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Abstract: Speckman (1988) proposed a kernel smoothing method to estimate the

parametric component β in the semiparametric regression model y = xτβ+g(t)+e,

and showed that this kernel smoothing estimator is
√

n-consistent for a certain

deterministic bandwidth choice. However, the important issue of automatic band-

width choice in this semiparametric setting has not been examined. This paper

studies the asymptotic behavior of the bandwidth choice based on a general band-

width selector which covers such well known data-driven methods as GCV and CV .

This automatic bandwidth choice is proved to be asymptotically optimal and its

asymptotic normality is established. The resulting data-driven kernel smoothing

estimator of β is then showed to be still
√

n-consistent. A simulation study is per-

formed to compare small sample behaviors of various commonly used bandwidth

selectors in this semiparametric setting, and a real data example is given.
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1. Introduction

Consider the following semiparametric regression model

yi = xτ
i β + g(ti) + ei, 1 ≤ i ≤ n, (1.1)

where xi = (xi1, . . . , xip)τ and ti ∈ [0, 1] are covariates, β = (β1, . . . , βp)τ is a
p-vector of unknown parameters, g is an unknown smooth function, and {ei} are
i.i.d. errors with mean 0 and variance σ2 > 0. This model, also called the partial
linear model, was proposed in Wahba (1984) and Engle, Granger, Rice and Weiss
(1986) and has received considerable attention in the last decade.

Primary concern is to estimate the parameter of interest β with usual para-
metric convergence rate n−1/2. The first approach is the partial spline smoothing
proposed in Engle, Granger, Rice and Weiss (1986) and Wahba (1984). How-
ever, this method suffers the problem of undersmoothing (Rice (1986)), that is,
the partial spline smoothing estimate of β cannot attain the n−1/2 convergence
rate unless the nonparametric component g is undersmoothed. This problem has
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been overcome by the kernel smoothing method proposed by Speckman (1988).
The kernel smoothing estimator of β is of the following form

β̂h = (X̃τ X̃)−1X̃τ Ỹ , (1.2)

where (I = In being n × n identity matrix)

X = (x1, . . . , xn)τ , X̃ = (x̃1, . . . , x̃n)τ = (I − W (h))X,

Y = (y1, . . . , yn)τ , Ỹ = (ỹ1, . . . , ỹn)τ = (I − W (h))Y,

with
W (h) = (Knh(ti, tj)),

where Knh is associated with a kernel function and the bandwidth h = hn > 0.
Speckman (1988) showed that the asymptotic normality of β̂h (which yields√

n-consistency) and the optimal nonparametric convergence rate of ĝh can be
simultaneously achieved for a certain nonrandom bandwidth choice. See Hong
and Cheng (1992, 1994) for other asymptotic properties of β̂h. From a practical
point of view, however, we are more concerned with asymptotic properties when
the bandwidth h is chosen by some data-driven methods, such as the generalized
cross-validation (GCV ) proposed by Craven and Wahba (1979). Although this
issue has been extensively studied in the context of nonparametric regression,
much less has been done in the present semiparametric regression setting. To my
knowledge, the only relevant references are Speckman (1988) and Chen and Shiau
(1994). Speckman (1988) gave a weak GCV theorem for the kernel smoothing
method as in Craven and Wahba (1979). Chen and Shiau (1994) obtained

√
n

consistency for the estimator of β based on a two-stage partial spline smoothing
with the smoothing parameter chosen by GCV or Mallows’ CL criterion (Mallows
(1973)). The method considered in Chen and Shiau (1994) depends strongly on
the existence of a common orthonormal basis for the spline smoothing matrix
and is not applicable to the kernel smoothing setting.

In this paper, we study two basic questions. Are commonly used bandwidth
selection methods such as GCV and (delete-one) CV applicable here? Is Speck-
man’s estimator β̂h still

√
n-consistent when the bandwidth h is chosen by one

of these selectors? As in nonparametric setting, when we look at the first ques-
tion, we are paticularly interested in the so-called asymptotic optimality (see
Section 2 for the definition) and convergence rates of the data-driven bandwidth
choice. These are investigated in Section 2 where a general bandwidth selector
is introduced. A simulation study is presented which compares the small sample
behaviors of several bandwidth selectors, including GCV and CV . In Section
3, the second question is answered by establishing asymptotic normality, and an
application to a real data set is given. Section 4 contains some technical lemmas
used in the proofs of our main results.
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2. Automatic Bandwidth Choice

In this section, a general bandwidth selector is defined and asymptotic prop-
erties of its minimizer are studied.

2.1. A general bandwidth selector

Let Y1, . . . , Yn be independent observations with unknown means µ1, . . . , µn

and common variance σ2. Write Y = (Y1, . . . , Yn)τ and µ = (µ1, . . . , µn)τ . Sup-
pose that to estimate µ, a class of linear estimators µ̂(h) = S(h)Y , indexed by
h ∈ Λ, is proposed. Here S(h) is an n×n ‘hat’ matrix. Our objective is to select
from Λ the optimal hASE which minimizes the Average square error (ASE)

Ln(h) = n−1‖µ − µ̂(h)‖2.

