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Abstract: In this paper, we propose a nonparametric method to estimate the spec-

trum of a multivariate locally stationary process. The time-varying spectrum is

assumed to be smooth in both time and frequency. In order to ensure that the fi-

nal estimate of the multivariate spectrum is positive definite while allowing enough

flexibility in estimating each of its elements, we propose to smooth the Cholesky

decomposition of an initial spectral estimate and to reconstruct the final spectral

estimate from the smoothed Cholesky elements. We propose a two-stage estima-

tion procedure. The first stage approximates the locally stationary process by a

piecewise stationary time series to obtain the local estimate of the time varying

spectrum and its Cholesky decomposition on discrete time-frequency points. The

second stage uses a smoothing spline ANOVA to jointly smooth each Cholesky el-

ement in both time and frequency, and reconstructs the final estimate of the time

varying multivariate spectrum for any time-frequency point. The final estimate is

a smooth function in time and frequency, has a global interpretation, and is con-

sistent and positive definite. We show that the Cholesky decomposition of a time

varying spectrum can be used as a transfer function to generate a locally station-

ary time series with the designed spectrum. This not only provides us flexibility in

simulations, but also allows us to construct bootstrap confidence intervals on the

time varying multivariate spectrum. A simulation is conducted to investigate its

performance and an application to an EEG data set recorded during an epileptic

seizure is used as an illustration.

Key words and phrases: Bootstrap, Cholesky decomposition, locally stationary time

series, smoothing spline, spectral analysis.

1. Introduction

Multivariate spectral analysis plays an important role in studying relation-

ships between time series. Traditional methods are based on the assumption of

second-order stationarity that seldom holds in real applications. Extensions to

non-stationary settings are still very preliminary. Dahlhaus (2000) extended the

univariate locally stationary process (Dahlhaus (1997)) to a multivariate setting

and proposed a parametric approach for estimation. Ombao, Raz, von Sachs and

Malow (2001) proposed a nonparametric approach for a bivariate locally station-

ary time series by using a piecewise stationary approximation. The bivariate
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spectrum is only defined within a segment and, in order to ensure that the final

estimate is positive definite, the same smoothing parameter is used to smooth the

two spectra and the cross-spectrum. The main difficulties in the nonparametric

approach are: 1) while the calculation of the initial local estimate of the time-

varying spectrum often requires some segmentation, it is desired that the final

estimate of the multivariate spectrum has a global interpretation; 2) it is difficult

to ensure that the final estimate of the multivariate spectrum is positive definite

while allowing optimal smoothing for each of its elements. In this paper, we

propose to estimate the spectrum of a multivariate locally stationary process by

extending the Cholesky decomposition approach (Dai and Guo (2004)) using a

two-stage estimation procedure (Guo, Dai, Ombao and von Sachs (2003)). This

approach not only avoids the aforementioned difficulties, but also provides much

flexibility in simulations.

Our motivation comes from an interest in studying the initialization and

propagation of seizures in epileptic patients by analyzing the spectrum of the

electroencephalograms(EEG) data. Our eventual goal is to develop statistical

methods that can predict the onset of a seizure and can localize its initiation

based on the multi-channel EEG data, so that treatments can be given to prevent

its onset in an early stage. Our first step is to develop a flexible method that can

characterize the time varying multivariate spectrum of the EEG data recorded

before, during and after a seizure. This will help us understand the mechanism on

how seizures are generated and spread. Figure 1.1 shows the EEG data recorded

during a seizure at the left temporal lobe (T3 channel) and the left parietal lobe

(P3 channel). On these two channels, the energy increases until the seizure erupts

and then gradually decreases. Litt, Esteller, Echauz, D’Alessandro, Shor, Henry,

Pennell, Epstein, Bakay, Dichter and Vachtsevanos (2001) show that seizures are

not generated abruptly, there are precursors in the EEG data minutes before the

clinical onset of the seizure. Guo, Dai, Ombao and von Sachs (2003) show that

the time varying spectrum of an epileptic EEG time series can be approximated

by a two dimensional smooth function in time and frequency. We adopt the

same approach in the multivariate setting and assume that the time-varying

multivariate spectrum changes slowly in time and can be approximated by a

smooth function in time.

In this paper, we consider a multivariate locally stationary process whose

spectrum is assumed to be continuous and smooth in both time and frequency.

