduction

In this paper, we present a new Bayesian nonparametric approach to mod-
eling an unknown survival function. Previous work in this area has focused on
independent increment processes (Lévy processes), used to construct neutral to
the right processes (Doksum (1974)). The Dirichlet process (Ferguson (1973)) is
a particular case. Ferguson and Phadia (1979) detailed the posterior distribu-
tions for censored and uncensored survival data and, in particular, worked with
the simple homogeneous and gamma processes, as well as the Dirichlet process.
Recent work on neutral to the right priors has been done by Hjort (1990), Walker
and Muliere (1997) and Walker and Damien (1998). In a more general context,
Kim (1999) used independent increment processes as a prior distribution for the
cumulative intensity function of multiplicative counting processes.

As is well known, the main drawback of models based on independent incre-
ment processes is that, with probability one, the survival function is discrete. In
order to overcome this problem, Dykstra and Laud (1981) considered an inde-
pendent increment process to model the hazard rate function. The corresponding
cumulative hazard function, and hence the survival function, are continuous. A
disadvantage of this is that the model only allows monotone hazard rate func-
tions. Arjas and Gasbarra (1994) proposed a Markov jump process having a
martingale structure. However, this model is somewhat complicated, lacks inter-
pretability and relies on a partition.
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In this article we use a piecewise continuous Markov process to model the
hazard rate function and, by integration, obtain a continuous process to model
the cumulative hazard and survival functions. Hence we retain the desirable
continuous models without the limitations of a monotone hazard rate. It should
be pointed out that our model is perhaps the simplest extension of the neutral
to the right prior which eliminates the drawbacks associated with it. Indeed,
the updates from prior to posterior for our model closely resemble those for the
neutral to the right prior, once a number of strategic latent variables have been
introduced.

Lo and Weng (1989), Brix (1999) and James (2002) consider a mixture model
for the hazard rate function which is similar to our own. We will comment more
on their prior models in Section 2. Wolpert and Ickstadt (1998), on the other
hand, use a kernel mixture to model the cumulative intensity function in a Cox
process and, in particular, they take an extended gamma process as the mixing
measure.

The outline of the article is as follows. In Section 2 we present relevant back-
ground material and introduce the new model. In Section 3 we describe posterior
distributions based on observed censored and uncensored observations. Section
4 considers prior elicitation and Section 5 deals with the simulation methods for
inference purposes. In Section 6 we present two numerical examples and Sec-
tion 7 deals with consistency issues. The paper concludes in Section 8 with a
discussion.

Before this, we introduce some notation. Let Ga(α, β) denotes a gamma
density with mean α/β; Po(c) a Poisson density with mean c; U(a, b) a uni-
form density on [a, b]; T1, . . . , Tn are independent failure times, possibly with the
inclusion of random right censored times.

2. Background and New Model

Let T be a continuous random variable defined on (0,∞) with (conditional)
cumulative distribution function given by F (t|Z) = 1− exp {−Z(t)} and density
function f(t|Z) = x(t) exp {−Z(t)} , where Z(·) is the cumulative hazard function
given by Z(t) =

∫ t
0 x(s) ds, with x(t) the hazard rate function.

Let L(t) be an independent increments (Lévy) process defined on [0,∞)
without Gaussian components, so L(t) is a pure jump process (Ferguson and
Klass (1972)). If L has Lévy measure dNτ (ν), a non-negative measure satisfying∫ ∞
0 min{1, ν}dNτ (ν) <∞, then

− log E[exp{−θL(τ)}] =
∫

ν>0

(
1 − e−θν

)
dNτ (ν).
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Also, for dL(τ) = L(τ + dτ) − L(τ),

− log E[exp{−θ(τ)dL(τ)}] =
∫

ν>0
[1 − exp{−θ(τ)ν}]{dNτ+dτ (ν) − dNτ (ν)}.

So, if dNτ (ν) = dν
∫ τ
0 γ(ν, s) ds, which will be the case for us, then

− log E[exp{−θ(τ)dL(τ)}] = dτ
∫

ν>0
[1 − exp{−θ(τ)ν}]γ(ν, τ) dν. (1)

For the neutral to the right (NTR) model (Doksum (1974)),

ZNTR(t) =
∫ t

0
dL(ν) = L(t).

For example, L(·) can be a simple homogeneous process, gamma process, log-beta
process and so on. Dykstra and Laud (1981) considered

ZDL(t) =
∫ t

0
(t− ν) dL(ν)

and, in particular, they took L(·) to be an extended gamma process. Here ZDL(·)
has continuous sample paths but it is easy to see that in this case the hazard
rate function is given by xDL(t) =

∫ t
0 dL(ν), and so is monotone.

