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Abstract: An affine equivariant modification of the spatial median constructed us-

ing an adaptive transformation and retransformation procedure has been studied.

It has been shown that this new estimate of multivariate location improves upon

the performance of nonequivariant spatial median especially when there are corre-

lations among the real valued components of multivariate data as well as when the

scales of those components are different (e.g. when data points follow an ellipti-

cally symmetric distribution). For such correlated multivariate data the proposed

estimate is more efficient than the non-equivariant vector of coordinatewise sample

medians, and it outperforms the sample mean vector in the case of heavy tailed

non-normal distributions. As an extension of the methodology, we have proposed

an affine invariant modification of the well-known angle test based on the transfor-

mation approach, which is applicable to one sample multivariate location problems.

We have observed that this affine invariant test performs better than the nonin-

variant angle test and the coordinatewise sign test for correlated multivariate data.

Also, for heavy tailed non-normal multivariate distributions, the test outperforms

Hotelling’s T 2 test. Finite sample performance of the proposed estimate and the

test is investigated using Monte Carlo simulations. Some data analytic examples

are presented to demonstrate the implementation of the methodology in practice.
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1. Introduction: Spatial Median, Angle Test and Their Lack of Equiv-
ariance and Invariance

For a set of n data points X1, . . . ,Xn in R
d, there are many versions of

multivariate median and multivariate sign test that have been proposed and
investigated in the existing literature. Readers are referred to Small (1990),
Hettmansperger, Nyblom and Oja (1992) and Chaudhuri and Sengupta (1993)
for some recent detailed reviews. Among different versions of the multivariate
median, the vector of coordinatewise median and the spatial median, which is
defined as the vector Φ̂n that minimizes the sum

∑n
i=1 ‖Xi − Φ‖ of Euclidean

distances of Φ ∈ R
d from the data points Xi’s, are perhaps the simplest ones,
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and they appear to have the greatest antiquity in the literature. At the begin-
ning of the 20th century, Hayford (1902) considered the possibility of using the
vector of medians of orthogonal coordinates to locate the ‘geographical center’
of the US population. In view of the difficulty arising from the fact that such a
concept of multivariate location depends on the choice of the orthogonal coor-
dinate system to be laid on the map of the country and its lack of equivariance
under orthogonal transformations, Scates (1933) proposed the use of the spatial
median for the same purpose. Many other authors (see e.g. Gini and Galvani
(1929) and Haldane (1948)) have independently considered the spatial median
as a generalization of the univariate median in different situations. In one sam-
ple location problems, the tests that are naturally associated with the vector of
coordinatewise median and the spatial median are the coordinatewise sign test
and the angle test respectively. The former test has been studied extensively by
Bennett (1962), Bickel (1965), Chatterjee (1966), Puri and Sen (1971), etc. while
the latter one, which is a test based on the direction vectors U(Xi) = ‖Xi‖−1Xi

(1 ≤ i ≤ n,Xi �= 0), has been considered by Brown (1983, 1985), Mottonen and
Oja (1995), etc.

One serious drawback of the coordinatewise median as well as the spatial
median is that neither of them is equivariant under arbitrary affine transforma-
tion of the data. In addition to being an undesirable geometric feature, this lack
of equivariance is known to have some negative impact on the statistical perfor-
mance of these two location estimates especially when the real valued components
of the multivariate data are substantially correlated. This is also a handicap for
both the coordinatewise sign test and the angle test none of which is invariant un-
der general affine transformation of the data. This issue was first articulated by
Bickel (1964, 1965), and subsequently investigated by Brown and Hettmansperger
(1987, 1989). The spatial median is known to have rather impressive and some-
what counter-intuitive efficiency properties for multidimensional data generated
from a spherically symmetric probability distribution, and this has been discussed
in detail in Chaudhuri (1992) (see also Brown (1983)). However, the performance
of the spatial median as well as the angle test tends to be quite poor compared to
other affine equivariant or invariant procedures when there is significant deviation
from spherical symmetry caused by the presence of correlation among observed
variables (e.g. when the underlying distribution is elliptically symmetric). While
the vector of the coordinatewise median is equivariant under coordinatewise scale
transformation of the data, the lack of equivariance in the spatial median under
such transformations makes it useless when in practice different variables are
measured in different scales. Similarly, while the coordinatewise sign test can
be used for data consisting of variables measured in different scales, it is not
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possible to use the angle test on such data due to its lack of invariance under
coordinatewise scale transformation.

Recently Chakraborty and Chaudhuri (1996, 1998) have proposed a resolu-
tion for this problem of lack of affine equivariance and loss in statistical efficiency
in the case of the coordinatewise median using a data based transformation and
retransformation strategy. They converted the nonequivariant coordinatewise
median into an affine equivariant location estimate and thereby repaired some
of its undesirable features, which led to a gain in statistical efficiency. Their
principal idea originated from the concept of a ‘data driven coordinate system’
introduced by Chaudhuri and Sengupta (1993) as an effective general tool for
constructing affine invariant versions of the multivariate sign test. In this arti-
cle, our objective is to explore an affine equivariant version of the multivariate
median and an affine invariant version of the multivariate sign test, which are
constructed by applying the transformation retransformation technique to the
spatial median and the angle test respectively. It is appropriate to note here
that there are other versions of the affine equivariant multivariate median (see
e.g. Tukey (1975), Oja (1983), Liu (1990)) and affine invariant multivariate sign
test (see e.g. Hodges (1955), Blumen (1958), Brown and Hettmansperger (1989),
Brown, Hettmansperger, Nyblom and Oja (1992), Randles (1989), Oja and Ny-
blom (1989), Chaudhuri and Sengupta (1993), Hettmansperger, Nyblom and Oja
(1994)) that have been proposed and extensively studied in the literature. How-
ever, we have been motivated to use the transformation and retransformation
approach primarily by its appealing geometric interpretation and computational
simplicity in the resulting statistical test and estimate as well as the elegant
mathematical theory for their statistical properties. Our proposed procedures
are quite easy to implement in analyzing data for making statistical inference in
practice. We demonstrate in Section 3 how one can conveniently estimate the
sampling variation in the proposed location estimate by resampling techniques
such as the bootstrap. In the same Section, we will indicate how one can estimate
the P -value when our test is applied to a data set by simulating the null distri-
bution of the proposed test statistic. As we see in Section 2, a very encouraging
common feature of both of our test and location estimates is that they inherit
the impressive efficiency properties of the angle test and the spatial median in
spherically symmetric multivariate models and can be extended to more general
elliptically symmetric situations.