However, since hASE cannot be computed without knowing µ, the Ln(h) must
be estimated from the data and then minimized with respect to h in Λ to obtain
an estimator of hASE . Many such data-based criteria have the form

G(h) = Ξ(h)n−1‖(I − S(h))Y ‖2, (2.1)

where Ξ(h) is a correction factor which may be random or nonrandom. Usually
Ξ(h) depends on h through the trace of S(h). Examples include
(a) GCV : ΞGCV (h) = (1 − n−1trS(h))−2;
(b) AIC (Akaike (1974)): ΞAIC(h) = exp{2n−1trS(h)};
(c) FPE (Akaike (1970)): ΞFPE(h) = (1 + n−1trS(h))/(1 − n−1trS(h));
(d) S (Shibata (1981)): ΞS(h) = 1 + 2n−1trS(h);
(e) T (Rice (1984)): ΞT (h) = (1 − 2n−1trS(h))−1.

Bandwidth selection based on these data-driven methods has been examined
by many researchers in the context of nonparametric regression. See Härdle and
Marron (1985), Härdle, Hall and Marron (1988) and references therein. Härdle,
Hall and Marron (1988) observed that, in the kernel nonparametric regression,
each of the above factors is of the form 1 + 2K(0)(nh)−1 + O((nh)−2).

In the present semiparametric setting, by taking expectation conditionally
on {xi, ti}, it is easy to see that the hat matrix is of the form

S(h) = W (h) + PX̃(I − W (h)), (2.2)

where PX̃ = X̃(X̃τ X̃)−1X̃τ is a projection matrix.
Since the basic requirement on the bandwidth h in a large sample study

is that h → 0 and nh → ∞, it is reasonable to choose the index set Λn =
[(nδn)−1, δn], where δn → 0 can be arbitrarily slow.

It turns out that n−1trS(h) can be approximated by (see Lemma 4.7)

n−1trS(h) = K(0)/(nh) + p/n + Op(n−1/2r(h))
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uniformly over h ∈ Λn, where r(h) is defined in (2.8). So it is easy to see that
each of the above factors has Taylor expansion

Ξ(h) = 1 + 2K(0)/(nh) + 2p/n + Op(r3/2(h)).

Therefore we consider the general criterion (2.1) with Ξ(h) being of the form

Ξ(h) = 1 + 2K(0)/(nh) + an + O(r3/2(h)) (2.3)

uniformly over h ∈ Λn, where an = O(n−1) is independent of h. (The term O(·)
in (2.3) is replaced by Op(·) if Ξ(h) is random). Note that this general bandwidth
selector essentially includes the (delete-one) cross-validation proposed by Clark
(1975),

CV (h) = n−1
n∑

i=1

(yi − xτ
i β̂

(i)
h − ĝ

(i)
2h(ti))2,

where β̂
(i)
h and ĝ

(i)
2h (t) are “leave one out” versions of β̂h and ĝ2h(t) respectively.

In fact, one can show that

CV (h)
n−1‖(I − S(h))Y ‖2

= 1 +
2K(0)

nh
+ Op(r3/2(h))

uniformly over h ∈ Λn.
Let ĥG and hASE be the minimizers of G(h) and Ln(h) in Λn, respectively.

The data-driven bandwidth ĥG is called asymptotically optimal if

Ln(ĥG)/Ln(hASE) P−→ 1. (2.4)

An alternative to the performance criterion Ln(h) is the conditional mean
average square error (CMASE)

Rn(h) = E(Ln(h)|x, t) = n−1‖(I − S(h))g‖2 + n−1σ2tr(Sτ (h)S(h)),

the expectation being taken conditionally on {xi, ti}. Let hCMASE be the mini-
mizer of Rn(h) in Λn. Note that the usual mean average square error (MASE),
which is the mean of Rn(h), has no explicit expression in this semiparametric
setting. Hence we consider Rn(h) here.

2.2. Asymptotic properties of ĥG

For simplicity, we assume throughout this paper that ti = i/n, i = 1, . . . , n.
For a symmetric kernel function K(·), the weight Knh is taken to be

Knh(t, t′) =
1

nh
K
(t − t′

h

)
, (2.5)
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as proposed by Priestley and Chao (1972). Suppose, as is common in this setting,
that {xi} and {ti} are related via the regression model

xij = gj(ti) + ηij, 1 ≤ i ≤ n, 1 ≤ j ≤ p, (2.6)

where the g′js are smooth functions and {ηi} = {(ηi1, . . . , ηip)τ} are i.i.d. error
vectors with zero mean and positive definite covariance matrix Σ. It is assumed
that {ηi} and {ei} are independent. We need the following conditions.
(C1) The kernel function K is symmetric with compact support and, for some

integer k ≥ 2, ∫
K(t)trdt =




1, if r = 0,
0, if 1 ≤ r < k,

ak �= 0, if r = k.

(C2) g(t) and gj(t), 1 ≤ j ≤ p, are k times continuously differentiable.
(C3) E(e4

1) < ∞ and E‖η1‖4 < ∞.