Our proposal for the cumulative hazard function is continuous but we have
removed the monotone condition of the hazard rate function. We consider

Z(t) =
∫ t

0

1
a

{
1 − e−a(t−ν)

}
dL(ν) (2)

for some a > 0. In this case, the hazard rate function is given by

x(t) =
∫ t

0
exp {−a(t− ν)} dL(ν). (3)

Due to the fact that for a > 0 and t > ν, the factors {exp−a(t−ν)} are decreasing
functions of t for each ν, the sample paths of (3) are non-monotone functions.
Moreover, the sample paths of the hazard rate process x(t) are piece-wise con-
tinuous functions. Therefore, the cumulative hazard process Z(t), given by (2),
is continuous with probability one. As will be shown, models based on (3) are
tractable. We can force L to have a jump at t = 0 and in this case x(0) = L{0}.
The interpretation of a will be given later in Section 4.

Some other authors have considered kernel mixture models of the type

x(t) =
∫
k(t, u) dL(u). (4)
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Lo and Weng (1989) take L(u) to be a weighted gamma process and k any suitable
kernel function. They provide a representation or derivation of the posterior
distribution but, due to the complicated form of their posterior, they concentrate
on finding posterior means and present a way to approximate them using a Monte
Carlo method.

We take L to be fundamentally different in that L will have a finite number
of jumps in any bounded interval. This leads to certain advantages which will
become clear later. Also, we provide a full posterior analysis via Markov chain
Monte Carlo methods.

Brix (1999) takes k to be an arbitrary kernel and L(u) to be a generalized
gamma process. The homogeneous version of the L process we consider here (see
Theorem 1 in Section 2) can be seen as a generalized gamma process. Brix also
describes how to simulate from this type of process.

James (2002, Section 4) also considers models of the type (4), taking L(u) to
be a general size-based random measure. This general measure contains the gen-
eralized gamma processes and the weighted gamma processes as particular cases.
James (2002) presents a characterization of the posterior distribution and shows
a procedure to approximate posterior quantities for all kernels k and all measures
L via a MCMC method based on a “Chinese restaurant” type algorithm.

The approach we follow to derive posterior distributions relies on latent
variables which facilitates an easy-to-implement MCMC method for simulation.
Similarly, James (2002) allows the use of missing observations, which can be seen
as latent variables, in his derivations of the posterior. However, the procedure
we use to obtain the posterior is considerably different.

Our kernel is novel and has roots in a discrete time model (Nieto-Barajas
and Walker (2002)), the continuous time model being constructed by allowing
the time intervals to collapse to zero. More details about this are included in the
discussion.

The process (3) is a shot-noise process with exponentially decaying shocks,
that is

x(t) =
∑

i

exp{−a(t− θi)}Ji I(θi ≤ t), (5)

where the {Ji} are the random shocks and the {θi} are the random times when
they occur. For different choices of L(ν) we obtain different processes x(t). Here
we state a useful result detailing conditions under which x(t) is a stationary
gamma process. This will then enable us to build up a model based on this type
of process.

Theorem 1. If L(τ) is the Lévy process with Lévy measure dNτ (ν) = δ τ dν
exp(−ν) and x(t) =

∫ t
0 exp(−aν) dL(t − ν), then marginally x(t) ∼ Ga(α, 1),

where α = δ/a.
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An alternative representation of x(t), and a proof of Theorem 1 based on
compound Poisson processes, can be found in Ross ((1996), Chap.8). In addition,
Barndorff-Nielsen and Shephard (1999) obtained a more general result to The-
orem 1 involving Generalised-Inverse-Gaussian families. While stationary Lévy
processes play a large role in many models, we will be employing non-stationary
processes, which have not been so widely used. Where they have been used, full
Bayesian posterior analyses on real data sets have been rare. We have to note
that for the Lévy measure of Theorem 1, and for the more general Lévy measure
that will be introduced in Section 3, representation (5) of the process x(t) has a
finite number of jumps. In Section 3 we introduce novel auxiliary variables which
permit a full and quite straightforward Bayesian analysis via MCMC methods.

3. Posterior Distributions

In this section we show how to obtain posterior distributions. From now on
we write

Z(t) =
∫ ∞

0
k(t, ν) dL(ν), (6)

k(t, ν) =
1
a

[
1 − exp

{−a(t− ν)+
}]
. (7)

Let B be the space of cumulative hazard functions, that is, the set of all non-
decreasing, right continuous functions such that if Z ∈ B then Z(0) = 0 and
Z(t) → ∞ as t→ ∞. Then we consider the probability P′ defined on ([0,∞)×B,
A × σ(B)), where A is Borel’s σ-algebra on [0,∞) and σ(B) is the σ-algebra
generated by the Borel sets on B with the Skorokov metric;

P′(T > t,Z ∈ B) = EZ [exp{−Z(t)} I(Z ∈ B)] ,

for B ∈ σ(B). We are concerned with probability measures on {B, σ(B)}. If
P0 is one of those measures, with integral operator E0 defined by E0[ψ(Z)] =∫
ψ(Z)P0(dZ), it is specified when all finite-dimensional P0{Z[tj−1, tj) ∈ Dj , j =

1, . . . , k}, for Dj ∈ A, are known. However, this is equivalent to knowing the
Laplace transforms E0[exp{−∑k

j=1 θjZ[tj−1, tj)}]. In other words, knowledge of
E0[exp{− ∫ ∞

0 θ(s)dZ(s)}] for all θ(s), and in particular for θ(s) =
∑k

j=1 θjI{s ∈
[tj−1, tj)}, is sufficient to specify P0 on {B, σ(B)} completely. See also Hjort
(1990).