2.Transformation andRetransformation:Methodology andMotivation

Let us begin by observing a simple geometrical fact about any given affine
transformation of a set of multivariate observations. For a nonsingular d × d

matrix A and any b ∈ R
d, the transformation that maps Xi into AXi + b for
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1 ≤ i ≤ n essentially expresses the original data in terms of a new coordinate
system determined by A and b. The new origin is located at −A−1b, and
depending on whether A is an orthogonal matrix or not, this new coordinate
system may or may not be an orthonormal system. The fundamental idea that
lies at the root of data based transformation and retransformation is to form an
appropriate ‘data driven coordinate system’ (see also Chaudhuri and Sengupta
(1993)) and to express all the data points in terms of that coordinate system first.
This is tantamount to making an affine transformation of the data. Then one
computes a location estimate or a test statistic based on those transformed data
points. Finally the location estimate is retransformed to express everything back
in terms of the original coordinate system (see also Chakraborty and Chaudhuri
(1996, 1998)). Now, in order to form a ‘data driven coordinate system’, we need
d + 1 data points in R

d, one of which determines the origin, and the lines joining
that origin to the remaining d data points form various coordinate axes. In order
to get a valid coordinate system, these d + 1 points must satisfy some ‘non-
singularity’ or ‘affine independence’ condition that we will gradually consider.
However, it is not necessary for this ‘data driven coordinate system’ to be an
orthonormal system. We now discuss in detail and in more precise terms how
this transformation and retransformation technique converts spatial median into
an affine equivariant estimate of multivariate location.

2.1. An affine equivariant version of multivariate median

Suppose that we have n data points X1, . . . ,Xn in R
d, and assume that

n > d + 1. Let α = {i0, i1, . . . , id} denote a subset of size d + 1 of {1, . . . , n}.
Consider the points Xi0,Xi1 , . . . ,Xid , which form a ‘data driven coordinate sys-
tem’ as described above, and the d × d matrix X(α) containing the columns
Xi1 − Xi0, . . . ,Xid − Xi0 can be taken as the transformation matrix for trans-
forming the data points Xj such that 1 ≤ j ≤ n, j �∈ α in order to express them
in terms of the new coordinate system as Z(α)

j = {X(α)}−1Xj. From now on, all
vectors in this paper are assumed to be column vectors unless specified other-
wise, and the superscript T is used to denote transpose of vectors and matrices.
Clearly, we need X(α) to be an invertible matrix, and this is guaranteed if the
Xi’s are generated as i.i.d. observations from a distribution that is absolutely
continuous w.r.t the Lebesgue measure on R

d. One can now compute the spatial
median Φ̂(α)

n of the Z(α)
j ’s by minimizing the sum

∑
j �∈α ‖Z(α)

j − Φ‖. Finally, in
order to express things back in terms of the original coordinate system, we need
to retransform Φ̂(α)

n into Θ̂(α)
n = X(α)Φ̂(α)

n , which is our desired location estimate.
In view of its construction, it is clear that Θ̂(α)

n is an affine equivariant estimate
of location. A question that naturally arises at this point is how to choose the
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‘data driven coordinate system’ or equivalently the data based transformation
matrix X(α). An answer to this question is provided in the following Theorem,
which we prove in the Appendix.

Since in the univariate case there is a unique concept of the median and
the sign test both of which are already extensively studied in the literature,
for the rest of the paper we assume that d ≥ 2 and write g(x) to denote the
elliptically symmetric density {det(Σ)}−1/2f(xT Σ−1x), where Σ is a d×d positive
definite matrix and f(xTx) is a continuous spherically symmetric density around
the origin in R

d. The Xi’s are assumed to be i.i.d. observations with common
elliptically symmetric density g(x − Θ), where Θ ∈ R

d is the location of elliptic
symmetry for the data.

Theorem 2.1. For any given subset α of {1, . . . , n} with size d+1 and given the
Xi’s with i ∈ α, the conditional asymptotic distribution of n1/2(Θ̂(α)

n − Θ) is d-
variate normal with zero mean and a variance covariance matrix ∆{f,Σ,X(α)}
that depends on f , Σ and the transformation matrix X(α). Here the positive
definite matrix ∆ is such that the difference ∆{f,Σ,A} − ∆{f,Σ,B} is non-
negative definite (i.e. ∆{f,Σ,A} ≥n.n.d ∆{f,Σ,B} ) for any f , Σ and any
two d × d invertible matrices A and B such that BT Σ−1B = λId, where λ > 0
is a constant and Id is the d × d identity matrix. Further, for any such B,
we have ∆{f,Σ,B} = c(d, f)Σ, where c(d, f) = π−1d(d − 1)−2{f1(0)}−2[Γ{(d −
1)/2}]−2{Γ(d/2)}2, f1 being the univariate marginal of the spherically symmetric
density f on R

d.

