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Abstract: Kriging models are popular in analyzing computer experiments. The

most widely used kriging models apply a constant mean to capture the overall

trend. This method can lead to a poor prediction when strong trends exist. To

tackle this problem, a new modeling method is proposed, which incorporates a vari-

able selection mechanism into kriging via a penalty function. An efficient algorithm

is introduced and oracle properties in terms of selecting the correct mean function

are derived according to fixed-domain asymptotics. The finite-sample performance

is examined via a simulation study. Application of the proposed methodology to

circuit-simulation experiments demonstrates a remarkable improvement in predic-

tion, and the capability of identifying variables that most affect the system.
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1. Introduction

Physical experimentations can be intensive in terms of material, time, and
cost. The advent of modern computers and the advance of computer-aided design
methodologies have given rise to another, more economical mode of experimen-
tation. Computer experiments are done on computers using physical models
and finite-element-based methods. The analysis of computer experiments has
received a lot of attention in the past decades (Kennedy and O’Hagan (2000);
Oakley and O’Hagan (2002); Higdon et al. (2008)).

Computer experiments have deterministic outputs, that is, replicates of the
same inputs to the computer code produce identical outputs. To take this into ac-
count, Sacks et al. (1989a); Sacks, Schiller and Welch (1989b) proposed to model
the deterministic response as a realization of a stochastic process. This approach
is desirable because it can provide estimates of uncertainty of predictions. In
this work, we focus specifically on modeling computer outputs as a Gaussian
process (GP) with a spatial correlation structure. This is known as kriging and
is particularly attractive because it can fit a large class of response surfaces and
is widely used in the computer experiment literature (Santner, Williams, and
Notz (2003); Fang, Li, and Sudjianto (2006); Linkletter et al. (2006)). Moreover,
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several empirical studies have proved its superiority over the other interpolating
techniques (Laslett (1994)).

A kriging model incorporates two parts: one is a stationary Gaussian process
and the other is a mean function. Most of the kriging models used for analyzing
computer experiments either assume some known important trends/variables in
the mean function, known as universal kriging (UK), or use a grand mean to cap-
ture the overall trend, known as ordinary kriging (OK). Due to the fact that the
important variables are rarely known before experiments, OK is commonly used
in practice. It has been observed that the OK prediction can be poor if there are
strong trends (Martin and Simpson (2005)) and prediction accuracy can be im-
proved by selecting variables properly into the mean function (Joseph, Hung, and
Sudjianto (2008)). This issue is important, but has not received much attention
in the literature. Even though some studies have pointed out the benefits of using
more complex mean functions (Martin and Simpson (2005); Qian et al. (2006)),
there is no systematic methodology for obtaining them. A recent approach, blind
kriging (Joseph, Hung, and Sudjianto (2008)), integrates a Bayesian forward se-
lection procedure into the kriging model. This effectively reduces the prediction
error and demonstrates the advantages of combining variable selection techniques
with kriging; nevertheless, further improvements are needed for two reasons: the
iterative Bayesian estimation is computationally intensive; identifying the cor-
rect mean function is an important element in ameliorating prediction accuracy.
These are hard problems for the forward selection procedure. New methods with
efficient estimation and rigorous theoretical studies of the selection property are
called for.

The idea here is to incorporate a variable selection mechanism into kriging
via penalized likelihood functions. Although penalized likelihood is a common
technique, its utilization in the kriging models to achieve variable selection is
new. It poses some challenges in that estimation and inferences with kriging are
complicated. New estimation procedures and the corresponding algorithms are
required because the standard maximum likelihood methods for kriging are not
applicable. Moreover, the classical aymptotic results, such as variable selection
consistency, cannot be applied because they are mainly based on independent
observations. This assumption is violated in fixed-domain asymptotics for com-
puter experiments (Ying (1993); Stein (1999); Zhang (2004)). Hence, in order to
pursue large sample behavior, certain Markovian properties need to be exploited
so that the correlations among observations can be taken into account.

There are numerous methods for variable selection in computer experiments.
Welch et al. (1992) proposed an algorithm to screen important variables sequen-
tially, and Linkletter et al. (2006) proposed a Bayesian variable selection proce-
dure for Gaussian process models. These methods focus on identifying variables
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with significant impact on the process being studied, the main goal in the early
stages of experimentation (referred to as screening in Wu and Hamada (2000)).
Our objective is to enhance the prediction accuracy with the help of variable
selection. As well, existing variable selection criteria are based on estimated cor-
relation parameters that appear to be numerically unstable (Li and Sudjianto
(2005); Joseph (2006)); selected variables may not be reliable. In contrast, the
proposed approach performs variable selection through the mean function, the
Gaussian process part is used for interpolation. We note that though the Bayesian
variable selection discussed in Linkletter et al. (2006) is easy to implement, it is
computationally demanding especially with Gaussian process models.

The remainder of the paper is organized as follows. A modeling method is
proposed in Section 2, and the properties of the estimators proposed are dis-
cussed in Section 3. An efficient algorithm is introduced in Section 4. In Section
5, simulation studies are carried out to examine the finite-sample performance.
Application of the proposed method is illustrated in Section 6 for computer ex-
periments based on a circuit-simulation code. Discussion is given in Section 7.