This is a modified version of the Dahlhaus (2000) model, in which the multi-

variate transfer function is assumed to be a two-dimensional smooth function

in time and frequency. This assumption essentially turns a locally stationary

spectral estimation problem into a two-dimensional surface estimation problem
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Figure 1.1. Bivariate EEG data at Channel T3 and P3 during a seizure from
an epileptic patient. Number of time points T = 16, 000, sampling rate =100
Hz.

(Guo, Dai, Ombao and von Sachs (2003)). Because of the smoothness assump-

tion on the underlying spectrum, once we have estimated the spectrum at a given

time-frequency grid, we can calculate the estimate for any time-frequency point,

which leads to high computational efficiency. To ensure that the final estimate is

positive definite while allowing optimal smoothing for each element, we propose

to smooth the Cholesky decomposition of an initial local estimate, and recon-

struct the final estimate from the smoothed Cholesky elements. The first stage

of our estimation procedure approximates the locally stationary process by a

piecewise stationary time series to obtain the local estimate of the time varying

spectrum and its Cholesky decomposition on discrete time-frequency points. The

second stage uses a smoothing spline ANOVA (Gu and Wahba (1993)) to jointly

smooth each Cholesky element in both time and frequency, and reconstructs the

final estimate of the time varying multivariate spectrum for any time-frequency

point. The estimation procedure consists of the following five steps: (1) parti-

tion the locally stationary time series into small segments that are approximately

stationary; (2) obtain a non-singular and asymptotically unbiased estimate for

the spectrum using the multitaper estimate (Thomson (1982)) for each segment;
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(3) calculate the initial estimate of the Cholesky decomposition of the spectrum

from the raw spectral estimate within each segment; (4) jointly smooth each

Cholesky decomposition element across segments using a smooth spline ANOVA

which allows optimal smoothing in both time and frequency; (5) reconstruct the

estimate of the spectrum from the smoothed Cholesky components. The first

three steps are the first stage in obtaining a raw estimate, the last two steps are

the second stage. The final estimate of the time-varying multivariate spectrum

is a smooth function in both time and frequency and has a global interpretation,

compared with the estimate in Ombao, Raz, von Sachs and Malow (2001) that

is only defined conditional on the segmentation. It is consistent and positive

definite.

Dai and Guo (2004) showed that the Cholesky decomposition of the spec-

trum can be used as a transfer function in stationary settings. In this paper,

we show that this is also true in locally stationary settings. Using the Cholesky

decomposition of the given spectrum, we can generate a locally stationary time

series whose spectrum is identical to the designed spectrum at the time-frequency

grid, and is close to the true one at other points. This provides great flexibility

in simulations. Moreover, using the Cholesky decomposition of the estimated

spectrum, we can generate bootstrap samples and construct confidence intervals

for the estimated spectral components then take into account the variations in

all the estimation steps.

The rest of the paper is organized as follows. In Section 2, we introduce

the estimation procedure. The properties of the proposed procedure are given in

Section 3. In Section 4, we propose a bootstrap procedure to construct confidence

intervals for the spectrum. A simulation is offered in Section 5 and a data example

is given in Section 6. Section 7 concludes the paper with some discussions. The

proofs of the theorems are in the Appendix.

2. The Proposed Estimation Procedure

In this section, we describe the estimation procedure for the spectrum of

a multivariate locally stationary time series. First we introduce notation: T

denotes the sample size of the time series; Ik is the k × k identity matrix; unless

stated otherwise, other capital symbols, such as P, F, L, A denote matrix or

vectors with elements pkj, fkj, lkj, akj or pk, fk, lk, bk; Pk denotes the sub-matrix

of P consisting of the first k rows and columns of P ; L′ is the transpose of L, L

is the conjugate of L and L∗ denotes the conjugate and transpose of L.

We consider a modified Dahlhaus (2000) multivariate locally stationary time

series model, where the original finite sample transfer function A0
t, T (ω) is replaced

by a smooth transfer function A(t/T, ω).
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Definition 2.1. A real zero-mean n-dimensional stochastic process {Xt, t =

1, . . . , T} is called locally stationary if Xt =
∫ 1
0 A( t

T , ω) exp(i2πωt)dZ(ω), where

the following hold.