The main message communicated by the above Theorem is that we need to
choose X(α) in such a way that {X(α)}T Σ−1X(α) becomes as close as possible
to a matrix of the form λId, which is a diagonal matrix with all diagonal entries
equal. In other words, the coordinate system represented by the transformation
matrix Σ−1/2X(α) should be as orthonormal in nature as possible. The expres-
sion for c(d, f) in Theorem 2.1 implies that when {X(α)}T Σ−1X(α) is chosen
to be close to a diagonal matrix with all diagonal entries equal, the asymptotic
efficiency of the estimate Θ̂(α)

n becomes close to that of the spatial median under
spherically symmetric models (i.e. when Σ = σ2Id), and it will be more effi-
cient than the spatial median in elliptically symmetric models (see Chaudhuri
(1992)). It is known that for spherically symmetric data the rotationally equiv-
ariant spatial median is more efficient than the vector of coordinatewise medians,
which lacks rotational equivariance (see Brown (1983), Chaudhuri (1992)), and
with a proper selection of X(α), Θ̂(α)

n too will have similar superior performance.
Another implication of Theorem 2.1 is that with appropriate choice of X(α),
the estimate Θ̂(α)

n will be more (or less) efficient than the sample mean vector
depending on whether the tail of the density f is ‘heavy’ (or ‘light’).
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We discuss a procedure for choosing the transformation matrix X(α) from
the data when we discuss numerical examples in Section 3, and there we compare
the finite sample performance of our estimate with that of some other well-known
estimates of multivariate location. But before that let us close this Section by
noting that an alternative affine equivariant modification of the spatial median
has been considered in the literature by other authors (see e.g. Isogai (1985),
Rao (1988)), who computed the spatial median based on multivariate observa-
tions transformed by the square root of the variance covariance matrix. While
transforming the data points by the square root of the sample variance covariance
matrix is a popular approach, the resulting co-ordinate system does not have any
simple and natural geometric interpretation. Further, such a transformation can-
not lead to an affine invariant modification of other non-equivariant location esti-
mates such as the coordinatewise median, as has been discussed in Chakraborty
and Chaudhuri (1996), and the limitation of that approach is primarily due to
the fact that there does not exist an affine equivariant square root of the variance
covariance matrix. As we see in the next section, the strategy of transforming
the data points using an appropriately chosen X(α) leads to an affine invariant
modification of the well-known angle test, which turns out to be ‘distribution
free’ in nature in the sense that the null distribution of the test statistic under
elliptically symmetric model does not depend on the unknown density f . This
is not achievable by transforming the observations using the square root of the
sample variance covariance matrix. Our ‘data driven coordinate system’ is a
widely applicable tool for converting non-equivariant (or non-invariant) proce-
dures into equivariant (or invariant) procedures, which is not limited to only the
spatial median. Besides, it has a very nice and intuitively meaningful geometric
interpretation, and an attractive feature of this data based transformation re-
transformation strategy is the clean and elegant mathematical theory associated
with the approach, which provides an effective guideline for implementation of
the methodology for analyzing data and making statistical inference.

2.2. An affine invariant multivariate sign test

As in the preceding Section, let us assume that the Xi’s are i.i.d. observations
generated from the elliptically symmetric density g(x− Θ) on R

d. Suppose that
we have two competing hypotheses H0 : Θ = 0 and HA : Θ �= 0 concerning
the center of elliptic symmetry of the distribution. Consider once again the
transformed observations Z(α)

j for j �∈ α and 1 ≤ j ≤ n, and define the test

statistic T(α)
n =

∑
j �∈α ‖Z(α)

j ‖−1Z(α)
j . We now state a Theorem that summarizes

the main features of this test statistic.

Theorem 2.2. Under the null hypothesis H0 : Θ = 0, the conditional distribu-
tion of T(α)

n given the Xi’s with i ∈ α does not depend on f , and it depends on Σ
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through Σ−1/2X(α). Further, in large samples, the conditional null distribution
of n−1/2T(α)

n is approximately normal with zero mean and a variance covariance
matrix Ψ{Σ−1/2X(α)} that depends on Σ−1/2X(α). When log f is twice differ-
entiable almost everywhere (w.r.t. Lebesgue measure) on R

d and satisfies the
Cramer type regularity conditions, the alternatives H

(n)
A : Θ = n−1/2Φ such that

Φ ∈ R
d and Φ �= 0 form a contiguous sequence, and the conditional limiting distri-

bution of n−1/2T(α)
n under that sequence of alternatives is normal with the same

variance covariance matrix Ψ and a mean vector Λ{f,Σ−1/2Φ,Σ−1/2X(α)} that
depends on f , Σ−1/2Φ and Σ−1/2X(α). Also, the limiting conditional power of
the test under such a sequence of contiguous alternatives depends monotonically
on the noncentrality parameter

δ{f,Σ−1/2Φ,Σ−1/2X(α)}
= [Λ{f,Σ−1/2Φ,Σ−1/2X(α)}]T [Ψ{Σ−1/2X(α)}]−1Λ{f,Σ−1/2Φ,Σ−1/2X(α)},

where δ is such that for any f , Φ, Σ and any two invertible matrices A and B, we
have δ{f,Σ−1/2Φ,Σ−1/2B} ≥ δ{f,Σ−1/2Φ,Σ−1/2A} whenever BT Σ−1B = λId

for some λ > 0.