2. Penalized Blind Kriging

A new methodology for analyzing computer experiments is proposed, moti-
vated by some existing methods. We first review some of the details.

2.1. Kriging preliminaries

The UK model assumes that the true function y(x), x ∈ Rm, is a realization
from a stochastic process

Y (x) = µ(x) + Z(x), (2.1)

where the mean function is µ(x) =
∑K

i=0 µiωi(x), the ωi’s are some known
trends/variables, and the µi’s are unknown parameters. Here Z(x) is a weakly
stationary Gaussian process with mean 0 and covariance function σ2ψ, where
σ2ψ(h) = cov{Y (x + h), Y (x)} is a positive semidefinite function with ψ(0) = 1
and ψ(−h) = ψ(h). In this formulation, µ is used to capture the known trends,
so that Z be a stationary process. In reality, however, trends are rarely known,
and thus a special case, the OK model, is commonly used,

Y (x) = µ0 + Z(x). (2.2)

Thus, instead of assuming known trends, this model uses a grand mean µ0 to
capture an overall trend. The OK model is one of the most popular methods in
analyzing computer experiments (Santner, Williams, and Notz (2003)). It is easy
to implement and works well in general, but not taking into account important
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variables in the mean function can lead to a poor performance in prediction. Fur-
thermore, including unimportant variables in the mean function can also lessen
prediction performance (Joseph, Hung, and Sudjianto (2008)). Therefore, blind
kriging (Joseph, Hung, and Sudjianto (2008)) is proposed: instead of assuming
the ωi to be known, they are identified by Bayesian forward selection. Even
though blind kriging reduces the prediction error, the Bayesian forward selection
is computationally intensive and theoretical properties are hard to obtain in the
face of a forward selection procedure that brings stochastic errors from the stages
of variable selection.

2.2 Penalized blind kriging

We propose a model in which a variable selection procedure is incorporated
in kriging. This is along the line of blind kriging, but the variable selection is
achieved by a penalized likelihood. We call it penalized blind kriging (PBK). The
PBK model is

Y (x) = f(x)′β + Z(x),

where f(x)′ = (1, f1(x), . . . , fp(x)) are candidate variables and β = (β0, β1, . . .,
βp)′ are the corresponding coefficients. To select the important variables from
the candidates, the coefficients β are estimated by maximizing the penalized
log-likelihood

Q(β, θ, σ2) = L(β, θ, σ2) −
p∑

j=1

Pλ(|βj |), (2.3)

where the log-likelihood function can be written as

L(β, θ, σ2) = −1
2
[N log σ2 + log(det(Ψ(θ))) + (y − Fβ)T Ψ(θ)−1 (y − Fβ)

σ2
],

y = (y1, . . . , yN )′ are the computer experiment outputs collected at N design
points {x1, . . . , xN} with xi = (x(1)

i , . . . , x
(m)
i ) for i = 1, . . . , N , F = (f(x1),. . .,

f(xN ))′, Ψ(θ) is an N × N matrix with elements ψ(xi − xj), θ represents the
correlation coefficients involved in the correlation function, and Pλ is a penalty
function. More discussion of various penalty functions can be found in Fan and
Li (2001) and Zou and Hastie (2005). Here we focus on two popular penalty
functions: the Lasso (Donoho and Johnstone (1994); Tibshirani (1996, 1997)),
which is a technique used for simultaneous estimation and variable selection, and
the adaptive Lasso (Zou (2006)).

Because the penalty term is not a function of θ and σ2, the maximum like-
lihood estimate of θ can be obtained as in the universal kriging. That is,

σ̂2 =
1
N

(y − F β̂)′Ψ(θ)(y − F β̂). (2.4)
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Substituting the values of β̂ and σ̂2 into (2.3), the maximum likelihood estimate
of θ is

θ̂ = argmaxθ{Q(β̂, θ, σ̂2)}. (2.5)

It follows that

θ̂ = argminθ{N log σ̂2 + log(det(Ψ(θ))) + N}. (2.6)

The PBK predictor, which has the same form as that of the UK predictor (Sant-
ner, Williams, and Notz (2003)), is

ŷ(x) = f(x)′β̂ + ψ(x)′Ψ(θ)−1(y − Fβ̂), (2.7)

where ψ(x)′ = (ψ(x − x1), . . . , ψ(x − xN )).
The objective of PBK is to identify important mean functions from a set

of candidate functions (or variables). If some simple functions are used in the
candidate set, then the predictor can be easily interpreted using the first term
f(x)′β̂. The second term on the right hand side of (2.7) is used to achieve
interpolation.

More than a simple extension of existing methods, the PBK models face
some challenging tasks. To detect important variables automatically, a penalty
function is included in the likelihood that makes the estimation complicated and
different from the classical maximum likelihood methods in the GP modeling.
Another important issue involves asymptotic properties. Capturing important
variables in the mean function is important for prediction accuracy, so rigorous
study of selection consistency is required. Existing results mainly focus on in-
dependent observations (Fan and Li (2001); Zou (2006)) and cannot be directly
applied to the PBK models. New results are needed to account for correlated
observations in the PBK models.