1. Z(ω) is a zero-mean n-dimensional orthogonal increment process on [0, 1] with

Z(ω) = Z(1 − ω), and cum{dZ(ω1), . . . , dZ(ωk)} = ∆(
∑k

j=1 ωj)Λk(ω1, · · · ,
ωk−1)dω1 · · · dωk, where cum{·} denotes the cumulant of k-th order; Λ1 =

0, Λ2(ω) = In, |Λk(ω1, . . . , ωk−1)| ≤ Ck, Ck is a constant and ∆(ω) =
∑

∞

j=−∞

δ(ω+j) is the period 2π extension of the Dirac delta function; Λ4 is continuous.

2. The transfer function A(u, ω), u, ω ∈ [0, 1] × [0, 1], has continuous second

partial derivatives w.r.t u and ω, and ∂ lA(u, ω)/∂ωl = ∂lA(u, 1 − ω)/∂ωl for

l = 0, 1.

3. The time-dependent spectral function is F (u, ω) = A(u, ω)A(u, ω)∗ for (u, ω)

∈ [0, 1] × [0, 1].

In the original Dahlhaus model, A0
t, T (ω) is only asymptotically tied to the

true transfer function A(t/T, ω), because the representation in Definition 2.1

does not allow some parametric time domain models, such as multivariate time

varying AR models. For a finite T , the transfer function A0
t, T (ω) is only defined

at t/T , for t = 1, . . . , T , and is an approximation to an underlying object A(u, ω)

that is only defined in the limit. In this paper, our focus is not on estimating the

parameters in a time domain model, but rather in estimating the multivariate

time-varying spectrum using a purely nonparametric approach. By assuming

A0
t, T (ω) = A(t/T, ω) and a smooth transfer function, we can estimate A(u, ω)

for any given time-frequency point (u, ω). This essentially turns a time-frequency

spectral estimation problem into a 2-dimensional surface estimation problem.

From the definition, for a fixed t, there exists an underlying stationary pro-

cess with the transfer function A(t/T, ω) and Xt can be viewed as one realization

from this underlying stationary process. While it is impossible to estimate the

spectrum from a single observation, the identifiability of the locally stationary

time series model relies on the smoothness condition of the transfer function

which enables one to borrow neighborhood information in estimating the spec-

trum.

We propose a two-stage estimation approach. In the first stage, the time

series is partitioned into small segments that are approximately stationary, thus

the initial spectral estimate as well as its Cholesky decomposition can be calcu-

lated within each segment. In the second stage, each Cholesky decomposition

element is treated as a bivariate smooth function of time and frequency and a

smoothing spline ANOVA (Gu and Wahba (1993)) is used to jointly smooth each

element in time and frequency. The final spectral estimate is then reconstructed
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from the smoothed Cholesky decomposition elements. The proposed procedure

consists of the following five steps.

2.1. Piecewise stationary approximation

In order to obtain the local estimate of the spectrum, we first approximate

the locally stationary time series {Xt, t = 1, . . . , T} as a piecewise stationary

time series:

Xt ≈
τ

∑

k=1

∫

Ak(ω) exp(i2πωt)dZ(ω),

where Ak(ω) = A(uk, ω) if bk ≤ t < bk+1 and 0 otherwise, uk = (bk + bk+1)/(2T )

and {[bk, bk+1), k = 1, . . . , τ} is a partition of [1, . . . , T ]. Write Bk = bk+1 − bk.

The initial blocking in our two-stage analysis is only used to obtain a local es-

timate, and optimal smoothing is performed by the smoothing spline ANOVA

in the second stage, which reduces the variances of the final estimate by bor-

rowing information across segments. Optimal segmentation in the first stage is

not important to the final estimate, as long as the blocks are small enough to

be approximately stationary. For t = bk, . . . , bk+1 − 1, the time series can be ap-

proximated by a stationary time series with the transfer function Ak(ω). Then

the initial spectral estimate can be calculated by treating each segment as sta-

tionary; approximation error of the initial spectral estimate and the spectrum is

given in Lemma 2.1. From our experience, when the block lengths are around√
T , different partitions produce very similar average mean squared errors (see

the results in Section 5, for example).