We prove this Theorem in the Appendix. But before that note that one of
the main implications of this Theorem is that whatever f may be, it is possible
to simulate the conditional finite sample null distribution of T(α)

n after obtain-
ing an appropriate estimate of Σ in small sample situations, and one can use
the normal approximation when the sample size is large. It is also noteworthy
that in order to maximize the power of the test that rejects H0 for large val-
ues of {T(α)

n }T [Ψ{Σ−1/2X(α)}]−1T(α)
n , one needs to choose X(α) in such a way

that {X(α)}T Σ−1X(α) becomes as close as possible to a diagonal matrix with
all diagonal entries equal (especially for alternatives close to the null). It will
become transparent when we present the proof of Theorem 2.2 that by choos-
ing [X(α)]T Σ−1X(α) very close to a matrix of the form λId, asymptotic Pitman
efficiency of the test can be made close to that of the angle test in the spheri-
cally symmetric model (i.e. when Σ = σ2Id), and it will be more efficient than
the angle test in elliptically symmetric models. Also, the test will be more (or
less) efficient than the standard test of location based on Hotelling’s T 2 statistic
(which is a test based on the sample mean vector) if the tail of the density f is
‘heavy’ (or ‘light’). In the following Section, we demonstrate how the simulated
conditional null distribution of T(α)

n can be used to determine the critical region
of the test for a pre-specified level of significance and also to estimate the P -value
corresponding to a given value of {T(α)

n }T [Ψ{Σ−1/2X(α)}]−1T(α)
n computed from

the observed data. Also, there we compare the finite sample performance of our
test with some other standard one sample tests for multivariate location.
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3. Simulation Studies and Data Analysis

It is quite clear from our main results and discussion in the preceding Section
that we need to choose X(α) in such a way that {X(α)}T Σ−1X(α) becomes as
close as possible to a matrix of the form λId. Since Σ will be unknown in
practice, we have to estimate that from the data and we will need a consistent
and affine equivariant estimate (say Σ̂). When the variables observed in the
data have finite population variances, we can use the usual variance covariance
matrix for this purpose. In any case, after obtaining Σ̂, we try to choose X(α) in
such a way that the eigenvalues of the positive definite matrix {X(α)}T Σ−1X(α)
become as equal as possible. To achieve this, our strategy is to minimize either
the ratio between the arithmetic mean and the geometric mean or that between
the geometric mean and the harmonic mean of the eigenvalues. Note that a
major advantage in using such a criterion is that it does not involve explicit
computation of the eigenvalues of the matrix. Arithmetic and harmonic means of
the eigenvalues can be obtained from the trace of the matrix and that of its inverse
respectively, while the geometric mean can be computed from its determinant. In
our numerical studies, we have observed that the criteria based on different ratios
yield more or less similar results. Instead of minimizing the ratio over all possible
subsets α with size d + 1 of {1, . . . , n}, one can substantially reduce the amount
of computation by stopping the search for optimal X(α) as soon as the ratio
becomes smaller than 1 + ε, where ε is a preassigned small positive number. In
our simulations and data analysis, we did not observe such an approach to cause
any significant change in the statistical performance of the procedures though
there was considerable gain in the speed of computation. Of course, there are
other different ways to achieve this goal of making {X(α)}T Σ−1X(α) as close as
possible to a diagonal matrix with all diagonal entries equal. We have adopted
a specific strategy that is computationally convenient and has been observed to
work fairly well in our numerical investigations. Note that once X(α) is chosen,
we can compute the spatial median Φ̂(α)

n from the transformed observations Z(α)
j ’s

using any of the standard algorithms discussed in the literature (see e.g. Gower
(1974), Chaudhuri (1996))

We now discuss a simulation study that was undertaken with the objective
of comparing the finite sample performance of Θ̂(α)

n with that of the sample
mean vector and the vector of coordinatewise sample medians. We have used
sample size n = 30, considered the cases d = 2 and 3 and generated data from
three different distributions, namely multivariate normal, multivariate Laplace
(i.e. when f(xTx) = k exp{−(xT x)1/2}) and multivariate t with 3 degrees of
freedom. Keeping in mind location equivariance as well as equivariance under
coordinatewise scale transformation of each of the three multivariate location
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estimates considered, we decided to generate data from the elliptically symmetric
density g(x − Θ), where Θ was taken to be the zero vector and Σ was taken to
be the matrix with each diagonal entry equal to one and each off diagonal entry
equal to ρ. The value of ρ was chosen from the interval [0, 1). We denote by
e1 and e2 the efficiencies of Θ̂(α)

n compared with the sample mean vector and
the vector of coordinatewise sample medians respectively. For two competing
estimates Φ̂1 and Φ̂2 of a d-dimensional location parameter Φ, we define the
efficiency of the former estimate compared with the latter one as the dth root of
the ratio between det{E(Φ̂2 −Φ)(Φ̂2 −Φ)T } and det{E(Φ̂1 −Φ)(Φ̂2 −Φ)T } (see
e.g. Bickel (1964), Chakraborty and Chaudhuri (1998)). The results are reported
in Tables 3.1 and 3.2. In each case, we have estimated the efficiencies e1 and e2

based on 10,000 Monte Carlo replications for d = 2 and using 5,000 Monte
Carlo replications for d = 3. Since both of Θ̂(α)

n and sample mean vector are
affine equivariant estimates, the value of e1 remains constant for different values
of ρ. The superior performance of Θ̂(α)

n for non-normal elliptically symmetric
distributions (especially when ρ is large) is quite apparent in the results given in
Tables 3.1 and 3.2.

Table 3.1. Finite sample efficiency of affine equivariant modification of the
spatial median for n = 30 and d = 2

Distribution ρ

0.00 0.75 0.80 0.85 0.90 0.95
Normal e1 0.7153 0.7153 0.7153 0.7153 0.7153 0.7153

e2 1.1313 1.4418 1.5243 1.6447 1.8285 2.1747
Laplace e1 1.2849 1.2849 1.2849 1.2849 1.2849 1.2849

e2 1.0861 1.3779 1.4655 1.5877 1.7688 2.1172
t with 3 d.f. e1 1.7676 1.7676 1.7676 1.7676 1.7676 1.7676

e2 1.0628 1.3551 1.4379 1.5512 1.7291 2.0769

Table 3.2. Finite sample efficiency of affine equivariant modification of the
spatial median for n = 30 and d = 3.