3. Asymptotic Properties

We are interested in variable selection properties, and in the asymptotic
behavior of parameters such as the correlation parameter θ and variance σ2.
There are two types of asymptotics in spatial statistics: increase domain and
fixed-domain asymptotics (Stein (1999)). Increasing domain asymptotics has
more data collected by increasing the domain (Mardia and Marshall (1984)) while
fixed-domain asymptotics has more data collected by sampling more densely
in a fixed domain. We work with fixed-domain asymptotics because they are
appropriate for the study of computer experiments, and we hope simulations can
reveal how appropriate asymptotic results are in a specific finite-sample setting
(Zhang (2004)). More discussion can be found in Ying (1993).
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Numerous studies regarding variable selection properties are available in the
literature, but they mainly focus on linear or generalized linear models and rely on
the independence of observations. Such is not available in fixed-domain asymp-
totics. Instead, asymptotic behavior is pursued based on carefully constructed
martingale difference sequences. The correlation function ψ is assumed to be the
power exponential product correlation

ψ(h) = exp(−
m∑

j=1

θj |hj |a), (3.1)

often invoked for computer experiments. The parameter a is usually taken as
known, it indicates the smoothness of the underlying process. We take a = 1
help with Markovian properties (Ying (1993)). Under this assumption, let θ =
(θ1, . . . , θm). The criteria used to examine the optimality of the variable selec-
tion procedure associated with the PBK models are known as oracle properties,
popular criteria introduced by Fan and Li (2001).

Let β = (β′
(1), β

′
(2))

′, where β(1) = (β1, . . . , βq)′ and β(2) = (βq+1, . . . , βp)′.
Without loss of generality, assume that β(2) = 0. Furthermore, assume
F ′Ψ(θ)−1F/N → C, where C is positive definite and can be written as

C =
[
C11 C12

C21 C22

]
.

Assumption 1. The design points are taken from an experimental region that
forms a complete lattice.

Assumption 2. There exists a positive vector η, such that |C21C
−1
11 sign(β(1))| ≤

1−η, , where 1 is a p−q by 1 vector of 1’s, q is the length of β(1), and the inequality
holds element-wise.

Assumption 3. Let (v1, . . . , vp−q)′ = (C21C
−1
11 F ′(1) − F ′(2))/

√
N, where F (1)

and F (2) denote the first q and the last p−q columns of F . There exist M1,M2 >

0 so that ||vi||22 ≤ M1 and 1′Ψ(θ)−11 ≤ M2.

Assumption 1 adds notational convenience and avoids some technical diffi-
culties, see Ying (1993). For lattice-type designs, correlation functions are easily
written with the use of the Kronecker product. Assumptions 2 and 3 are similar
to the necessary conditions for Lasso consistency with independent observations
(Zou (2006); Zhao and Yu (2006)); they are required for Theorem 1. Proofs are
given in the Appendix.

In Theorem 1, we show that the PBK estimates with the Lasso penalty
(Pλ(|βj |) = λ|βj |) enjoy the oracle properties, which indicate the consistency in
variable selection and the asymptotic normality.
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Theorem 1. Let β̂ = (β̂′
(1), β̂

′
(2))

′ be the PBK estimates based on the Lasso

penalty. Suppose λ ∝ N (1+ς)/2, where 1 > ς > 0. Under Assumptions 1 to 3, as
N → ∞;

(i) β̂(2) = 0 with probability 1,

(ii)
√

n(β̂(1) − β(1)) →D N (0, C−1
11 ).

The adaptive Lasso (Zou (2006)) can be written as Pλ(|βj |) = λνj |βj |, where
ν = (ν1, . . . , νp) is a known vector of weights. The specification of ν is flexible,
more discussion can be found in Zou (2006). Here we consider a weight vector
suggested in Zou (2006), ν̂ = |β̂|−γ , where γ > 0 and β̂ is a root-n-consistent
estimator of β. For the adaptive Lasso, with a proper choice of λ and some
regularity condition, the oracle properties hold as follows.

Theorem 2. Denote the PBK estimates based on the adaptive Lasso penalty
as β̂∗ = (β̂∗′

(1), β̂
∗′
(2))

′. Suppose that λ/
√

N → 0 and λN (γ−1)/2 → ∞. Under
Assumption 1, as N → ∞;

(i) β̂∗
(2) = 0 with probability 1,

(ii)
√

n(β̂∗
(1) − β∗

(1)) →D N (0, C−1
11 ).

Theorem 3 addresses the consistency and asymptotic normality of θ and σ2

in the PBK models. It is an extension of the results in Ying (1993), where the
main focus is the zero mean OK models. The derivation is analogous to that in
Ying (1993) and is omitted.

Theorem 3. Under Assumption 1, the PBK estimates for θ and σ2 satisfy, as
N → ∞;

N (m−1)/2m

(
θ̂ − θ

σ̂2 − σ2

)
→D N

(
0,

[
Σ̃θ b

b′ 2σ4
∑m

i=1(1 + θi)−1

])
, (3.2)

where Σ̃θ = diag(2θ2
1/(1 + θ1), . . . , 2θ2

m/(1 + θm)), b = (b1, . . . , bp)′, and bi =
−2σ2θi/(1 + θi).