In our case

E
[
exp

{
−

∫
θ(s) dZ(s)

}]
= E

[
exp

{
−

∫
Kθ(ν) dL(ν)

}]
,

where Kθ(ν) =
∫
s>ν θ(s) exp{−a(s − ν)}ds. Therefore, the aim is to find and

understand, for generic κ(·),

E
[
exp

{
−

∫
κ(ν) dL(ν)

}∣∣∣∣A
]
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for two types of observations: A = {T > t} and A = {T = t}. From there we
build up a picture of the posterior distributions via changes in the Lévy process.

Before we do this, we can adjust the Lévy measure to make it more general:

dNτ (ν) = dν
∫ τ

0
exp{−νβ(u)}dα(u), (8)

where α(·) is a continuous measure and β(·) is a non-negative piece-wise con-
tinuous function. Note that x(t) is the stationary gamma process of Theorem 1
when α(u) = δu and β(u) = 1.

Remark. In Theorems 2 and 3, without lost of generality, we disregard the fixed
jump of the Lévy process at zero and consider it again in Theorem 4.

Theorem 2. The posterior Lévy measure given an observation T > t is given
by

dN ′
τ (ν) = dν

∫ τ

0
exp{−νβ′(u)}dα(u),

where β′(u) = β(u) + k(t, u).

Proof. Let
ϕ(κ, t) = E

[
exp

{
−

∫
κ(ν) dL(ν)

}∣∣∣∣T > t

]
.

Using (6) and noting that P(T > t) = E{P(T > t|L)}, ϕ(κ, t) can be expressed
as

E (exp [− ∫ {κ(ν) + k(t, ν)}dL(ν)])
E [exp {− ∫

k(t, ν) dL(ν)}] .

Since
E [exp {−ψ(ν) dL(ν)}] = exp

{
− ψ(ν)dα(ν)
β(ν) {ψ(ν) + β(ν)}

}
,

see (1), and using independence properties, ϕ(κ, t) becomes

exp
{
−

∫ [
κ(ν) + k(t, ν)

β(ν){κ(ν) + k(t, ν) + β(ν)} − k(t, ν)
β(ν){k(t, ν) + β(ν)}

]
dα(ν)

}

= exp
{
−

∫
κ(ν)

{k(t, ν) + β(ν)}{κ(ν) + k(t, ν) + β(ν)} dα(ν)
}
.

Finally, we have ϕ(κ, t) = E{exp(− ∫
κ(ν) dL′(ν))}, where L′(·) is a Lévy process

with Lévy measure as stated in the Theorem.

Consequently, given n observations T1 > t1, . . . , Tn > tn, the posterior
Lévy measure becomes dN ′

τ (ν) = dν
∫ τ
0 exp{−νβ′(u)}dα(u), where now β′(u) =

β(u) +
∑

1≤i≤n k(ti, u).
It is more difficult to find the posterior distribution given an observation

T = t. In order to do this we need to introduce a latent parameter or observation.
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We assume we have witnessed, along with T = t, the observation S = s, where
the random mass function for S is given by

f(s|t, L) = P(S = s|t, L) ∝ e−a(t−s)L{s} I(0 ≤ s ≤ t), (9)

coming from the joint density

f(t, s|L) = e−a(t−s)L{s} exp
{
−

∫
k(t, ν) dL(ν)

}
I(0 ≤ s ≤ t), (10)

where L{s} = L(s) − L(s−). Of course, this ensures that

f(t|L) = x(t) exp
{
−

∫ t

0
x(s) ds

}
.

This idea was also useful for the extended gamma process model for x(·) (see
Laud, Damien and Walker (1999)). Experience with updating Lévy processes
for modelling cumulative hazard functions (see, for example, Walker and Muliere
(1997)) leads to the following result.

Theorem 3. The posterior Lévy measure given an observation T = t and S = s

is given by

dN ′
τ (ν) = dν

∫ τ

0
exp{−νβ′(u)} dα(u),

where β′(u) = β(u) + k(t, u) and the updated Lévy process has a fixed point of
discontinuity at s with the distribution of L′{s} being Ga(2, β(s) + k(t, s)).

Proof. Let

ϕ(κ, t, s, ε) = E
[
exp

{
−

∫
κ(ν) dL(ν)

}∣∣∣∣T = t, S ∈ [s, s+ ε]
]
,

which can be obtained by

E
[
exp {− ∫

κ(ν) dL(ν)} ∫ s+ε
s f(t, ω) dω

]
E

{∫ s+ε
s f(t, ω) dω

} .