Distribution ρ

0.00 0.75 0.80 0.85 0.90 0.95
Normal e1 0.7319 0.7319 0.7319 0.7319 0.7319 0.7319

e2 1.1649 1.5883 1.7140 1.8725 2.1219 2.6873
Laplace e1 1.1023 1.1023 1.1023 1.1023 1.1023 1.1023

e2 1.1701 1.6078 1.7271 1.9041 2.1757 2.7461
t with 3 d.f. e1 1.6725 1.6725 1.6725 1.6725 1.6725 1.6725

e2 1.1395 1.5725 1.6830 1.8538 2.1097 2.6413

Let us next consider two real data sets and try to investigate the resulting
performance of Θ̂(α)

n . One of the primary reasons for using the transformation
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retransformation technique is that once the optimal data based transformation
matrix X(α) is chosen, it is quite easy to compute Θ̂(α)

n as it requires only the
computation of the spatial median based on the transformed observations Z(α)

j ’s.
An important consequence of this is that one can conveniently use resampling
techniques such as the bootstrap (see e.g. Efron (1982)) to estimate the condi-
tional sampling variation of Θ̂(α)

n given the Xi’s with i ∈ α (i.e. after X(α) is
fixed). In each of the two examples discussed below, we have used 10,000 boot-
strap replications to estimate the sampling variation and the efficiency of our
transformation retransformation estimate, and it took only a few seconds on a
workstation equipped with a standard FORTRAN compiler. It will be appropri-
ate to note here that it is exceedingly difficult to estimate sampling variations of
many of the other affine equivariant versions of the multivariate median proposed
in the literature (e.g. Tukey (1975), Oja (1983) and Liu (1990)). Due to complex
computational problems associated with those versions of the median in high or
even moderately high dimensions, it becomes virtually impossible to apply the
bootstrap or any other resampling techniques on them (see also Chakraborty and
Chaudhuri (1998)).

Table 3.3. Transformation retransformation estimates and the results of boot-
strap analysis of Fisher’s Iris data

Species Estimates and estimated (RMSE’s) Estimated
Sepal Sepal Petal Petal efficiency
length width length width

Setosa 5.0148 3.4180 1.4684 0.2376 e∗1 = 1.0308
(0.0488) (0.0648) (0.0221) (0.0137) e∗2 = 1.2482

Versicolor 5.9111 2.8001 4.2733 1.3256 e∗1 = 0.6607
(0.1178) (0.0656) (0.0961) (0.0422) e∗2 = 2.4361

Virginica 6.5421 2.9864 5.4953 2.0428 e∗1 = 0.7494
(0.0926) (0.0516) (0.0802) (0.0514) e∗2 = 1.9220

Example 3.1. This example deals with the well-known Iris data analyzed by
R. A. Fisher and many other famous statisticians. In the data set, there are
three different species, namely Iris Setosa, Iris Versicolor and Iris Virginica, and
each data point consists of four measurements, namely sepal length, sepal width,
petal length and petal width. There are fifty observations for each species. Ta-
ble 3.3 gives our location estimate and its root mean squared error (RMSE) as
estimated by the bootstrap for each variable separately for different species. We
have denoted by e∗1 and e∗2 the bootstrap estimates of the efficiencies of our affine
equivariant modification of spatial median as compared with the sample mean
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vector and the vector of coordinatewise sample medians respectively. It is inter-
esting to note that while there is a gain in efficiency when compared with the
non-equivariant vector of coordinatewise median in all three species, when com-
pared with the affine equivariant sample mean, there is gain only in the case of
Iris Setosa, and there is a definite loss in efficiency in each of the other two cases.
The entire analysis seems to make a very good case for using affine equivariant
procedures.

Table 3.4. Transformation retransformation estimates and the results of boot-
strap analysis of urine data

Estimates and estimated (RMSE’s) Estimated
Specific Gravity pH Conductivity Osmolarity efficiency

1.025 7.90 721.0 23.6 e∗1 = 1.0921
(0.0016) (0.1201) (54.5453) (1.6232) e∗2 = 2.8250

Example 3.2. The data set used in this example was originally obtained from
the laboratory of James S. Elliot, M.D. of the Urology Section, Veteran’s Ad-
ministration Medical Center, Palo Alto, California and the Division of Urology,
Stanford University School of Medicine, Stanford, California, and it is reported in
Andrews and Herzberg (1985). We have considered four physical characteristics
of thirty three urine specimens with calcium oxalate crystals. These charac-
teristics are : specific gravity (i.e. the density of urine relative to water), pH
(i.e. the negative logarithm of hydrogen ion concentration), osmolarity (which is
proportional to the concentration of molecules in the solution) and conductivity
(which is proportional to the concentration of charged ions in the solution). As
one would expect, the correlations among these variables are fairly high and the
variables are measured in widely different scales. Table 3.4 summarizes the re-
sults of the bootstrap analysis of this data set. The values of e∗1 and e∗2 indicate
considerable gain in efficiency over the non-equivariant vector of coordinatewise
medians and a small gain over the sample mean vector.