4. New Algorithm

To estimate the parameters in the PBK models a new algorithm, iteratively
reweighted least angle regression (IRLARS), is introduced. The idea is simple.
For fixed θ and σ2, the estimation of β can be formulated as a standard linear
regression problem with unequal weights Ψ(θ)−1/σ2, which can be easily solved
by existing methods, such as the least angle regression algorithm (Efron et al.
(2004)). The correlation parameters θ and variance σ2 can then be estimated
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by standard maximum likelihood methods. By iteratively reweighting F and y

with respect to the updated correlation matrix Ψ(θ) and σ2, the final estimation
can be obtained. The computational details are illustrated below; the proof is
straightforward and so is omitted. This algorithm is easy to implement and can
be modified to take care of other penalty functions.

Algorithm: (IRLARS algorithm for the Lasso penalty)
Step 0: Set up initial values for β̂(0), θ̂(0), and σ̂2(0).

Step 1: With Ψ(θ̂(l))−1/σ̂2(l) = R′R, y∗ = Ry, and F ∗ = RF , solve the Lasso
problem for all λ,

β̂(l+1) = argmin||y∗ − F ∗β||2 + λ

p∑
j=1

|βj |.

Step 2: Apply the estimated β̂(l+1) in Step 1 and solve θ and σ2 by maximizing
the likelihood as described in (2.4) and (2.6). Thus

θ̂(l+1) = argminθ{N log σ̂2(l+1) + log(det(Ψ(θ)))},

where
σ̂2(l+1) =

1
N

(y − Fβ̂(l+1))′Ψ(θ)(y − Fβ̂(l+1)).

Step 3: If the convergence is achieved, declare β̂, θ̂, and σ̂2 to be the estimates.
Otherwise, return to Step 1.

To estimate the parameters with the adaptive Lasso penalty, Zou (2006)
proposed a modification of the original LARS algorithm. The IRLARS algorithm
can be similarly extended to the adaptive Lasso penalty by replacing Step 1 with
Step 1∗, as follows.

Step 1∗: With Ψ(θ̂(l))−1/σ̂2(l) = R′R, y∗ = Ry, F ∗ = RF , and F ∗∗ = F ∗/ν =
RF/ν, solve the Lasso problem for all λ,

β̂∗ = argmin||y∗ − F ∗∗β||2 + λ

p∑
j=1

|βj |.

Update β̂
(l+1)
j = β̂∗

j /νj .

The algorithm can be generally used to estimate parameters in PBK models.
Although only the Lasso and adaptive Lasso are illustrated in this study, the al-
gorithm can be further extended and implemented to other penalty functions by
modifying Step 1. In optimization, such an iterative algorithm is called a block
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coordinate descent or nonlinear Gaussian-Seidel method (Bertsekas (1999)), and
it is known that this type of algorithm converges under mild conditions. In
particular, the optimization in Step 2 can be solved by standard nonlinear pro-
gramming methods, such as quasi-Newton algorithms. When the dimensionality
of θ is large, the result may be trapped in some local optimal solutions. To avoid
this, multiple initial settings should be considered and further improvement can
be achieved by combining the ideas in heuristic search (Aarts and Lenstra (2003)),
such as simulated annealing (Kirkpatrick, Gelatt, and Vecchi (1983)) and genetic
algorithm. Another important issue in practice is tuning, including the specifica-
tion of λ, and sometimes the parameters involved in the definition of the weights
vector ν. We suggest using the cross validation method along with the LARS
algorithm to search for the optimal setting.

5. Finite-sample Performance and Empirical Application

In this section, the finite-sample performance of the PBK model is studied
based on a known function, and is used in a circuit simulation experiment.

5.1. A known function

To evaluate the finite-sample performance of the PBK model, we first con-
sider a known function. Even though it is not in a standard form for computer
experiment models, it provides a better way to assess the performance of vari-
able selection. Performance is evaluated in two aspects: the accuracy of variable
selection and the size of prediction errors. The accuracy of variable selection is
measured on two scores: the average number of the relevant variables correctly
identified in the repeated simulations, the average number of the irrelevant vari-
ables misspecified. Prediction accuracy is measured by root mean square predic-
tion errors calculated based on the randomly generated testing data. The PBK
models with the Lasso and adaptive Lasso are illustrated and the results are
compared with those according to the OK and UK models. To see the effect of
sample size, simulations were conducted for different N given a fixed number of
variables.

The known function is defined on a twelve-dimensional (m = 12) input space
[0, 1]12 where the first six variables, (x(1), . . . , x(6)), have decreasing effects on the
computer experiment outputs, and the remaining variables, (x(7), . . . , x(12)), are
irrelevant (i.e. zero coefficients) to the output. The function in question is

y(x) = 0.4x(1) + 0.3x(2) + 0.2x(3) + 0.1x(4) + 0.05x(5) + 0.01x(6) + e, (5.1)

where e ∼ N (0, σ2
e) and σe = 0.05. Response were generated independently

using (5.1) and the experimental designs were Latin hypercube designs
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Table 1. Comparison based on a known function.