Using (6) and (10), ϕ(κ, t, s, ε) becomes

E
(∫ s+ε

s h(t, ω) dL(ω) exp [− ∫ ∞
0 {κ(ν) + k(t, ν)} dL(ν)]

)
E

[∫ s+ε
s h(t, ω) dL(ω) exp {− ∫ ∞

0 k(t, ν) dL(ν)}
] ,

where h(t, ω) = exp{−a(t− ω)}. Splitting up the integral,

ϕ(κ, t, s, ε) =
E

(
exp

[
− ∫

[0,s)∪(s+ε,∞) {κ(ν) + k(t, ν)} dL(ν)
])

E
[
exp

{
− ∫

[0,s)∪(s+ε,∞) k(t, ν) dL(ν)
}] D(s, s+ ε),
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where

D(s, s+ ε) =
E

(∫ s+ε
s h(t, ω) dL(ω) exp

[
− ∫ s+ε

s {κ(ν) + k(t, ν)} dL(ν)
])

E
[∫ s+ε

s h(t, ω) dL(ω) exp
{
− ∫ s+ε

s k(t, ν) dL(ν)
}] .

Since

E [ dL(ν) exp {−ψ(ν) dL(ν)}] =
dα(ν)

{ψ(ν) + β(ν)}2 exp
[
− ψ(ν)dα(ν)
β(ν) {ψ(ν) + β(ν)}

]
,

and using independence properties, D(s, s+ ε) can be written as

A(s, s+ ε) exp
[
−

∫ s+ε

s

κ(ν)
{k(t, ν) + β(ν)} {κ(ν) + k(t, ν) + β(ν)}dα(ν)

]
,

where the second part comes using the proof of Theorem 2 and

A(s, s + ε) =
∫ s+ε

s

h(t, ω) dα(ω)
{κ(ω) + k(t, ω) + β(ω)}2

/∫ s+ε

s

h(t, ω) dα(ω)
{k(t, ω) + β(ω)}2 .

Now,

lim
ε→0

A(s, s + ε) =
{

k(t, s) + β(s)
κ(s) + k(t, s) + β(s)

}2

,

then, based again on the proof of Theorem 2, we have

lim
ε→0

ϕ(κ, t, s, ε) =
{

k(t, s) + β(s)
k(t, s) + β(s) + κ(s)

}2

× exp
[
−

∫ ∞

0

κ(ν)
{k(t, ν) + β(ν)} {κ(ν) + k(t, ν) + β(ν)} dα(ν)

]

= E
{
exp

(−κ(s)L′{s})} E
[
exp

{
−

∫
κ(ν) dL′(ν)

}]

with L′{s} as stated in the theorem. This completes the proof.

We are now in a position to write down the full posterior distributions,
allowing the process to have prior fixed jumps.

Theorem 4. Let L(·) be a Lévy process such that L(t)=Lc(t)+
∑

j L{τj}I(τj ≤ t)
with Lévy measure for the “continuous” part dNτ (ν)=dν

∫ τ
0 exp{−νβ(u)}dα(u),

and let M = {τ1, τ2, . . .} be the set of prior fixed points of discontinuity of L(·)
and the density function of L{τj} be fj.
(i) Given an observation T > t, the posterior Lévy measure is given by

dN ′
τ (ν) = dν

∫ τ

0
exp{−νβ′(u)} dα(u),
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where β′(u) = β(u) + k(t, u). Furthermore, M ′ = M and

f ′j(x) ∝
{
e−k(t,τj)xfj(x) if t > τj
fj(x) otherwise.

(ii) Given an observation T = t and S = s, the posterior Lévy measure is given
by

dN ′
τ (ν) = dν

∫ τ

0
exp{−νβ′(u)} dα(u),

where β′(u) = β(u) + k(t, u).
(a) If s /∈M then M ′ = M∪{s} and f ′s is Ga(2, β(s)+k(t, s)). Furthermore,

f ′j(x) ∝
{
e−k(t,τj)xfj(x) if t > τj
fj(x) otherwise.

(b) If s ∈ M then M ′ = M and f ′s(x) ∝ xe−k(t,s)xfs(x). Furthermore, for
τj �= s,

f ′j(x) ∝
{
e−k(t,τj)xfj(x) if t > τj
fj(x) otherwise.

Proof. The proof follows from Theorems 2 and 3.

It is now possible to build the full posterior based on a sample of size n.
Recall the s are latent and are required whenever an uncensored observation is
witnessed. The density for s given t and L(·) has been given in (9). In practice,
a Gibbs sampler (see, for example, Smith and Roberts (1993)) would be needed
to sample from the joint posterior distribution of L(·) and s.

4. Prior Specifications

In Section 3 we introduced a more general Lévy measure given by (8) Let
Lc(·) represent the Lévy process induced by (8) without any fixed points of
discontinuity. Then

E
[
exp

{
−

∫ t

0
ψ(ν) dLc(ν)

}]
= exp

[
−

∫ t

0

ψ(ν) dα(ν)
β(ν){ψ(ν) + β(ν)}

]
.