Let
rn(h) = n−1gτ (I − W (h))2g + n−1σ2tr(W 2(h)), (2.7)

r(h) = dkh
2k + bσ2/(nh), (2.8)

c1k =
(
bσ2/(2kdk)

)1/(2k+1)
, (2.9)

where
b =

∫
K2(t)dt, dk =

(ak

k!

)2
∫

(g(k)(t))2dt.

Note that the unique minimizer of r(h) over h > 0 is h∗
0 = c1kn

−1/(2k+1). Also it
is well known that

sup
h∈Λn

|rn(h)/r(h) − 1| = o(1). (2.10)

Thus, letting h0 be the minimizer of rn(h) over Λn, we have h0/h
∗
0 −→ 1 and

n(2k−2)/(2k+1)r′′n(h0) −→ (2k + 1)bσ2/c3
1k. (2.11)

Theorem 2.1. Suppose that conditions (C1)-(C3) hold and that the kernel K

is k times continuously differentiable. Then ĥG is asymptotically optimal with
respect to Ln(h) and Rn(h), respectively. Also we have ĥ/h∗

0
P−→ 1 for ĥ = hASE,

hCMASE and ĥG.

The next theorem deals with the convergence rates of ĥG and Ln(ĥG), which
shows that the relative convergence rate of ĥG to hASE is slower than (half,
actually) that of Ln(ĥG) to Ln(hASE). Let

σ2
4 = 8σ4c−3

1k

∫ (
K(u) + uK ′(u)

)2
du + 4c2k−2

1k dkσ
2. (2.12)
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Theorem 2.2. Suppose that conditions (C1)-(C3) hold and that the kernel K is
(k + 2) times continuously differentiable. Then we have

n1/(2(2k+1))
(
ĥG/hASE − 1

)
D−→ N(0, σ2

1), (2.13)

n1/(2k+1)
(
Ln(ĥG)/Ln(hASE) − 1

)
D−→ kσ2

1χ
2
1, (2.14)

where σ2
1 = c4

1kσ
2
4/((2k + 1)bσ2)2.

Similarly, the following analog of Theorem 2.2 holds.

Theorem 2.3. Under the conditions of Theorem 2.2 we have

n−1/(2(2k+1))
(
ĥG/hCMASE − 1

)
D−→ N(0, σ2

2),

n−1/(2k+1)
(
Rn(ĥG)/Rn(hCMASE) − 1

)
D−→ kσ2

2χ
2
1.

Here σ2
2 = c4

1kσ
2
5/((2k + 1)bσ2)2 with

σ2
5 =

8σ2

c3
1k

∫
(K − L1 − K ∗ K + K ∗ L1)2,

L1(u) = −uK ′(u), and ∗ denoting convolution.

Remark 2.1. The covariates t need not be equally spaced. They can be gener-
ated by some density. Also, the covariates t can be multivariate (q-dimensional,
say). In this case, the weight Knh of (2.5) is replaced by its multivariate version

Knh(t, t′) =
1

nhq

q∏
j=1

K
( tj − t′j

h

)
,

where tj and t′j are the jth component of the vectors t and t′, respectively.
Theorems 2.1-2.3 still hold with appropriate changes in constants and rates of
convergence.

Remark 2.2. The Priesley-Chao weight (2.5) can be replaced by other weights,
such as Nadaraya-Waston kernel weights.

Our results show that the bandwidth choice based on G(h) has the same
asymptotic performances as in the nonparametric model

yi = g(ti) + ei, 1 ≤ i ≤ n, (2.15)

obtained from (1.1) with β = 0. See Härdle and Marron (1985) and Härdle,
Hall and Marron (1988). This is not surprising because the estimator β̂h is
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√
n-consistent, hence the bandwidth choice here is essentially a nonparamet-

ric problem. In view of this, it should be mentioned that recent developments
of bandwidth selection methodology in nonparametric settings provide several
more efficient alternatives to the method used in this paper (see Härdle, Hall and
Marron (1992), Jones, Marron and Sheather (1996a,b) and references therein).
For example, note the plug-in method (Gasser, Kneip and Köhler (1991) and
Hall, Sheather, Jones and Marron (1991)) or, even better, the solve-the-equation
method (Sheather and Jones (1991)). Furthermore, the traditional kernel re-
gression and the bandwidth methodology developed for this situation have been
extended to local polynomial regression (see Fan and Gijbels (1995), Ruppert,
Sheather and Wand (1995) and references therein). It is expected that the merits
of these methods continue to the present semiparametric setting, though details
might be more complicated.

2.3. Proofs of theorems

The proofs make use of a series of lemmas in the next section. To simplify
notation, we use o∗p(·) (O∗

p(·)) to indicate “op(·) (Op(·)) holds uniformly over
h ∈ Λn” and write W and S for W (h) and S(h), respectively.

Proof of Theorem 2.1. By (2.2) and Lemmas 4.5 and 4.3 with ν = k and
α = α1 = k/(4k + 1), one can easily get

n−1‖(I − S)g‖2 = n−1gτ (I − W )2g + O∗
p(r

2(h)),

n−1gτ (I − S)τSe = o∗p(r(h)h(1−ε)/2),

n−1eτSτSe = σ2n−1tr(W 2) + ξn + o∗p(r(h)hα),

where
ξn = n−2eτηΣ−1ητe = Op(n−1) = o∗p(r(h)hα).