ACI (ACI/6) AMC (AMC/6)
Methods N = 50 N = 80 N = 100 N = 50 N = 80 N = 100
PBK.L 4.49 4.50 4.51 0.60 0.22 0.05

(0.7479) (0.7500) (0.7511) (0.1002) (0.0372) (0.0089)
PBK.ada 4.49 4.52 4.52 0.57 0.27 0.05

(0.7481) (0.7528) (0.7539) (0.0954) (0.0445) (0.0078)
UK 6 6 6 6 6 5.98

(1) (1) (1) (1) (1) (0.9961)

(McKay, Beckman, and Conover (1979)) with 12 variables and sample sizes N =
50, 80, and 100. Latin hypercube designs are a popular choice for computer
experiments because they can be generated with minimal computational effort
and fill the design space relatively well. The four methods were used to analyze
the simulation outputs and, for each fitted model, root mean square prediction
errors (RMSPE) was calculated according to 100 randomly generated testing
data.

Based on 500 iterations, the variable selection performances of the PBK
models with the Lasso and adaptive Lasso are shown in Table 1. PBK.L and
PBK.ada denote the results, respectively. Note that the vector ν used for the
adaptive Lasso penalty was defined according to a suggestion in Zou (2006):
ν = |β̂ols|−1. The column “ACI” provides the average number of variables cor-
rectly identified (i.e. the average number of estimated non-zero coefficients for
x(1), . . . , x(6)) and the values in the parentheses, ACI/6, give the correct identifi-
cation rate. The column “AMC” gives the average number of variables misspec-
ified (i.e. average number of estimated non-zero coefficients for x(7), . . . , x(12))
and “AMC/6” states the variable misspecification rate. These performance mea-
sures are evaluated for all three sample sizes and the results are compared with
UK, where all the 12 variables are considered in the mean function (i.e. K = 12,
ω1 = x(1), . . . , ω12 = x(12)). For the sake of comparison, estimated coefficients
in UK were truncated to 0 if they were smaller than 0.001. Note that, the OK
models are not included herein for the comparison of variable selection as they
use an overall mean in the mean function without any selected variables.

In general, both PBK models performed well in terms of identifying the
correct variables in the mean function. The average number of variables identified
from x(1), . . . , x(6) was 4.49 and the average number of misspecified variables was
lower than 0.6. The misclassification rate was effectively reduced with an increase
in sample size. Specifically, when the sample size was increased from 50 to 100,
the misclassification rate was reduced by more than 91% (= (0.57− 0.05)/0.57).
The effect of the sample size was somewhat smaller on the correct identification
rates. This is not surprising because the last two variables have relatively small
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Figure 1. Comparison of individual variable frequency.

effects (0.05 and 0.01) and thus they are difficult to detect. On the other hand,
both correct identification rates and misspecification rates of the UK models
were close to 1; irrelevant variables could not be distinguished from important
variables. Moreover, the selection property of UK was not sufficiently ameliorated
with increased sample size. The PBK models appeal favorable with respect to
UK in detecting important variables.

To further assess the fitted PBK models in terms of variable selection accu-
racy, the frequencies of individual variables identified (with non-zero estimated
coefficients) from 500 simulations are plotted in Figure 1. The results from three
sample sizes, n = 50, n = 80, and n = 100, are considered. The PBK models
with both penalty functions performed similarly. For the first six variables, their
identification frequencies were decreasing as expected. Among the six variables,
the top three were successfully detected (with frequency 1) even for the smaller
sample sizes. The frequency of detecting the fourth variable increased from 0.94
to 1 with the sample size increased from 50 to 100, while relatively smaller in-
creases were seen for the fifth and six variables. For the last sixth variables
misspecification frequencies were low and become even lower when the sample
size increased. For the UK models, Figure 1 shows that all candidate variables
were specified to be important. These misleading results went uncorrected with
increased sample size.

The RMSPEs based on the 500 simulations are summarized in Table 2 to
assess the prediction accuracy of the fitted models. The values in the parentheses
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Table 2. Compare RMSPE based on a known function.

Methods N = 50 N = 80 N = 100
PBK.L 0.2133(0.0065) 0.2108(0.0062) 0.2084(0.0062)

PBK.ada 0.2115(0.0063) 0.2113(0.0063) 0.2092(0.0061)
OK 0.2237(0.0065) 0.2220(0.0062) 0.2200(0.0061)
UK 0.2282(0.0067) 0.2266(0.0061) 0.2238(0.0061)

are the corresponding standard errors. The results are compared with the OK and
UK predictors. Table 2 indicates that the PBK models consistently outperformed
the OK and UK predictors in terms of RMSPE. In particular, the RMSPE for
the UK predictors were up to 8%(= (0.2282 − 0.2115)/0.2115) larger than the
PBK predictors. Note that the RMSPEs for UK were in general higher than
those for the OK and PBK models. Thus, including unimportant variables in
the mean function can worsen the prediction performance.

5.2. Circuit simulation

The proposed method is illustrated on the circuit-simulation code (Sacks et
al. (1989a)). There are six (transistor widths) inputs in this experiment and
the response is a clock asynchronization or “skew”. A total of 32 runs of the
simulation experiments were conducted. This data set is also analyzed by other
methods in the literature with the nature of relationship between skew and vari-
ables x(1), . . . , x(6) well-understood (Welch et al. (1992)); therefore, it can be
useful for illustrating the accuracy of variable selection and prediction. In order
to compare the performance of different methods, we randomly split the data set
into two parts: half of the data (16 runs) were used for training, the other half
for testing.