2.2. Multitaper spectral estimate

The second step is to obtain a non-singular and asymptotically unbiased

initial estimate Pk(ω) for the multivariate spectrum F (uk, ω) from the kth seg-

ment. The non-singularity is required to perform the Cholesky decomposition.

The asymptotic unbiasedness and the smoothing step together lead to the con-

sistency of the final estimate. In this paper, we use the multitaper estimate

(Thomson (1982)).

The multitaper estimate is defined as follows. On [bk, bk+1), take a set of m

tapers {hk(t; j), t = bk, . . . , bk+1 − 1}, j = 0, . . . ,m− 1, so that

bk+1−1
∑

t=bk

{hk(t; j)}2 = 1, and

bk+1−1
∑

t=bk

hk(t; j)hk(t; v) = 0, if j 6= v.

Then the n × n multitaper spectral estimate at the frequency ω ∈ [0, 1] on the
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block is given by

Pk(ω) =
1

m

m−1
∑

j=0

Sk(ω; j)Sk(ω; j)∗,

where Sk(ω; j) is the n× 1 tapered Fourier transformation on the block:

Sk(ω; j) =

bk+1−1
∑

t=bk

hk(t; j)Xt exp(i2πωt).

The following lemma gives the properties of the multitaper spectral estimate.

Lemma 2.1. Assume that Bk = O(T 1/2) as T → ∞. The multitaper spectral

estimates Pk(ω) are asymptotically independent at different time or frequency

points, and the asymptotic distribution of Pk(ω) is 1/mWc{m, F (uk, ω)} for

ω 6= 0, 0.5, 1 and 1/mWr{m, F (uk, ω)} for ω = 0, 0.5, 1, where Wc(m, F )

and Wr(m, F ) denote the complex and real Wishart distributions with m de-

grees freedoms and covariance matrix F respectively. Moreover E{Pk(ω)} =

F (uk, ω) + O{1/Bk} + O{Bk/T}.
The proof is given in Appendix. The above asymptotic result does not mean

that a fixed continuous time process is discretized on a finer and finer grid as

T → ∞. It implies that as more data are collected, there are more data locally

to obtain a better local estimate within a segment, which is reflected by the

increase of the block size Bk of the approximately stationary segment. The

block size going to infinity at a slower rate than T ensures that the piecewise

approximation is close to the underlying continuous object.

To ensure that Pk(ω) is positive definite, the number of the tapers m must

be equal to or greater than n, the dimension of the time series. Unlike Thomson

(1982) and Walden and McCoy (1995), who used multitapers to obtain the final

estimate of the spectrum, we only use the multitapers to obtain an initial spectral

estimate. Thus the choice of the tapers and the optimal number of the tapers

do not have much impact on the final estimate because of the second stage

smoothing. In our bivariate time series application, we use two tapers given by

hk(t; j) =
√

2/(Bk + 1) sin{π(j + 1)(t − bk + 1)/(Bk + 1)}, t = bk, . . . , bk+1 − 1,

for j = 0, 1. For more details about multitaper estimates, see Thomson (1982),

Percival (1994), Walden and McCoy (1995) and Walden (2000).

The multitaper spectral estimate Pk(ω) is an asymptotically unbiased esti-

mate for F (uk, ω). In order to obtain a consistent estimate for the spectrum

at any time-frequency, we need to jointly smooth the initial estimates across

segments in both time and frequency. In this paper we propose to smooth the
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Cholesky decomposition components instead of the raw spectral estimates di-

rectly. This guarantees that the final estimate is positive definite, while allowing

flexible smoothing for each component.

2.3. Estimate Cholesky decomposition of the spectrum

At this step, a raw estimate to the Cholesky decomposition of the spectrum is

obtained from Pk(ω). The estimate is similar to that in Eaton and Olkin (1987),

in which they dealt with the real Wishart distribution.

When ω = 0, 0.5, 1, the asymptotic distribution of Pk(ω) is 1/mWr{m,

F (uk, ω)}. Thus the unique unbiased estimate for the Cholesky decomposition

of F (uk, ω) can be obtained as (Eaton and Olkin (1987)) Qk(ω) = Lk(ω)∆−1,

where Lk(ω) is the Cholesky decomposition to Pk(ω) and ∆ is a diagonal matrix

with δjj =
√

2Γ(m/2 − j/2 + 1)}/{√mΓ(m/2 − j/2 + 1/2)} for j = 1, . . . , n.