Hence by (2.10),

Ln(h) = n−1‖(I − S)g‖2 + n−1eτSτSe − 2n−1gτ (I − S)τSe

= rn(h) + o∗p(r(h)hα) = r(h) + o∗p(r(h)). (2.16)

Moreover, by Lemmas 4.3 and 4.5,

n−1‖(I − S)Y ‖2 = Ln(h) + n−1eτe + 2n−1gτ (I − S)e − 2n−1eτSe

= Ln(h) + n−1eτe − 2K(0)σ2/(nh) + o∗p(r(h)hα). (2.17)

Thus it is easily seen that

G(h) =
(
Ln(h) + n−1eτe − 2K(0)σ2/(nh) + o∗p(r(h)hα)

)
×
(
1 + 2K(0)/(nh) + an + O(r3/2(h))

)
= r(h) + n−1eτe + o∗p(r(h)). (2.18)
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Theorem 2.1 follows from (2.16) and (2.18).

Proof of Theorem 2.2. The proof is similar in spirit to that of Härdle, Hall
and Marron (1988). Denote for any small ε > 0

Λε = {h : |h/h∗
0 − 1| ≤ ε} ,

ln(h) = n−1‖g − W (g + e)‖2,

D(h) = ln(h) − Eln(h) = ln(h) − rn(h),

δ(h) = 2n−1 < g − W (g + e), e > +2K(0)eτ e/(n2h).

By Lemma 4.5 we see, similarly to (2.16), that

Ln(h) = ln(h) + ξn + O∗
p(r

2(h)) + o∗p(n
−1/2r(h)).

Since P{hASE ∈ Λε} → 1 by Theorem 2.1, differentiating Ln(h) for h ∈ Λε gives

0 = L′
n(hASE) = l′n(hASE) + op

(
n−( 1

2
+ 2k−1

2k+1
)
)

= r′′n(
)(hASE − h0) + D′(hASE) + op(n
− 6k−1

2(2k+1) ), (2.19)

where 
 is between hASE and h0 (recall that h0 is the minimizer of rn(h) defined
in (2.7)). On the other hand,

D(h) = (n−1eτW 2e − σ2n−1tr(W 2)) − 2n−1gτ (I − W )We

= D1(h) − D2(h). (2.20)

Let
L1(u) = −uK ′(u), L2(u) = −uL′

1(u),

Lnl(t, t′) =
1
nh

Ll

( t − t′

h

)
, Wl = (Lnl(ti, tj)), l = 1, 2.

Then we have

D′
1(h) = −2h−1(n−1eτ ((W − W1)W )e − σ2n−1tr((W − W1)W ))

= −2h−1D11(h),

D′′
1(h) = 2h−2D11(h) + 2h−2

{
n−1eτ [(W − 2W1 + W2)W + (W − W1)2]e

−σ2n−1tr[(W − 2W1 + W2)W + (W − W1)2]
}

= 2h−2D11(h) + 2h−2D12(h).

Note that both L1(u) and L2(u) still satisfy condition (C1). So, applying Lemma
4.1(ii) to D11(h) with ν = k + 1 and to D12(h) with ν = k, respectively,

hD′
1(h) = o∗p(r(h)h(k+3)/(4k+5)), h2D′′

1(h) = o∗p(r(h)hk/(4k+1)).



BANDWIDTH CHOICE IN SEMIPARAMETRIC MODEL 783

Similarly,

hD′
2(h) = o∗p

(
r(h)h(1−ε)/2

)
, h2D′′

2(h) = o∗p
(
r(h)h(1−ε)/2

)
.

With these facts, (2.11), (2.19) and (2.20) imply that

hASE − h0 = op

(
n− 1

2k+1
(2− 3k+2

4k+5
)
)

,

D′(hASE) = D′(h0) + D′′(
)(hASE − h0)

= D′(h0) + op

(
n− 2k−ρ

2k+1

)
,

where ρ = 3k+2
4k+5 − k

4k+1 < 1
2 . Consequently,

c−3
1k (2k + 1)bσ2n− 2k−2

2k+1 (hASE − h0) + D′(h0) = op

(
n− 2k−ρ

2k+1

)
. (2.21)

Now, the arguments leading to (2.19) and (2.21) can be easily modified to prove
that for some 
 between ĥG and h0,

0 = G′(ĥG) = r′′n(
)(ĥG − h0) + D′(ĥG) + δ′(ĥG) + O∗
p(n

− 3k−1
2k+1 ),

c−3
1k (2k + 1)bσ2n− 2k−2

2k+1 (ĥG − h0) + D′(h0) + δ′(h0) = op

(
n− 2k−ρ

2k+1

)
.

The rest of proof is similar to Theorem 1 of Härdle, Hall and Marron (1988).