To predict the clock skew as a function of the six input variables, the PBK
models with two penalty functions were applied, assuming the candidates in the
mean function to be f(x)′ = (1, x(1), . . . , x(6)). With the Lasso penalty, the fitted
PBK model can be written as

ŷ(x) = f(x)′β̂ + ψ(x)′Ψ−1(y − F β̂), (5.2)

where F = (f(x1), . . . , f(x16))′, θ̂ = (0.01, 0.01, 0.01, 3.21, 0.01, 1.75), σ̂2 = 0.04,
the coefficients estimated by (2.3) were β̂ = (−0.77, βPBK.L)′, with βPBK.L listed
in Table 3 for further comparison. When the penalty function is the adaptive
Lasso, the fitted PBK model was similar to (5.2) with estimated parameters
σ̂2 = 0.14, and β̂ = (−0.79, βPBK.ada)′, where βPBK.ada can also be found in
Table 3. The correlation parameters were the same as the estimates in PBK
with the Lasso penalty.
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Table 3. Compare the estimated coefficients.

Methods x1 x2 x3 x4 x5 x6

βPBK.L 0 0.39 −0.58 0.19 0.63 −0.61
βPBK.ada 0 0.65 −0.64 0 0.70 −0.67

βUK 0.19 0.39 −0.64 0.10 0.66 −0.53

In addition, the OK and UK models were fitted. The OK predictor based on
(2.2) can be written as ŷ(x)= µ̂0+ψ(x)′Ψ−1(y−µ̂0), where µ̂0 =(1′Ψ−11)−11′Ψ−1y

= −0.77, θ̂ = (0.02, 0.07, 0.12, 0.06, 0.10, 0.18) and σ̂2 = 0.70. If prior knowledge
were available to suggest that all six variables have strong linear effects on the
response, the fitted UK model should include these in the mean function. There-
fore, we have the fitted UK predictor as ŷ(x) = f(x)′β̂ + ψ(x)′Ψ−1(y − F β̂),
where σ̂2 = 0.02, β̂ = (F ′Ψ−1F )−1F ′Ψ−1y = (−0.77, βUK)′, and θ̂ is the same
as the estimate in the PBK models.

The fitted coefficients from the foregoing methods (excluding the OK model)
are listed in Table 3, by which the performance of variable selection in the mean
function can be compared. According to the fitted coefficients, the PBK predictor
with the Lasso penalty identified five important variables (out of six candidates)
in the mean function by removing x(1). This result is similar to that found in
Welch et al. (1992), where a sequential variable selection algorithm was per-
formed and five variables were identified in the order x(5), x(3), x(6), x(2), x(4). A
slight difference is that the orders of x(3) and x(6) were exchanged if we rank
the estimated coefficients. This is reasonable because their effects were not sig-
nificantly different from each other based on the sensitivity plot in Welch et al.
(1992). With the adaptive Lasso, the PBK model identified four variables in the
mean function by removing x(1) and x(4), the least important one among the five
selected variables in Welch et al. (1992). In contrast, the UK model has non-zero
coefficients for all of the candidates which means no variable is removed from the
mean function.

With the help of selecting important variables in the mean function, the main
objective of the PBK model is to increase prediction accuracy. Hence, RMSPEs
for the testing data are summarized and compared in Table 4. It appears that
the PBK predictor with the adaptive Lasso performed slightly better than with
the Lasso penalty in this example and both OK and UK predictors gave larger
RMSPEs compared with the PBK predictors. In particular, the OK predictor was
27%(= (0.123−0.097)/0.097) and 29%(= (0.123−0.095)/0.095) larger in RMSPE
than the two PBK predictors. Due to the fact that most of the variables (except
the first variable) have significant effects on the response , the UK predictor would
be expected to work reasonably well in this example, but had larger RMSPE than
the PBK predictor.



1184 YING HUNG

Table 4. Compare RMSPE.

Methods Number of variables RMSPE
in mean function

PGP with Lasso 5 0.097
PGP with adaLasso 4 0.095

OK 0 0.123
UK 6 0.101

6. Discussion

The naive two-stage method of estimating the mean function by various
variable selection methods in the first step and then using them as a known
trend in the UK models, does not work well in general; the performance of GP
model is quite sensitive to the choice of mean function. The proposed approach
uses penalty functions to identify important variables and includes the constant
mean as a special case. If the constant mean in the GP model is the optimal
predictor, this cannot be detected in the naive two-stage method. The PBK
method has advantages.

An interesting extension of the penalized blind kriging would select impor-
tant variables based on both the mean function and the Gaussian process. This
requires a careful study of the relationship between the mean functions and the
Gaussian process. Research on this topic is currently ongoing and will be reported
elsewhere.
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Appendix

Several lemmas culminate in the proof of Theorem 1.

Lemma 1. Let g and h are N × 1 vectors with elements denoted by gd1,...,dm

and hd1,...,dm, where 1 ≤ di ≤ n, for all i = 1, . . .m, and N = nm. From
Assumption 1, the N experimental points (x1, . . . , xN ) in m-dimensional space
can be rewritten as {(s1

d1
, . . . , sm

dm
) : 1 ≤ di ≤ n, 1 ≤ i ≤ m} and the elements in

the N×N correlation function Ψ(θ) can be rewritten as exp(−
∑m

i=1(θi|si
k−si

l|)),
where 1 ≤ k, l ≤ n and θi > 0. For simplicity, assume si

k − si
k−1 = ξ for all i.