At this point we turn our attention to the affine invariant test introduced and
discussed in Section 2.2. It will be clear from the proof of Theorem 2.2 that once
the transformation matrix X(α) is fixed, the conditional null distribution of T(α)

n

is the same as that of
∑(n−d−1)

j=1 ‖Yj‖−1Yj , where the Yj’s are i.i.d. observations
generated from the elliptically symmetric density det{Y(α)}f [yT {Y(α)}TY(α)y]
and Y(α) = Σ−1/2X(α). Further, elliptic symmetry implies that the distribution
of ‖Yj‖−1Yj is uniform on the ellipse, which is completely determined by the
matrix {Y(α)}T Y(α) = {X(α)}T Σ−1X(α) and does not depend on f . Hence
one can simulate the conditional null distribution of T(α)

n by taking f to be
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any specific spherically symmetric density (e.g. the normal density) on R
d. Of

course, the actual Σ will be unknown in practice, and one can use a consistent
affine invariant estimate Σ̂ while simulating the null distribution. In the following
example, we demonstrate simulation based estimation of the P -value when our
test is applied to a real data set.

Example 3.3. Merchants, Halprin, Hudson, Kilburn, McKenzie, Hurst and
Bermazohn (1975) investigated changes in pulmonary functions of twelve workers
after they were exposed to cotton dust for six hours. Table 3.5 gives the changes
in forced vital capacity (FVC), forced expiratory volume (FEV3) and closing
capacity (CC) for these twelve workers. When Hotelling’s T 2 test is applied to
this data, the P -value computed using the F distribution turns out to be 0.051.

Table 3.5. Changes in pulmonary functions of twelve workers exposed to
cotton dust for six hours.

Subject FVC FEV3 CC
1 −0.11 −0.12 −4.3
2 0.02 0.08 4.4
3 −0.02 0.03 7.5
4 0.07 0.19 −0.3
5 −0.16 −0.36 −5.8
6 −0.42 −0.49 14.5
7 −0.32 −0.48 −1.9
8 −0.35 −0.30 17.3
9 −0.10 −0.04 2.5
10 0.01 −0.02 −5.6
11 −0.01 −0.17 2.2
12 −0.26 −0.30 5.5

On the other hand the coordinatewise sign test yields a P -value of 0.300 based on
a χ2 approximation with 3 d.f. We estimated the P -value of our test based on a
simulation of the conditional null distribution of T(α)

n using 10,000 Monte Carlo
replications, and it turns out to be 0.0721. For simulating the null distribution,
we have chosen f to be the multivariate spherically symmetric normal density
and estimated Σ by the usual variance covariance matrix. Figures in Table 3.5
indicate presence of correlation among the variables, and the scale of the third
variable is very different from that of each of the other two. The close agreement
between the P -values obtained from two affine invariant tests is noteworthy, and
the high P -value produced by the non-invariant coordinatewise sign test is an
indication of its failure to detect the deviation from the null hypothesis.
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Table 3.6. Finite sample power of affine invariant modification of angle test
and its competitors for n = 30, d = 2 and nominal level of significance = 5%.

Distribution Test ρ δ = (ΘT Σ−1Θ)1/2

statistic 0.0 0.3 0.6 0.9 1.2 1.5
T(α)

n – 0.049 0.207 0.679 0.954 0.998 1.000
T 2 – 0.049 0.262 0.809 0.992 1.000 1.000

Normal Sn 0.00 0.047 0.185 0.620 0.928 0.997 1.000
0.75 0.043 0.192 0.652 0.938 0.986 0.968
0.85 0.043 0.197 0.655 0.928 0.954 0.893
0.95 0.033 0.183 0.614 0.834 0.798 0.661

T(α)
n – 0.050 0.149 0.421 0.740 0.923 0.982

T 2 – 0.045 0.124 0.363 0.688 0.908 0.981
Laplace Sn 0.00 0.046 0.129 0.387 0.696 0.887 0.969

0.75 0.047 0.134 0.403 0.726 0.912 0.970
0.85 0.047 0.138 0.403 0.722 0.894 0.947
0.95 0.036 0.123 0.379 0.665 0.795 0.812

T(α)
n – 0.051 0.178 0.553 0.883 0.988 0.999

T 2 – 0.041 0.151 0.478 0.798 0.936 0.979
t with 3 d.f. Sn 0.00 0.048 0.160 0.509 0.844 0.974 0.997

0.75 0.042 0.169 0.547 0.873 0.977 0.981
0.85 0.044 0.174 0.546 0.866 0.956 0.935
0.95 0.033 0.151 0.513 0.778 0.823 0.752

We close this Section with the results of a simulation study that was carried
out to compare the finite sample powers of our affine invariant test, which is
based on the statistic T(α)

n with that of the well-known Hotelling’s T 2 test and
the non-invariant sign test, which is based on the coordinatewise sign test statistic
denoted by Sn. We have used sample size n = 30, and for nominal level 5%, we
estimated the power in each case from 5,000 Monte Carlo replications for d = 2
and from 3,000 Monte Carlo replications for d = 3. Note that the values of the
standard deviation of the sample proportion based on 5,000 i.i.d. Bernoulli trials
with p = 0.05 (i.e. the nominal level), 0.15, 0.30 and 0.50 are 0.003, 0.005, 0.006
and 0.007 respectively, and these values based on 3,000 i.i.d. Bernoulli trials with
the same values of p are 0.004, 0.006, 0.008 and 0.009 respectively. Different
distributions, which were used in the simulation study, were chosen exactly in
the same way as in the simulation study reported at the beginning of this Section,
where we compared the performance of various multivariate location estimates.
The results are presented in Tables 3.6 and 3.7. For Hotelling’s T 2 test the critical
value at nominal 5% level was determined from the F distribution table, and for
the coordinatewise sign test, we used a χ2 approximation (with 2 d.f. and 3 d.f.
for d = 2 and 3 respectively) for the distribution of the test statistic. In the case
of T(α)

n , we chose to simulate its distribution as we have done in Example 3.3,
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and for this purpose we used the spherically symmetric normal density and 8,000
Monte Carlo replications in each case. The matrix Σ was estimated using the
usual variance covariance matrix. Since both of our proposed test and Hotelling’s
T 2 test are affine invariant in nature, their powers do not depend on ρ and depend
only on the noncentrality parameter δ = (ΘT Σ−1Θ)1/2. Figures in Tables 3.6
and 3.7 convincingly demonstrate superior performance of our affine invariant
modification of the angle test in non-normal elliptically symmetric distributions
especially for large values of ρ.