This Lévy process is not necessarily homogeneous. Consequently, the hazard rate
function x(t) will not be stationary. For this more general process we require that
x(t), as in (3), exists. Noticing that Lc(t) < ∞ for all finite t ensures that the
process x(t) exists in a pathwise sense with probability one. Additionally, we
also need that S(t) = exp{−Z(t)} → 0 as t→ ∞, to ensure that Z(t), defined in
(6), is a cumulative hazard function with probability one. This occurs provided∫ t

0

k(t, ν) dα(ν)
β(ν) {k(t, ν) + β(ν)} → ∞
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as t→ ∞.
An important issue is how to specify the prior process, that is, how to choose

α and β. One way of doing this is to match the first two moments of x(t) with
functions µ(t) = E{x(t)} and σ(t) = Var{x(t)}. This will be based on the two
equations

µ(t) = E(L{0}) exp(−at) +
∫ t

0
exp{−a(t− ν)}dα(ν)/β2(ν), (11)

σ(t) = Var(L{0}) exp(−2at) + 2
∫ t

0
exp{−2a(t − ν)}dα(ν)/β3(ν). (12)

We consider a prior process with a fixed jump at zero in order to allow non-
zero hazard rates at time t = 0. The following lemma gives the conditions for
achieving this.

Lemma 5. Let L(t) = L{0} + Lc(t) be a Lévy process which includes a fixed
jump at zero, and let µ(t) and σ(t) be nonnegative and differentiable functions
on [0,∞). Let a > 0 be a constant. If µ(t), σ(t) and a satisfy

a ≥ max
{
− d

dt
log µ(t),−1

2
d
dt

log σ(t)
}

(13)

for all t ≥ 0, then the parameters α(·) and β(·) which ensure that µ(t) = E{x(t)}
and σ(t) = Var{x(t)} for all t ≥ 0, are given by

β(t) =
aµ(t) + dµ(t)/dt
aσ(t) + 0.5dσ(t)/dt

and dα(t) = {aµ(t)dt+ dµ(t)} β2(t).

To satisfy the initial values we also need µ(0) = E(L{0}) and σ(0) = Var(L{0}).
Proof. Differentiating (11) and (12) with respect to t, we obtain

dµ(t) = −aµ(t)dt+ dα(t)/β2(t) and dσ(t) = −2aσ(t) dt+ 2dα(t)/β3(t).

Then, solving these simultaneous differential equations we obtain the required
expressions. The conditions on µ(t) and σ(t) arise when constraining β(t) ≥ 0
and α(t) ≥ 0 for t ≥ 0. This completes the proof.

If µ(t) = exp(−at) then −d/dt log µ(t) = a. So we can interpret the quantity
−d/dt log µ(t) as the rate of decay of the function µ(t). Therefore, the prior
process can be centred on any non-negative function µ(t) whose local rate of
decay (if any) is slower than the rate of decay of the negative exponential function
exp(−at). In the same way, a similar interpretation can be derived for σ(t).

One simple choice for the parameters of the prior density of the fixed jump at
t = 0 would be L{0} ∼ Ga(α0, β0), with α0 and β0 such that µ(0) = α0/β0 and
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σ(0) = α0/β
2
0 . One way of proposing the functions µ(·) and σ(·) is to obtain them

from the mean and variance of the hazard rate of a Bayesian parametric model
(see Walker, Damien, Laud and Smith (1999)). This allows us to express prior
opinion about location and uncertainty using a recognisable model. For example,
we might want to centre x(t) on a constant hazard rate, i.e., S(t) = exp(−ηt)
with prior distribution η ∼ Ga(p, q). Solving the two differential equations from
Lemma 5, we obtain β(t) = q and dα(t) = apq dt, with prior distribution for
L{0} ∼ Ga(p, q). An important remark here is that without the fixed jump at
zero we would not be able to centre the prior process on a constant hazard rate.

Moreover, if we want to centre x(t) on a monotone hazard rate, we can use
the Weibull parametric model S(t) = exp(−ηtb) with the same gamma prior for η
as in the constant hazard model. Keeping b fixed, we get β(t) = (q/b)t−(b−1) and
dα(t) = (pq/b)t−b(b−1+at) dt, with no fixed prior jump at t = 0 if b > 1. If b = 1
we get the same specifications of the constant hazard model. The nonparametric
prior is not available if b < 1.

Besides satisfying (13), one way of determining the appropriate value of
the parameter a is setting the degree of correlation of the (stationary) process
between t and t + 1, that is, Corr {x(t), x(t + 1)} = e−a. For smaller values of
a the correlation between t and t + 1 is larger. We can view a as a smoothing
parameter.

The conditions imposed by Lemma 5 on the functions µ(t) and σ(t) are not
restrictive. For example, if µ(t) is a rough fluctuating function then we need a
low correlated prior process to model the fluctuations, that is to say, we need a
large value of a. This is precisely what (13) requires because µ(t) is expected to
have a large rate of decay. In the same way, if µ(t) is a fairly smooth function
(like a bathtub shape for example) then we need a small value of a to produce
a highly correlated process and model trends. It is worth mentioning that, for
non-decreasing functions µ(t) and σ(t), the parameter a can take any positive
value.