Then
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g′Ψ(θ)−1h = g′(⊗m
i=1Ψi)−1h

= g1,...,1h1,...,1 +
n∑

d1=2

[
(gd1,1,...,1−exp(−θ1ξ)gd1−1,1,...,1)(hd1,1,...,1−exp(−θ1ξ)hd1−1,1,...,1)

1−exp(−2θ1ξ)

+ . . . + (g1,...,1,d1
−exp(−θmξ)g1,...,1,d1−1)(h1,...,1,d1

−exp(−θpξ)h1,...,1,d1−1)

1−exp(−2θmξ)

]
+

n∑
d1=2

n∑
d2=2

[
(g

(1)
d1,d2,1,...,1−exp(−θ2ξ)g

(1)
d1,d2−1,1,...,1)(h

(1)
d1,d2,1,...,1−exp(−θ2ξ)h

(1)
d1,d2−1,1,...,1)

(1−exp(−2θ1ξ))(1−exp(−2θ2ξ))

+ . . . +
(g

(1)
1,...,1,d1,d2

−exp(−θmξ)g
(1)
1,...,1,d1,d2−1)(h

(1)
1,...,1,d1,d2

−exp(−θmξ)h1,...,1,d1,d2−1)

(1−exp(−2θm−1ξ))(1−exp(−2θmξ))

]
+

n∑
d1=2

. . .
n∑

dm=2

(g
(m−1)
d1,d2,...,dm

−exp(−θmξ)g
(m−1)
d1,d2,...,dm−1)(h

(m−1)
d1,d2,...,dm

−exp(−θmξ)h
(m−1)
d1,d2,...,dm−1)

(1−exp(−2θ1ξ))...(1−exp(−2θmξ)) ,

(A.1)
where ⊗ denotes the Kronecker product, Ψi is a n × n matrix with elements
exp(−(θi|si

k − si
l|)), 1 ≤ k, l ≤ n,

g
(1)
d1,...,dm

= (gd1,...,dm − exp(−θ1ξ)gd1−1,...,dm),
...

g
(m−1)
d1,...,dm

= (g(m−2)
d1,...,dm−1,dm

− exp(−θm−1ξ)g
(m−2)
d1,...,dm−1−1,dm

),

and similar definitions apply to h
(1)
d1,...,dm

, . . . , h
(m−1)
d1,...,dm

.

Proof of Lemma 1. The result is an extension of the two-dimensional case in
Ying (1993). It can be derived by mathematical induction and the detail of the
proof is analogous to that in Ying (1993).

Lemma 2. Under Assumption 2,

P (β̂(2) = 0) ≥ 1 − P

(∣∣∣∣(C21C
−1
11 F ′(1) − F ′(2))Ψ(θ)−1 y − Fβ√

N

∣∣∣∣ ≥ λ√
N

η

)
.

Proof of Lemma 2. The penalized log likelihood estimators is

β̂ = argminβ
1
2 [log(det(Ψ(θ))) + (y − Fβ)′Ψ(θ)−1(y − Fβ)] + λ

∑p
i=1 |βi|

= argminβ

(
NL(β) + λ

∑p
i=1 |βi|

)
.

If u = β̂ − β, we have

û = argminuNL(β + u) + λ||β + u||1. (A.2)

Applying a Taylor expansion, the first term on the right hand side can be written
as

NL(β + u) = NL(β) − u′F ′Ψ(θ)−1(y − Fβ) +
1
2
u′F ′Ψ(θ)−1Fu

= NL(β) − u′F ′Ψ(θ)−1(y − Fβ) +
(
√

Nu)′C(
√

Nu)
2

, (A.3)
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If there exists û, the following result holds, based on the Karush-Kuhn-Tucker
(KKT) optimality condition,

C11

√
Nû(1) −

F (1)′Ψ(θ)−1(y − Fβ)√
N

= − λ√
N

sign(β(1)), (A.4)∣∣∣∣C21

(√
Nû(1) −

F (2)′Ψ(θ)−1(y − Fβ)√
N

)∣∣∣∣ ≤ λ√
N

1. (A.5)

From (A.4) and (A.5), we have∣∣∣∣(C21C
−1
11 F (1)′ − F (2)′

)
Ψ(θ)−1(y − Fβ)√

N

∣∣∣∣ ≤ λ√
N

(
1 − |C21C

−1
11 sign(β(1))|

)
.

(A.6)
Thus, Lemma 2 holds by Assumption 2.