2.4. Simulation study

Here is a simulation study comparing the small sample behavior of the six
bandwidth selectors introduced in Section 2.1. The simulation data are generated
according to the following model:

yi = xi + m2(ti) + ei, 1 ≤ i ≤ n, (2.22)

where xi = m1(ti) + ηi and t′is are equispaced on [.1, .9], with ei ∼ N(0, .25) and
ηi ∼ N(0, .01). The two regression functions are

m1(x) = x3(1 − x)3 and m2(x) = x/(x2 + 1). (2.23)

Note that the true parameter is β = 1. The kernel K is taken to be the one used
in Härdle, Hall and Marron (1988)

K(x) =
15
8

(1 − 4x2)2I(|x|≤.5).
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Table 1 compares the ratios of error criteria for these bandwidth selectors.
Its entries show the number of times out of 100 that either Ln(ĥG)/Ln(hASE)−1,
or Rn(ĥG)/Rn(hCMASE)− 1, exceeded the value of the column heading. Table 2
compares the ratios of bandwidths selected by these bandwidth selectors to the
“optimal” bandwidth based on either the ASE or CMASE criterion. Its entries
show the number of times out of 100 that either |ĥG/hASE−1|, or |ĥG/hCMASE−
1|, exceeded the value of the column heading. The sample size is n = 50.

Table 1. Number of exceedances of the column headings (by ratios of error
criteria) for various bandwidth selectors: 100 data sets of size 50 from the
model (2.22) along with (2.23).

0.05 0.1 0.15 0.2 0.25 0.3 0.5 0.7 0.9 1.1
GCV ASE 37 20 15 12 10 9 3 1 1 0

CMASE 25 10 3 2 2 0 0 0 0 0
AIC ASE 37 21 14 13 10 10 3 1 1 0

CMASE 25 12 4 2 2 0 0 0 0 0
FPE ASE 37 21 14 13 10 10 3 1 1 0

CMASE 25 12 4 2 2 0 0 0 0 0
S ASE 37 23 16 13 10 10 4 1 1 0

CMASE 28 15 7 4 3 2 0 0 0 0
T ASE 35 22 15 11 10 9 3 1 1 0

CMASE 24 9 3 2 0 0 0 0 0 0
CV ASE 92 89 86 84 80 78 64 43 27 18

CMASE 96 93 92 92 92 90 0 0 0 0

The tables reveal that GCV , AIC, FPE, Shibata’s S and Rice’s T perform
nearly the same. As we know in the nonparametric regression, the CV method
is subject to a great deal of sample variability, in the sense that for different
data sets from the same distributions, it may give much different results (Marron
(1989)). This drawback is also present in the simulation: the numbers of ex-
ceedances in both ASE and CMASE rows for the CV method are dramatically
larger than those for all other methods, indicating much greater variations of the
bandwidths and the values of ASE and CMASE among these 100 data sets.
On the other hand, it seems that the CMASE criterion is better estimated by
other bandwidth selectors than CV . This is understandable. Since CMASE is
the average of ASE over all possible y values generated by given {xi, ti} based
on (1.1), there is extra variability in the ASE criterion due to the randomness
of y. That CMASE is worse than ASE for the CV method is probably due to
the large sample variability of CV .

It should be mentioned that the CV method is not always worse. For exam-
ple, we reran the simulation above but instead of using the functions at (2.23),
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we used the following:

m1(x) = (x + 2)2 and m2(x) = x(1 − x)4. (2.24)

Table 2. Number of exceedances of the column headings (by the distance
between the ratios of the data-driven bandwidths to the optimal bandwidths
and 1) for various bandwidth selectors: 100 data sets of size 50 from the
model (2.22) along with (2.23).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
GCV ASE 31 22 17 12 10 10 9 6 5 5

CMASE 34 15 5 2 1 0 0 0 0 0
AIC ASE 33 22 17 12 10 10 9 6 5 5

CMASE 35 15 6 2 1 0 0 0 0 0
FPE ASE 33 22 17 12 10 10 9 6 5 5

CMASE 35 15 6 2 1 0 0 0 0 0
S ASE 34 22 16 12 9 9 8 5 5 5

CMASE 39 19 8 4 3 1 0 0 0 0
T ASE 31 22 17 11 10 10 9 6 5 5

CMASE 33 14 5 2 0 0 0 0 0 0
CV ASE 92 91 90 87 81 67 13 0 0 0

CMASE 96 95 92 92 92 89 69 0 0 0

Table 3. Number of exceedances of the column headings (by ratios of error
criteria) for various bandwidth selectors: 100 data sets of size 50 from the
model (2.22) along with (2.24).

0.05 0.1 0.15 0.2 0.25 0.3 0.5 0.7 0.9 1.1
GCV ASE 68 61 57 51 43 37 26 14 11 11

CMASE 59 47 21 0 0 0 0 0 0 0
AIC ASE 68 61 56 52 43 38 26 14 10 10

CMASE 61 49 23 0 0 0 0 0 0 0
FPE ASE 68 62 57 53 44 38 26 14 11 11

CMASE 60 48 21 0 0 0 0 0 0 0
S ASE 71 63 56 52 47 42 25 14 12 11

CMASE 66 52 27 0 0 0 0 0 0 0
T ASE 65 59 54 50 40 36 25 14 11 11

CMASE 55 42 18 0 0 0 0 0 0 0
CV ASE 70 59 53 51 44 41 27 15 13 13

CMASE 58 50 25 0 0 0 0 0 0 0

The results are shown in Tables 3.4 and 3.5, set up the same as Tables 3.2 and 3.3,
respectively. We can see that the performance of the CV method is now nearly
the same as that of all the others. These simulations indicate that the behavior
of the CV method is likely to be more sensitive to the model specification (the
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forms of the regression functions m1(x) and m2(x), in particular), and hence less
stable than the other methods. Therefore CV should be used with caution. In
light of this, we recommand using the GCV method to choose the bandwidth in
this semiparametric setting.