The unbiased estimate to the Cholesky decomposition of the spectrum at

other frequency points is given by the following lemma.

Lemma 2.2. When ω 6= 0, 0.5, 1, let the distribution of Pk(ω) be 1/mWc{m,

F (uk, ω)}. Then the unbiased estimate for the Cholesky decomposition of the

spectrum is given by Qk(ω) = Lk(ω)∆−1, where ∆ is a diagonal matrix with

δjj = Γ(m− j + 3/2)}/{√mΓ(m− j + 1)}.
The two diagonal matrices for the real and complex Wishart distributions

are different, since for the complex Wishart distribution 1/mWc(m, F ), the dis-

tribution of the diagonal is the corresponding spectrum times 1/(2m)χ2
2m (See

Brillinger (1981, p.109, Exercise 4.8.4)); for the real Wishart distribution, the

distribution of the diagonal is the corresponding spectrum times 1/mχ2
m, where

χ2
k denotes the chi-square distribution with k degree of freedom.

2.4. Smoothing the Cholesky decomposition

To reconstruct a global consistent estimate for the time varying spectrum,

we use a smoothing spline ANOVA (Gu and Wahba (1993)) to jointly smooth

each estimate of the Cholesky decomposition element in time and frequency. We

smooth lµµ(·, ·), µ = 1, . . . , n, the real part of lµν(·, ·): Re{lµν(·, ·)} and imaginary

part of lµν(·, ·): Im{lµν(·, ·)} for µ > ν separately with their own smoothing

parameters. Since the smoothing steps for these elements are the same, we

suppress the subscripts in this subsection in describing the smoothing steps.

In the following, l(·, ·) ∈ [lµµ(·, ·), Re{lµν(·, ·)}, Im{lµν(·, ·)}, µ > ν, µ, ν =

1, . . . , n]. We can write l(uk, ωkj) = q(uk, ωkj) + e(uk, ωkj), where q(u, ω) is

the corresponding Cholesky decomposition element of the spectrum q(u, ω) =

E{l(u, ω)}, the e(uk, ωkj) are independent errors with zero mean and the vari-

ances depending on the time-frequency point (uk, ωkj). To deal with the curse of
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dimensionality, we model q(u, ω) as a smoothing spline ANOVA (Gu and Wahba

(1993)). For simplicity, we do not explicit model the heterogeneous variances.

This is equivalent to using the average of the variances, which produces satis-

factory results in our applications. Let N be the total number of the selected

time-frequency points, usually determined by computational feasibility because

the estimation of a smoothing spline ANOVA requires O(N 3) steps and O(N 2)

memory, computationally expensive for large N .

To define the smoothing spline ANOVA model, we first need to define the cor-

responding reproducing kernels (RKs) for the time and frequency domains. In the

frequency domain, the reproducing kernel Hilbert space (RKHS) W1 for ω can be

decomposed as W1 = 1⊕H1. The RK for H1 is R1(ω1, ω2) = −K4(|ω1 − ω2|)/24,
where Kk(·) is the k-th order Bernoulli polynomial. In the time domain, the

RKHS W2 can be decomposed as W2 = 1 ⊕ {u − 0.5} ⊕ H2, where the RK for

H2 is R2(u1, u2) = K2(u1)K2(u2)/4 −K4(|u1 − u2|)/24.
The full tensor product RKHS for {u, ω} is given by

W = W1 ⊗W2 = [{1} ⊕H1] ⊗ [{1} ⊕ {u− 0.5} ⊕H2]

= {1} ⊕ {u− 0.5} ⊕H1 ⊕H2 ⊕ {H1 ⊗ (u− 0.5)} ⊕ {H1 ⊗H2}.

The RK for H3 =H1⊗ (u−0.5) is R3((u1, ω1), (u2, ω2))=R1(ω1, ω2)(u1−0.5)(u2−
0.5), the RK for H4 = H1 ⊗H2 is R4((u1, ω1), (u2, ω2))=R1(ω1, ω2)R2(u1, u2).