5. Posterior Simulation

In order to undertake a full Bayesian analysis, we need to simulate the Lévy
process L(·). One can notice that the Lévy measure for our x(t) process is finite,
whereas previously employed measures used for neutral to the right processes,
such as the beta-Stacy process (Walker and Muliere (1997)), the beta process
(Hjort (1990)) and the extended gamma process (Dykstra and Laud (1981)), are
infinite. The importance of having a finite Lévy measure is that the induced
Lévy process can be simulated exactly, whilst a Lévy process with infinite Lévy
measure cannot. One way of implementing the simulation is to use the result of
Ferguson and Klass (1972), which is now briefly outlined.
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Let dNτ (ν) be the Lévy measure as in (8). Let Υ be the largest value of t
for which we are interested in simulating the process. Also let

M(x) = −NΥ[x,∞) = −
∫ ∞

x
dNΥ(ν) = −

∫ Υ

0

exp{−xβ(u)}
β(u)

dα(u).

Define the positive random variables J1 ≥ J2 ≥ · · · by P(J1 ≤ x1) = exp{M(x1)},
P(Ji ≤ xi|Ji−1 = xi−1) = exp{M(xi) −M(xi−1)}, xi < xi−1.

Here the Ji’s are an ordering of those appearing in (5). If −M(0) <∞ (which is
true in our case), then the distribution of Ji|[Ji−1 = xi−1] has mass exp{M(0)−
M(xi−1)} at zero and is otherwise continuous. This means that we will have a
finite number of non-zero Ji’s in [0,Υ].

We can obtain the Ji via ϑi = −M(Ji) and Ji = 0 if ϑi > −M(0), where
ϑ1, ϑ2, . . . are the jump times of a standard Poisson process at unit rate, that is
ϑ1, ϑ2 −ϑ1, . . . are i.i.d. Ga(1, 1). Then the Ferguson and Klass (1972) represen-
tation of the process is given by L(t) =

∑
i JiI{Ui ≤ nt(Ji)}, where, U1, U2, . . .

are i.i.d. Un(0, 1) and

nt(ν) =
dNt

dNΥ
(ν) =

∫ t
0 exp{−νβ(u)}dα(u)∫ Υ
0 exp{−νβ(u)}dα(u)

,

for t ∈ [0,Υ]. This form of simulating the Lévy process is not difficult to imple-
ment.

To carry out posterior inference we need to implement a Gibbs sampler in
the following way. Let t′ = (t1, . . . , tn) be a random sample of size n such that,
without loss of generality, ti is uncensored for i = 1, . . . , nu and right censored
for i = nu + 1, . . . , n. For each ti, i = 1, . . . , nu let si be an auxiliary variable.
The simulation from the joint posterior distribution of L(·) and s can be achieved
through simulating from the full conditional distributions of L(·) given s written
as Π(L|s, t), and of s given L(·), which is sampling from f(s|L, t) given in (9).
The algorithm is as follows.

Let M (0) = {τ (0)
1 , τ

(0)
2 , . . .} be the set of prior fixed points of discontinuity

and let us consider the distribution for the corresponding jumps to be L{τ (0)
l } ∼

Ga(α0l
, β0l

). Initiate the algorithm by generating si ∼ Un(0, ti), i = 1, . . . , nu.
and for h = 1, . . . ,H.
1. Generate L(h) ∼ Π(L|s(h−1), t), with the following specifications:

• the Lévy measure is given by

dN ′
τ (ν) = dν

∫ τ

0
exp{−νβ′(u)}dα(u),

where β′(u) = β(u) +
∑n

i=1 k(ti, u);
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• the set of fixed jumps M (h) = {τ (h)
1 , . . . , τ

(h)
m } is formed by all different

{s(h−1)
i , τ

(0)
l }, together with r(h)

j , j = 1, . . . ,m, the number of {s(h−1)
i , τ

(0)
l }

equal to τ (h)
j ;

• the distribution for the fixed jumps L{τ (h)
j } is given by

f
(h)
j (x) ∝




Ga
(
x|α0l

+ r
(h)
j − 1, β0l

+
∑n

i=1 k(ti, τ
(h)
j )

)
,

if τ (h)
j = τ

(0)
l , l = 1, 2, . . . ,

Ga
(
x|2 + r

(h)
j − 1, β(s(h−1)

i ) +
∑n

i=1 k(ti, τ
(h)
j )

)
,

if τ (h)
j = s

(h−1)
i , i = 1, . . . , nu

for j = 1, . . . ,m.
2. Generate s(h)

i ∼ f(si|L(h), t), i = 1, . . . , nu, where

f(si|L(h), t) ∝ easiL(h){si}I(0 ≤ si ≤ ti).

6. Numerical Examples

Example 1. The first example involves the well-known Kaplan and Meier (1958)
data set. This data set has been used by many authors to compare their Bayes
estimates with the Product-limit estimate (see, for example, Ferguson and Phadia
(1979); Walker and Muliere (1997)). The data consists of observations measured
in months: 0.8, 1.0∗, 2.7∗, 3.1, 5.4, 7.0∗, 9.2, 12.1∗, where ∗ denotes a right
censored observation.