Table 3.7. Finite sample power of affine invariant modification of angle test
and its competitors for n = 30, d = 3 and nominal level of significance = 5%.

Distribution Test ρ δ = (ΘT Σ−1Θ)1/2

statistic 0.0 0.3 0.6 0.9 1.2 1.5
T(α)

n – 0.051 0.174 0.604 0.928 0.994 1.000
T 2 – 0.050 0.215 0.723 0.977 1.000 1.000

Normal Sn 0.00 0.047 0.144 0.512 0.879 0.986 1.000
0.75 0.039 0.148 0.557 0.901 0.968 0.917
0.85 0.033 0.149 0.549 0.869 0.883 0.759
0.95 0.019 0.118 0.447 0.658 0.569 0.364

T(α)
n – 0.051 0.104 0.258 0.497 0.757 0.916

T 2 – 0.039 0.085 0.235 0.494 0.741 0.915
Laplace Sn 0.00 0.043 0.080 0.213 0.417 0.655 0.844

0.75 0.033 0.077 0.225 0.454 0.705 0.881
0.85 0.029 0.071 0.216 0.448 0.693 0.852
0.95 0.018 0.049 0.174 0.364 0.545 0.639

T(α)
n – 0.051 0.158 0.493 0.826 0.965 0.995

T 2 – 0.037 0.130 0.420 0.748 0.916 0.972
t with 3 d.f. Sn 0.00 0.038 0.123 0.415 0.762 0.938 0.989

0.75 0.037 0.129 0.459 0.806 0.943 0.947
0.85 0.031 0.128 0.459 0.787 0.883 0.843
0.95 0.018 0.102 0.376 0.617 0.615 0.493
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Appendix : The Proofs

Proof of Theorem 2.1. First observe that in view of affine equivariance of
Θ̂(α)

n , it is enough to consider the case when Θ = 0 and Σ = Id. Then g(x − Θ)
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reduces to the spherically symmetric density f(xTx). Now, for a given subset
α with size d + 1 of {1, . . . , n} and given the Xi’s for which i ∈ α, the trans-
formed observations Z(α)

j ’s are conditionally independent, and they are iden-
tically distributed with common elliptically symmetric density h{z|X(α)} =
det{X(α)}f [zT {X(α)}T X(α)z]. Now for a random vector Z with density h,
elliptic symmetry around the origin implies that the distribution of ‖Z‖−1Z
does not depend on f but on X(α). Consider now the matrices C{X(α)} =
Eh(‖Z‖−2ZZT ) and D{f,X(α)} = Eh{‖Z‖−1(Id−‖Z‖−2ZZT )}. Then it follows
from Chaudhuri (1992) that given X(α), the conditional limiting distribution of
n1/2Φ̂(α)

n , where Φ̂(α)
n is the spatial median based on the transformed observations

Z(α)
j ’s, is normal with zero mean and [D{f,X(α)}]−1C{X(α)}[D{f,X(α)}]−1 as

the variance covariance matrix. Further, elliptic symmetry of h around the ori-
gin implies that D{f,X(α)} = µ(d, f)G{X(α)}, where µ is a positive constant
depending on dimension d and f , and G is a positive definite symmetric matrix
depending on X(α) only. Finally, since Θ̂(α)

n = X(α)Φ̂(α)
n , the conditional limiting

distribution of n1/2Θ̂(α)
n must be normal with variance covariance matrix

X(α)[D{f,X(α)}]−1C{X(α)}[D{f,X(α)}]−1{X(α)}T

= {µ(d, f)}−2X(α)[G{X(α)}]−1C{X(α)}[G{X(α)}]−1{X(α)}T

which we can write as ∆{f, Id,X(α)}, where by affine equivariance we have
∆{f,Σ,A} = Σ1/2∆{f, Id,Σ−1/2A}Σ1/2.

Next, observe that it is enough to prove the non-negative definite ordering
of ∆ stated in the Theorem for Σ = Id and BT B = Id because when BT B = λId,
∆{f, Id,B} is a diagonal matrix that does not depend on the value of λ or the
specific choice of B. Also, for any nonsingular A,

∆{f, Id,A} = {µ(d, f)}−2A{G(A)}−1C(A){G(A)}−1AT ,

and hence, in order to prove the non-negative definite ordering of ∆, we can
choose f to be any specific density as its effect appears only through the scalar
factor µ(d, f). In particular, we can choose f(xTx) to be the multivariate Laplace
density k exp{−(xT x)1/2}. Then it is straight forward to verify that for a random
vector Z with density h(z|A) = det(A)f(zT ATAz), we must have

(AT )−1D(f,A)A−1 = (AT )−1E{‖Z‖−1(Id − ‖Z‖−2ZZT )}A−1

= COV
{
‖Z‖−1(AT )−1Z‖AZ‖−1AZ

}
,

where COV denotes the covariance matrix between two random vectors. Also,
(AT )−1C(A)A−1 is nothing but the dispersion matrix of ‖Z‖(AT )−1Z. Now,
the non-negative definiteness of the difference

∆(f, Id,A) − ∆(f, Id,B)
= A{D(f,A)}−1C(A){D(f,A)}−1AT − B{D(f,B)}−1C(B){D(f,B)}−1BT
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follows from the simple fact that for any two d-dimensional random vectors U
and V, the difference

{COV(V,U)}−1DISP(V){COV(U,V)}−1 − {DISP(U)}−1

is non-negative definite, where DISP denotes dispersion matrix, and all the ma-
trices involved are invertible. Finally, the expression of c(d, f) stated in the
Theorem follows from a direct algebraic computation using the asymptotic dis-
tribution of the spatial median in spherically symmetric models (see e.g. Brown
(1983), Chaudhuri (1992)).