Correspondingly, q(u, ω) has the ANOVA decomposition

q(u, ω) = d1 + d2(u− 0.5) + q1(ω) + q2(u) + q3(u, ω) + q4(u, ω),

where d1 +d2(u− 0.5) is the linear trend, q1(ω) is the smooth main effect for fre-

quency, q2(u) is the smooth main effect for time, q3(u, ω) is smooth in frequency

and linear in time, q4(u, ω) is the interaction that is smooth in both time and

frequency.

Remark. when smoothing the imaginary parts of the cross-spectrum, because

the mean is zero in the frequency domain, W1 = H1, and therefore the final

tensor product model is q(u, ω) = q1(ω) + q3(u, ω) + q4(u, ω).

The estimate q̂(u, ω) is found by minimizing the penalized least squares

1

N

∑

k, j

{l(uk, ωkj) − q̂(uk, ωkj)}2 +

4
∑

v=1

λv||Jv q̂||2,

where Jv is the orthogonal projection operator onto Hv. The estimate at time-

frequency point (u, ω) is (̂u, ω) = DΦ +Cξ, where Φ =
(

1
u−0.5

)

, ξ =
∑4

v=1 θvRv

{(u, ω), (u, ω)}, with u being the collection of all time points and ω being the
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collection of all frequency points, θv = λ/λv . Here C,D are the solutions to the

following equations:

ΣC +WD = l, W ′C = 0,

where Σ =
∑4

v=1 θvRv{(u,ω), (u, ω)} + NλIN , W = (1,u − 0.5) is a N × 2

matrix, l = {l(u, ω)} is an N × 1 vector that contains the values of l(uk, ωkj)

evaluated at all design points, λ and θk are smoothing parameters which can be

chosen by generalized cross validation (GCV) or by generalized maximum likeli-

hood (GML). In our simulations, GML outperforms GCV and is recommended.

The GML criterion is

M(λ, θv, v = 1, . . . , 4) =
1′G1

det+(G)(N−1)−1
,

where G = Nλ{Σ−1 − Σ−1W (W ′Σ−1W )−1W ′Σ−1}, and det+ is the product of

the nonzero eigenvalues.

2.5. Reconstruction

After we obtain the smoothed estimates Q̂(u, ω) = {q̂kj(u, ω)}n
k,j=1 for the

Cholesky decomposition of the spectrum, the estimate of the spectrum can be

reconstructed as F̂ (u, ω) = Q̂(u, ω){Q̂(u, ω)}∗.

3. Properties

The following theorem shows that the Cholesky decomposition of multivari-

ate time varying spectrum can be used as a transfer function to generate a multi-

variate locally stationary time series with the designed spectrum. This also allows

us to construct bootstrap confidence intervals, which we discuss in Section 4.

Theorem 3.1. Let F (u, ω), (u, ω) ∈ [0, 1]× [0, 1], be a positive definite spectrum

with continuous up-to-second order partial derivatives w.r.t u and ω, and let

Ψ(u, ω) be the Cholesky decomposition of F (u, ω). Define {Yt, t = 1, . . . , T} by

Yt =
T

∑

k=1

Ψ(
t

T
,
k

T
) exp(i

2πkt

T
)Z(k), (1)

where Z(k), k = 1, . . . , T , are independent. For k/T 6= 0, 0.5, 1, the distribution

of Z(k) is complex normal with mean zero and covariance matrix 1/TIn and

Z(k) = Z(T − k); for k/T = 0, 0.5, 1, the distribution of Z(k) is real normal

with mean zero and covariance matrix 1/TIn. The series {Yt, t = 1, . . . , T} is

locally stationary, and satifies

1. FT (t/T, k/T ) = F (t/T, k/T ) for t, k = 1, . . . , T , where FT (u, ω) is the spec-

trum of Yt;
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2. |FT (u, ω) − F (u, ω)| = O(T−1) for any (u, ω) ∈ [0, 1] × [0, 1].

The next theorem shows that the final estimate F̂ (u, ω) is a consistent esti-

mate for F (u, ω).

Theorem 3.2. Let T, N → ∞, and min(Bk) → ∞, and max(Bk) = O(T 1/2).

Then the following hold for k, j = 1, . . . , n.

1. The optimal convergence rate of the estimate for the spectrum in terms of the

integrated mean squared error is given by

∫ 1

0

∫ 1

0
E{f̂kj(u, ω) − fkj(u, ω)}2dudω

= O(
N

logN
)−4/5 + O{ 1

min(Bk)2
} + O{max(Bk)

2

T 2
}.