To centre the prior process we chose the constant hazard model, that is
β(t) = q, dα(t) = apq dt and L{0} ∼ Ga(p, q). We took p = 0.05 and q = 0.1
in order to place the prior away from the data. The only remaining parameter
to be determined is a. We took a = 0.001 to introduce a high correlation in the
prior process (see Section 4). The Gibbs sampler was run for 10,000 iterations
with a burn-in of 1,000 taking the last 9,000 simulations to estimate the curves.

Prior and posterior hazard rate estimates are presented in the top graph of
Figure 1. Here we can see that the prior hazard rate estimate is constant at 0.5
for all t and the posterior hazard rate estimate is also constant at 0.1 for all t.
According to Walker and Damien (1998) the Kaplan-Meier data were generated
from an exponential model with hazard rate 0.1. This means that our posterior
estimate reproduces the true hazard. The Kaplan-Meier, the prior and posterior
survival curve estimates, together with 95% predictive bands, are presented in the
bottom graph of Figure 1. As can be seen from Figure 1, the posterior estimate
follows the Kaplan-Meier path in a smooth way, as expected.
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Figure 1. Hazard rate estimates (top) and survival curve estimates (bottom)
for the K-M data. (——) Kaplan-Meier estimate, (· · · ·) prior estimate (----)
posterior estimate and (-·-·) 95% bands.

Example 2. The second example involves a data set taken from Moreau,
O’Quigley and Mesbah (1985). This data consists of survival times of gastric
cancer patients and is divided into two treatment groups. Here we only consider
the combined chemotherapy/radiation group with data:

17, 42, 44, 48, 60, 72, 94, 95, 103, 108, 122, 144, 167, 170, 183, 185,
193, 195, 197, 208, 234, 235, 254, 307, 315, 401, 445, 464, 484, 528,
542, 567, 577, 580, 795, 855, 882∗, 892∗, 1031∗, 1033∗, 1306∗, 1335∗,
1366, 1452∗, 1472∗,

where, as before, ∗ denotes a right censored observation.
In this example we employ a prior Π(a) for a. The conditional likelihood

function of a is not log-concave so we rely on a Metropolis-Hastings algorithm
(Tierney (1994)) for sampling this conditional posterior distribution.

We centred the prior process on a constant hazard model and took p = 0.0005
and q = 0.1 to locate the prior away from the data. For illustrative purposes we
took Π(a) = Ga(a|1, 2) as the prior distribution for a, i.e., a prior mean value
for a of 0.5. The Gibbs-Metropolis algorithm was run for 10,000 iterations with
a burn-in period of 1,000.
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Figure 2. Hazard rate estimates (top) and survival curve estimates (bottom)
for the gastric data. (——) Kaplan-Meier estimate, (· · · ·) prior estimate (----)
posterior estimate and (-·-·) 95% bands.

Prior and posterior hazard rate estimates are presented in the top graph of
Figure 2. In this graph we can see that the prior estimate is 0.005 for all t,
whereas the posterior estimate is step-wise decreasing with exponential decaying
shocks. Sudden changes in the hazard rate allow the survival curve to model
changes in the rate of decay. The Kaplan-Meier, the prior and posterior survival
curve estimates, together with 95% predictive bands, are plotted in the bottom
graph of Figure 2.

From Figure 2 (bottom graph) we can see that the posterior estimate of
the survival curve is quite smooth and is in agreement with the Kaplan-Meier
estimate. The predictive bands are very tight, which means that the posterior
variance is small. The posterior estimate for the parameter a is 0.0019.

7. Consistency

Substantial theory has recently been developed on Hellinger consistency
(Barron, Shervish and Wasserman (1999), Ghosal, Ghosh and Ramamoorthi
(1999)). In survival studies interest focuses on the survival function and hence
our concern is with weak consistency, in the sense that the posterior distribu-
tions accumulate in all weak neighbourhoods of the true density function f0, with
corresponding distribution function F0. Schwartz (1965) and Barron (1988) (see



1142 LUIS E. NIETO-BARAJAS AND STEPHEN G. WALKER

Theorem 1 in Ghosal et al. (1999)) proved that, provided the prior puts posi-
tive mass in Kullback-Leibler neighborhoods of the true distribution function F0,
then the posterior concentrates for large samples on weak neighborhoods of F0.

Let dK denote the Kullback-Leibler divergence, that is

dK(f, g) =
∫

log{f(t)/g(t)} f(t) dt.

Theorem 6. Let Π be the probability measure governing f(t) = x(t) exp{−Z(t)},
that is, the joint measure for L and a. Assuming that f0(t) satisfies
(i) (a)

∫
t f0(t) dt <∞ and (b)

∫
E{Z(t)} f0(t) dt <∞,

(ii)
∫
f0(t) log{f0(t)} dt <∞, and

(iii)x0(t) > 0 except possibly x0(0) = 0,
and that the corresponding hazard rate x0(t) of f0 satisfies that x0(0) < ∞ and
there exists a non-decreasing function G(ν) defined on [0,∞) such that

x0(t) =
∫ t

0
e−a0(t−ν) dG(ν),

then the nonparametric prior Π is weak consistent.