Table 4. Number of exceedances of the column headings (by the distance
between the ratios of the data-driven bandwidths to the optimal bandwidths
and 1) for various bandwidth selectors: 100 data sets of size 50 from the
model (2.22) along with (2.24).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
GCV ASE 62 50 37 30 25 22 22 20 15 13

CMASE 54 50 33 21 0 0 0 0 0 0
AIC ASE 63 49 38 27 23 21 21 18 14 11

CMASE 60 53 37 26 0 0 0 0 0 0
FPE ASE 64 50 38 28 24 22 22 19 15 12

CMASE 59 52 36 25 0 0 0 0 0 0
S ASE 66 49 37 29 22 21 20 17 13 11

CMASE 63 55 39 29 0 0 0 0 0 0
T ASE 61 49 38 32 27 24 22 20 15 13

CMASE 52 42 29 16 0 0 0 0 0 0
CV ASE 64 50 39 28 23 22 21 19 16 14

CMASE 55 51 38 28 0 0 0 0 0 0

3. Data-Driven Estimator β̂ĥG

3.1.
√

n-Consistency

For a certain deterministic bandwidth choice h, Speckman (1988) showed
that the kernel smoothing estimator β̂h can attain the usual parametric rate
O(n−1/2). In fact, he proved that

√
n(β̂h − β) D−→ N(0, σ2Σ−1),

where Σ is the covariance matrix of η1 = (η11, . . . , η1p)τ in (2.6). Then a natural
question arises: is the O(n−1/2) rate still attainable for the data-driven band-
width choice ĥG, i.e., is β̂ĥG

√
n-consistent? The following theorem shows that

the same asymptotic normality holds for β̂ĥG
.

Theorem 3.1. Under the conditions of Theorem 2.1 we have
√

n(β̂ĥG
− β) D−→ N(0, σ2Σ−1). (3.1)

Proof. We have the decomposition
√

n(β̂ĥG
− β) =

1√
n

Σ−1
n2 (ĥG)ητ (I − W (ĥG))2g
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+
1√
n

Σ−1
n2 (ĥG)Gτ (I − W (ĥG))2g

+
1√
n

(Σ−1
n2 (ĥG) − Σ−1)ητ (I − W (ĥG))2e

+
1√
n

(Σ−1
n2 (ĥG) − Σ−1)Gτ (I − W (ĥG))2e

− 1√
n

ητ (2W (ĥG) − W 2(ĥG))e +
1√
n

Σ−1ητe

=
5∑

j=1

Bj(ĥG) +
1√
n

Σ−1ητe.

By Lemmas 4.2-4.4 we have, uniformly over h ∈ Λε,

Bj(h) = op(n1/2r(h)) = op(1), j = 1, 3, 4, 5,

B2(h) = Op(n1/2h2k) = op(1).

Thus, since P{ĥG ∈ Λε} −→ 1 by Theorem 2.1,

Bj(ĥG) = op(1), 1 ≤ j ≤ 5.

The convergence in (3.1) then follows from the classical CLT.

3.2. An application to diabetes data

The data come from a study (Sockett, Daneman, Clarson and Ehrich (1987))
of factors affecting patterns of insulin-dependent diabetes mellitus in children.
The objective was to investigate the dependence of the level of serum C-peptide
on various other factors in order to understand the patterns of residual insulin
secretion. The response variable is C-peptide concentration (pmol/ml) at diag-
nosis, and the predictors are age and base deficit, a measure of acidity. These two
predictors are a subset of those used in the original study. The data scatterplot
is shown in Figure 1. Two observations in the original data set are excluded
as outliers because of their unusually large absolute values of base deficit. Note
that while the plot of the response variable, C-peptide, versus one predictor, base
deficit, shows a roughly linear relationship between them, we see a nonlinear pat-
tern in the plot of C-peptide versus age. Thus a semiparametric regression model
with base deficit as its linear component and age as its nonparametric component
is fitted using the kernel smoothing method with

Knh(t, ti) = K(
t − ti

h
)/

n∑
j=1

K(
t − tj

h
),
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where the kernel K(t) = 15(1 − t2)I(|x|≤1)/16. The GCV -selected bandwidth is
4.9033 and the estimated linear coefficient of base deficit is 0.0549. Figure 2
shows the fitted regression surface. We can see that the general trend in each
variable revealed in the scatterplot Figure 1 is well represented.
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4. Technical Lemmas

In this section we give some lemmas used in the proofs of Theorems 2.1
and 2.2. In the sequel C denotes a generic constant which may differ at each
appearance.