Proof of Theorem 2.2. First note that in view of the affine invariance of the
test statistic T(α)

n , it is enough to prove the entire Theorem only for Σ = Id.
Now, since given X(α) the transformed observations Z(α)

j ’s are conditionally
independent and they are identically distributed with the elliptically symmetric
density det{X(α)}f [zT {X(α)}T X(α)z], the conditional distribution of T(α)

n =∑
j �∈α ‖Z(α)

j ‖−1Z(α)
j does not depend on f and depends only on X(α). This

actually follows from what we have already seen in the proof of Theorem 2.1.
Next, the asymptotic normality of the conditional null distribution of n−1/2T(α)

n

follows by a straightforward application of the central limit theorem, and the
variance covariance matrix Ψ is equal to the matrix C defined in the proof of
Theorem 2.1.

When log f is twice differentiable almost everywhere in R
d and satisfies

Cramer type conditions (what we really need here is the square integrability of the
first derivatives and the rth power (r > 1) integrability of the second derivatives
of log f under the density f), the alternatives H

(n)
A form a contiguous sequence

in view of some straight forward analysis using Le Cam’s first lemma (see Hajek
and Sidak (1967)). Further, some standard analysis using Le Cam’s third lemma
(see Hajek and Sidak (1967)) and the spherical symmetry of the density f imply
that under the sequence H

(n)
A , the conditional limiting distribution of n−1/2T(α)

n

given X(α) is normal with mean equal to β(d, f)H{X(α)}Φ = Λ{f,Φ,X(α)}
and Ψ{X(α)} as the variance covariance matrix. Here β is a scalar multiple
that depends only on the dimension d and the density f , and the d × d matrix
H{X(α)} is equal to COV[‖{X(α)}−1Z‖−1{X(α)}−1Z , ‖Z‖−1Z], where Z is a
d-dimensional random vector with density f(zTz). This immediately implies that
the conditional limiting distribution of n−1{T(α)

n }T [Ψ{Σ−1/2X(α)}]−1T(α)
n under

H
(n)
A is noncentral χ2 with d d.f. and noncentrality parameter δ{f,Φ,X(α)},

which is defined in the statement of the Theorem. Consequently the limiting
conditional power of the test under the sequence of contiguous alternatives will
be a monotonically increasing function of this δ. Finally the ordering of δ stated
in the Theorem will follow if we can show that

{H(A)}T {Ψ(A)}−1H(A) ≤n.n.d {H(B)}T {Ψ(B)}−1H(B) ,
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for any two nonsingular matrices A and B such that BTB = λId. The proof
of this nonnegative definite ordering of matrices follows from straightforward
arguments that are very similar to those used in the second half of the proof of
Theorem 2.1.

References

Andrews, D. F. and Herzberg, A. M. (1985). Data : A Collection of Problems from Many Fields

for the Student and Research Worker. Springer-Verlag, New York.

Bennet, B. M. (1962). On multivariate sign tests. J. Roy. Statist. Soc. Ser. B 24, 159-161.

Bickel, P. J. (1964). On some alternative estimates for shift in the P-variate one sample problem.

Ann. Math. Statist. 35, 1079-1090.

Bickel, P. J. (1965). On some ssymptotically nonparametric competitors of Hotelling’s T 2. Ann.

Math. Statist. 36, 160-173.

Blumen, I. (1958). A new bivariate sign test. J. Amer. Statist. Assoc. 53, 448-456.

Brown, B. M. (1983). Statistical use of the spatial median. J. Roy. Statist. Soc. Ser. B 45,

25-30.

Brown, B. M. (1985). Spatial median. In Encyclopedia of Statistical Science vol. 8, 574-575.

Wiley, New York.

Brown, B. M. and Hettmansperger, T. P. (1987). Affine invariant rank methods in the bivariate

location model. J. Roy. Statist. Soc. Ser. B 49, 301-310.

Brown, B. M. and Hettmansperger, T. P. (1989). An affine invariant bivariate version of the

sign test. J. Roy. Statist. Soc. Ser. B 51, 117-125.

Brown, B. M., Hettmansperger, T. P., Nyblom, J. and Oja, H. (1992). On certain bivariate

sign tests and medians. J. Amer. Statist. Assoc. 87, 127-135.

Chakraborty, B. and Chaudhuri, P. (1996). On a transformation and re-transformation tech-

nique for constructing affine equivariant multivariate median. Proc. Amer. Math. Soc.

124, 2539-2547.

Chakraborty, B. and Chaudhuri, P. (1998). On an adaptive transformation-retransformation

estimate of multivariate location. J. Roy. Statist. Soc. Ser. B 60, 145-157.

Chatterjee, S. K. (1966). A bivariate sign test for location. Ann. Math. Statist. 37, 1771-1782.

Chaudhuri, P. (1992). Multivariate location estimation using extension of R-estimates through

U-statistics type approach. Ann. Statist. 20, 897-916.

Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer.

Statist. Assoc. 91, 862-872.

Chaudhuri, P. and Sengupta, D. (1993). Sign tests in multidimension : inference based on the

geometry of the data cloud. J. Amer. Statist. Assoc. 88, 1363-1370.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadel-

phia.

Gini, C. and Galvani, L. (1929). Di talune estensioni dei concetti di media ai caratteri qualita-

tivi. Metron, 8. Partial English translation in J. Amer. Statist. Assoc. 25, 448-450.

Gower, J. C. (1974). The mediancenter. J. Roy. Statist. Soc. Ser. C 23, 466-470.
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