Proof. We need to prove that Π{f : dK(f0, f) < ε} > 0 for all ε > 0. We start
by showing that Π puts positive mass on {f :

∫
f0 log(f0/f) <∞}. To do this we

need to consider
∫

log{f(t)} f0(t) dt and show that this is finite (in fact > −∞)
with positive probability. This combined with (ii) is sufficient for this. Now∫

log{f(t)} f0(t) dt =
∫

log{x(t)} f0(t) dt−
∫
Z(t) f0(t) dt

and the second term on the right is finite with probability one by assumption
(i)(b). Observe that

∫
log{x(t)} f0(t) dt =

∫
log{L(t)} f0(t) dt+

∫
log

{∫ t
0 e

−a(t−s)dL(s)
L(t)

}
f0(t) dt.

The first term here is > −∞ with positive probability, that is,

Π
{
f :

∫
log{L(t)} f0(t) dt > −∞

}
> 0,

and the second term is greater than

−a
∫ ∫ t

0

(t− s) dL(s)
L(t)

f0(t) dt > −a
∫
t f0(t) dt

which is finite with probability one by assumption (i)(a).
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Therefore, for any ε > 0, there exists an M such that

Π
{
f :

∫ ∞

M
log(f0/f) f0 < ε/2

}
> 0.

To finish we need to show that there is positive probability for the event{
f :

∫ M

0
log(f0/f) f0 < ε/2

}

for all ε > 0 and all M . Now∫ M

0
log{f0(t)/f(t)} f0(t) dt

=
∫ M

0
log{x0(t)/x(t)} f0(t) dt+

∫ M

0

∫ t

0
{x(s) − x0(s)}dsf0(t) dt.

Remembering that x0 is a mixture of exponentials, and since x(t)=
∫ t
0e

−a(t−s)

dL(s) and ΠL has full support on step functions with finite jumps in [0,M ] and
Π(a) has full support on [0,∞), it follows that Π puts positive probability on
both {

f : sup
t∈[δ,M ]

| log{x0(t)} − log{x(t)}| < ε/4

}
,

{
f : sup

t∈[0,M ]
|x0(t) − x(t)| < ε/4

}
,

for any ε > 0 and δ ≥ 0. The δ ≥ 0 here is to cover the possibility that x0(0) = 0.
If x0(0) > 0 then we can put δ = 0. If x0(0) = 0 then we can find a small enough δ
so that Π puts positive mass on

∫ δ
0 log(x0/x) f0 being arbitrarily small. With (iii)

we do not worry about this phenomenon for any other t. This then demonstrates
that Π puts positive mass on all Kullback-Leibler neighbourhoods of f0.

8. Discussion

The idea of using Lévy driven Markov processes with an exponential kernel
for modeling hazard rate functions arose from an attempt to find the continuous
time version of the discrete time gamma process used by Nieto-Barajas and
Walker (2002). Let xn(t) be a piecewise constant process defined as

xn(t) = λn,0 I(t = 0) + λn,k I {(k − 1)/n < t ≤ k/n} , k = 1, 2, . . . ,

where λn,0 ∼ Ga(α, 1) and λn,k is obtained from λn,k−1 via λn,k|un,k ∼ Ga(α +
un,k, 1 + cn) and un,k|λn,k−1 ∼ Po(cn λn,k−1). Then for all n, xn(t) is strictly
stationary with marginals Ga(α, 1).
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It can be seen that λn,k can be expressed as

λn,k = γn,k/(1 + cn) + Ga{Po(cnλn,k−1), 1}/(1 + cn),

where γn,k are i.i.d. Ga(α, 1). If λn,k−1 is Ga(α, 1) then so is λn,k. Consequently,
we can switch γn,k and λn,k−1 leaving λn,k also marginally Ga(α, 1). We need
to keep E(λk|λn,k−1) = (α + cnλn,k−1)/(1 + cn), so the new stationary model
becomes

λnk = cnλn,k−1/(1 + cn) + cnξn,k/(1 + cn),

where ξn,k = Ga{Po(γn,k/cn), 1}, which is in the form of a stochastic difference
equation of the kind considered by Wolfe (1982). Then, it can be proven that
the piece-wise constant process xn(t) defined with the new λn,k converges in
distribution to the Markov gamma process x(t) defined in (3), as n→ ∞.

In Section 3 we presented the posterior conditional distributions needed to
achieve a full Bayesian analysis via Gibbs sampling. However, it is not straight-
forward to assume that the algorithm in fact converges to the true posterior
distribution. Athreya, Doss and Sethuraman (1996) presented some theorems
which guarantee convergence of the MCMC simulation method in general state
spaces. In our case, the MCMC simulation process involves simulating from a
stochastic process; nevertheless, it satisfies the ρ-irreducibility and aperiodicity
conditions required to ensure convergence to the posterior distribution Π(L|data).
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