Lemma 4.1. Suppose that A(h) = (Aij(h)) is an n × n matrix, satisfying
(a) |Aij(h)| ≤ C(nh)−1 for each 1 ≤ i, j ≤ n,
(b) Aij(h) = 0 if |i − j| ≥ Cnh,
(c) For some ν ≥ 1, each Aij(h) is ν times continuously differentiable, and

B
(l)
ij (h) �= hlA

(l)
ij (h), all satisfy (a) and (b), 1 ≤ l ≤ ν.

Suppose {ui} and {vi} are two independent sequences of i.i.d. variables with mean
zero and finite 4th moments, with u = (u1, . . . , un)τ and v = (v1, . . . , vn)τ . Then
the following results hold uniformly over h ∈ Λn.

(i) If f(t) is a bounded function on [0, 1] satisfying

|f τ (I − A(h))| ≤ Chk, for any h ∈ Λn, (4.1)

then for any small ε > 0

n−1f τ (I − A(h))u = op(r(h)h(1−ε)/2).

(ii) If ν ≥ 2k/3, then for α1 = 3ν−2k
4ν+1 , α2 = ν

2ν+1 and α = min(α1, α2),

n−1
∑

1≤j �=s≤n

Ajs(h)ujus = op(r(h)hα1), (4.2)

n−1
n∑

j=1

Ajj(h)
(
u2

j − E(u2
1)
)

= op(r(h)hα2),

n−1uτA(h)u − n−1E(u2
1)tr(A(h)) = op(r(h)hα),

n−1uτA(h)v = op(r(h)hα).

Proof. We only prove (4.2) here. The proofs of others are similar in spirit. Let

hi = (1 + bn)i(nδn)−1, 0 ≤ i ≤ in = log(nδ2
n)/log(1 + bn),

where bn = ε2n
− 2k+α1

ν(2k+1) for an arbitrarily small ε > 0. We have

sup
h∈Λn

∣∣∣∣∣∣(nr(h)hα1)−1
∑

1≤j �=s≤n

Ajs(h)ujus

∣∣∣∣∣∣
≤ 2 max

0≤i≤in

∣∣∣∣∣∣(nr(hi)hα1
i )−1

∑
1≤j �=s≤n

Ajs(hi)ujus

∣∣∣∣∣∣
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+2max
i

sup
hi≤h≤hi+1

∣∣∣∣∣∣(nr(hi)hα1
i )−1

∑
1≤j �=s≤n

(Ajs(h) − Ajs(hi))ujus

∣∣∣∣∣∣
= T1 + T2. (4.3)

By a Taylor expansion,

T2 ≤ C max
i

ν−1∑
l=1

bl
n

∣∣∣∣∣∣(nr(hi)hα1
i )−1

∑
1≤j �=s≤n

B
(l)
js (hi)ujus

∣∣∣∣∣∣
+Cbν

n max
i

sup
hi≤h≤hi+1

∣∣∣∣∣∣(nr(hi)hα1
i )−1

∑
1≤j �=s≤n

B
(ν)
js (
js)ujus

∣∣∣∣∣∣
= T21 + T22, (4.4)

where 
js is between h and hi. From conditions (a)-(c),

T22 ≤ Cbν
n max

i


(n2r(hi)h1+α1

i )−1
∑

0<|j−s|<Cnhi

(|ujus| − E|ujus|)



+Cbν
n

(
inf
h>0

(r(h)hα1)
)−1

.

Obviously the second term of the right hand side above tends to zero as n → ∞.
The first term is op(1) by the Cauchy inequality. To handle T1, let

Λm =

{
[mCnhi + 1, (m + 1)Cnhi], if 0 ≤ m ≤ mi = (Chi)−1 − 1,
∅, if m < 0 or m > mi,

and Λmj = Λm − {j}. Then we have

T1 = 2max
i

∣∣∣∣∣∣(nr(hi)hα1
i )−1

mi∑
m=0

∑
j∈Λm

∑
s∈Λm−1∪Λmj∪Λm+1

Ajs(hi)ujus

∣∣∣∣∣∣
≤ 2max

i

∣∣∣∣∣∣(nr(hi)hα1
i )−1

mi∑
m=0

∑
j∈Λm

∑
s∈Λmj

Ajs(hi)ujus

∣∣∣∣∣∣
+2max

i

∣∣∣∣∣∣(nr(hi)hα1
i )−1

mi∑
m=1

∑
j∈Λm

∑
s∈Λm−1

Ajs(hi)ujus

∣∣∣∣∣∣
+2max

i

∣∣∣∣∣∣(nr(hi)hα1
i )−1

mi−1∑
m=0

∑
j∈Λm

∑
s∈Λm+1

Ajs(hi)ujus

∣∣∣∣∣∣
= T11 + T12 + T13. (4.5)
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Write
zmi =

∑
j∈Λm

∑
s∈Λmj

Ajs(hi)ujus,

z′mi = zmiI(|zmi| ≤ h−γ
i ) − E

(
zmiI(|zmi| ≤ h−γ

i )
)