Proof of Theorem 1. We first focus on consistency. Based on Lemma 2,

P (β̂(2) = 0) ≥ 1 − P

(∣∣∣∣(C21C
−1
11 F (1)′ − F (2)′)

Ψ(θ)−1(y − Fβ)√
N

∣∣∣∣ ≥ λ√
N

η

)
≥ 1 −

p−q∑
i=1

P

(∣∣∣∣v′iΨ(θ)−1(y − Fβ)
∣∣∣∣ ≥ λ√

N
ηi

)
, (A.7)

where v1, . . . , vp−q are defined in Assumption 3. Next, we need to show that

v′iΨ(θ)−1(y − Fβ) →D N (0, v′iΨ(θ)−1vi). (A.8)

For notational convenience, the case when m = 2 is illustrated, namely Ψ(θ) =
Ψ1 ⊗ Ψ2. The result is easily extended to higher dimensions. Define the N × 1
vector (y − Fβ) by (z1,1, . . . , zn,n)′, where N = n2, and denote the N × 1 vector
vi by {(wk,l) : 1 ≤ k, l,≤ n}. Based on Lemma 2, we have

v′i(Ψ1 ⊗ Ψ2)−1(y − Fβ)

= w1,1z1,1 +
n∑

j=2

[
(w1,j − exp(−θ1ξ)w1,j−1)(z1,j − exp(−θ1ξ)z1,j−1)

1 − exp(−2θ1ξ)

+
(wj,1 − exp(−θ2ξ)wj−1,1)(zj,1 − exp(−θ2ξ)zj−1,1)

1 − exp(−2θ2ξ)

+
n∑

l=2

(w(1)
j,l − exp(−θ2ξ)w

(1)
j,l−1)(z

(1)
j,l − exp(−θ2ξ)z

(1)
j,l−1)

(1 − exp(−2θ1ξ))(1 − exp(−2θ2ξ))

]

= w1,1z11 +
n∑

j=2

τj , (A.9)
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where z
(1)
j,l = (zj,l−exp(−θ1ξ)zj−1,l) and w

(1)
j,l = (wj,l−exp(−θ1ξ)wj−1,l). It is not

difficulty to see that {τ1, . . . , τn} is a martingale difference sequence with respect
to the σ-filtration Fj = σ{zi,l, l ≤ j, i = 1, . . . n}, and the following results hold.

n∑
j=1

E(τ2
j |Fj−1) →P

n∑
j=2

[
(w1,j − exp(−θ1ξ)w1,j−1)2

1 − exp(−2θ1ξ)
+

(wj,1 − exp(−θ2ξ)wj−1,1)2

1 − exp(−2θ2ξ)

+
n∑

l=2

(w(1)
j,l − exp(−θ2ξ)w

(1)
j,l−1)

2

(1 − exp(−2θ1ξ))(1 − exp(−2θ2ξ))

]
,

n∑
j=1

E(τ4
j |Fj−1) →P 0. (A.10)

Hence, based on (A.10), Lemma 2, and the Martingale Central Limit Theorem
(Pollard (1984)), (A.8) follows. Then apply this to (A.7) to get

p−q∑
i=1

P

(∣∣∣∣v′iΨ(θ)−1(y − Fβ)
∣∣∣∣ ≥ λ√

N
ηi

)
= (p − q)O

(
1 − Φ(

1
M1

λ√
N

mini ηi

M2
)
)
.

The proof of consistency is complete.

Now we prove the asymptotic normality. Based on Lemma 1 and the argu-
ment leading to (A.8), it can be shown that

u′F ′Ψ(θ)−1(y − Fβ) →D (
√

Nu)′N (0, C).

Therefore, according to (A.2), (A.3), and the argument at Theorem 2 of Zou
(2006), we have

√
Nû(1) →D C−1

11 N (0, C11) and
√

Nû(2) →D 0. (A.11)

Thus, asymptotic normality holds.

Proof of Theorem 2. The proof is along the lines of Theorem 2 in Zou (2006).
Based on the adaptive Lasso penalty, û = arg minu Υ(u), where Υ(u) = NL(β +
u) + λ

∑p
j=1 νj |βj + uj |. By Taylor expansion, we have

Υ(u) = Υ(0)−u′F ′Ψ(θ)−1(y−Fβ)+
(
√

Nu)′C(
√

Nu)
2

+λ

p∑
j=1

νj(|βj +uj |−|βj |).

Borrowing the result in Theorem 2 of Zou (2006), we have

λ

p∑
j=1

νj(|βj + uj | − |βj |) →P


0 if βj 6= 0,

0 if βj = 0anduj = 0,

∞ ifβj = 0anduj 6= 0.

(A.12)
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Then, by Slutsky’s Theorem, for every u,

Υ(u)−Υ(0) →D

{
−u′

(1)F (1)′Ψ(θ)−1(y−Fβ)+ (
√

Nu(1))
′C11(

√
Nu(1))

2 if u(2) =0,

∞ otherwise.

With the same construction of martingale differences in Theorem 1 and (A.8),
asymptotic normality holds by the Martingale Central Limit Theorem.

For consistency, it suffices to show that P (β̂(2) 6= 0) → 0. Again, using the
KKT conditions, it follows that

2F (1)′Ψ(θ)−1(y − Fβ̂) = λν(1), (A.13)

where ν(1) are the weights corresponding to the first q variables. The left hand
side of (A.13) can be written as

2
F (1)′Ψ(θ)−1(y − Fβ̂)√

N
= 2

F (1)′Ψ(θ)−1F (β − β̂)√
N

+ 2
F (1)′Ψ(θ)−1(y − Fθ)√

N
.

For normal distribution follows as at (A.8), while the right hand side of (A.13)
satisfies λ(ν(1)/

√
N) →P ∞ (Theorem 2, Zou (2006)). Therefore,

P (β̂(2) 6= 0) ≤ P

(
2F (1)′Ψ(θ)−1(y − F β̂) = λν(1)

)
→ 0,

and Theorem 2 holds.
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