,

and z′′mi = zmi − z′mi, where γ ∈ (1/2, 1− α1). It follows from condition (a) and
|Λm| ≤ Cnhi that for each i and m, E(zmi)4 ≤ C. Hence it is easy to see that

E(
∑
m

z′′mi)
4 ≤ C

∑
m

E(z′′mi)
4 + C(

∑
m

E(z′′mi)
2)2

≤ Cγnh−1
i + Ch4γ−2

i ,

where γn = o(1). Consequently

P

{
max

i

∣∣∣∣∣(nr(hi)hα1
i )−1

∑
m

z′′mi

∣∣∣∣∣ ≥ ε

}

≤ C
∑

i

(nr(hi)hα1
i )−4E(

∑
m

z′′mi)
4 −→ 0. (4.6)

On the other hand, since by condition (b)∑
m

E(z′mi)
2 ≤

∑
m

∑
j∈Λm

∑
s∈Λmj

A2
js(hi)E(uj)2E(us)2 ≤ Ch−1

i ,

Bernstein’s Inequality gives

P

{
max

i

∣∣∣∣∣(nr(hi)hα1
i )−1

∑
m

z′mi

∣∣∣∣∣ ≥ ε

}

≤ 2
∑

i

exp

{
−C (nr(hi)hα1

i )2
/(∑

m

E(z′mi)
2 + C(nr(hi)hα1

i )h−γ
i

)}

≤ 2in
(
exp{−Cn−(1−2α1)/(2k+1)} + exp{−Cn−(1−γ−α1)/(2k+1)}

)
≤ Cn−2,

Putting this together with (4.6) gives T11 = op(1). As for T12, we have

T12 ≤ 2max
i

∣∣∣∣∣(nr(hi)hα1
i )−1

∑
m: even

umi

∣∣∣∣∣
+2max

i

∣∣∣∣∣(nr(hi)hα1
i )−1

∑
m: odd

umi

∣∣∣∣∣ = T ′
12 + T ′′

12,

where
umi =

∑
j∈Λm

∑
s∈Λm−1

Ajs(hi)ujus.
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Now, similar to T11, both T ′
12 and T ′′

12 are op(1). Hence T12 = op(1). Similarly
T13 = op(1). Thus by (4.5) T1 = op(1). The same argument leads to T21 = op(1),
thus (4.2) follows.

Let

g = (g(t1), . . . , g(tn))τ , e = (e1, . . . , en)τ , η = (η1, . . . , ηn)τ ,

Gi = (gi(t1), . . . , gi(tn))τ , G = (G1, . . . , Gp).

Lemma 4.2. Suppose that condition (C1) holds and that K is ν times continu-
ously differentiable. Then for each s ≥ 1, W s(h) satisfies conditions (a) − (c) of
Lemma 4.1. Also, the condition (4.1) in Lemma 4.1(i) holds for f = g or G and
A(h) = W s(h).

Proof. Let wij,s(h) denote the (i, j)th element of W s(h). Obviously wij,1(h)
satisfies (a)-(c). Since for s ≥ 2

wij,s(h) =
n∑

l=1

wil,1(h)wlj,s−1(h),

the first result follows from induction. The second is a standard result in non-
parametric kernel regression.

The following three lemmas follow from Lemmas 4.1 and 4.2.

Lemma 4.3. Suppose that conditions (C1)-(C3) hold and that K is ν times
continuously differentiable. Then we have, uniformly over h ∈ Λn, that for each
s ≥ 1,

(i) For any small ε > 0, f = g or G and u = e or η,

n−1f τ (I − W (h))su = op(r(h)h(1−ε)/2).

(ii) If ν ≥ 2k/3, then

n−1uτW s(h)u − n−1Var (u1)tr(W s(h)) = op(r(h)hα),

n−1ητW s(h)e = op(r(h)hα),

where u = e or η and α = min(α1, α2) is as in Lemma 4.1(ii).

For s ≥ 1, let
Σns(h) = n−1Xτ (I − W (h))sX.

Lemma 4.4. Under the assumptions of Theorem 2.1 we have, uniformly over
h ∈ Λn, that for each s ≥ 2,

Σns(h) − Σ = Op(n−1/2 + r(h)), (4.7)
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Σ−1
ns (h) − Σ−1 = Op(n−1/2 + r(h)). (4.8)

Lemma 4.5. Under the assumptions of Theorem 2.1 we have, uniformly over
h ∈ Λn, that for s ≥ 0,

n−1tr(S(h)) = K(0)/(nh) + p/n + op(n−1/2r(h)),

n−1tr(Sτ (h)S(h)) = n−1tr(W 2(h)) + p/n + op(n−1/2r(h))

= (nh)−1
∫

K2(t)dt + p/n + op(r(h)).

n−1gτ (I − W (h))PX̃(I − W (h))g = Op(r2(h)),

n−1gτ (I − W (h))PX̃(I − W (h))se = op(r2(h)) + Op(n−1/2r(h)),

n−1eτ (I − W (h))PX̃(I − W (h))se = n−2eτηΣ−1ητe + op(r2(h) + n−1/2r(h)).
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