2. When N = T and Bk = B, the optimal convergence rate in term of mean

square integrated errors is obtained by choosing B = O(T 1/2) and

∫ 1

0

∫ 1

0
E{f̂kj(u, ω) − fkj(u, ω)}2dudω = O

( T

log T

)

−
4

5

.

The proof is given in the Appendix. According to this result, the rate of

convergence is determined more by the number of points used in the second

stage than by the block size.

4. Inference for the Spectrum

As the estimation of the multivariate time varying spectrum includes multi-

ple steps that can introduce variabilities, it is desirable to construct confidence

intervals that can take this into account. In this section, we propose a bootstrap

procedure to construct confidence intervals on the time varying spectrum. The

method is an application of Theorem 3.1 except that we generate bootstrap sam-

ples using the Cholesky decomposition of the estimated time varying spectrum.

The procedure is summarized into the following five steps.

Step 1. Obtain a consistent estimate Q̂(t/T, k/T ), t, k = 1, . . . , T for the Cholesky

decomposition of the spectrum using the procedure proposed in Section 2.

Step 2. Generate a new time series using Q̂(t/T, k/T ) as the transfer function:

Xv
t =

T
∑

k=1

Q̂(
t

T
,
k

T
) exp(i

2πkt

T
)Zv(k),

where Zv(k), k = 1, . . . , T , are independent, and for k/T 6= 0, 0.5, 1, the dis-

tribution is complex normal with zero mean and covariance matrix 1/TIn; for
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k/T = 0, 0.5, 1, the distribution is real normal with zero mean and covariance

matrix 1/TIn.

Step 3. Compute the estimate of the spectrum of X v
t using the procedure in

Section 2, and denote the estimate as F̂ v(u, ω).

Step 4. Continue Step 2, Step 3 and obtain the estimates {F̂ v(u, ω), v =

1, . . . ,M}, from which the 1 − α bootstrap confidence intervals can be formed.

5. Simulations

In this section, we conduct a simulation to investigate the performance of

our proposed method. From Theorem 3.1, we can generate a multivariate locally

stationary time series with any given spectrum. We simulate bivariate time series

with the following designed spectra, specified by a parameter a controlling the

rate of the change of the spectrum over time.

f11(u, ω) = {[1.2 cos(πω)]2 + a sin(2.0πuT ) + 0.7}2;

f21(u, ω) = {0.6 cos(2πω) + a cos(2πuT ) + 1 + ia sin(2πω)[4(uT − 0.5)2 + 0.5]}
{[1.2 cos(πω)]2 + a sin(2.0πuT ) + 0.7};

f22(u, ω) = {[1.3 cos(2πω)]2 + a sin(2.0πuT ) + 0.8}2 + [0.6 cos(2πω)

+ a cos(2πuT ) + 1]2 + {a sin(2πω)[4(uT − 0.5)2 + 0.5]}2.

We chose a = 0.1, 0.4 and 1, where a = 0.1 corresponds to a nearly stationary

time series and a = 1.0 results in a rapidly changing time series. The Cholesky

decomposition Ψ(u, ω) of the spectrum is, respectively,

ψ11(u, ω) = {1.2 cos(πω)}2 + a sin(2.0πuT ) + 0.7,

ψ21(u, ω) = 0.6 cos(2πω) + a cos(2πuT ) + 1 + ia sin(2πω){4(uT − 0.5)2 + 0.5},
ψ22(u, ω) = {1.3 cos(2πω)}2 + a sin(2.0πuT ) + 0.8.

From Ψ(u, ω), we generate the time series for T = 1, 024, 2, 048 given by

Xt =
{

x1(t)
x2(t)

}

=
T

∑

k=1

Ψ(
t

T
,
k

T
) exp(i

2πkt

T
)Z(k),

where {Z(k), k = 1, . . . , T} are independent. For k/T 6= 0, 0.5, 1, the distribu-

tion of Z(k) is bivariate complex normal with zero mean and covariance 1/TI2;

for k/T = 0, 0.5, 1, the distribution of Z(k) is bivariate real normal with zero

mean and covariance 1/TI2.

We partitioned the time series in equal length blocks. Under each setting,

we used two different partitions: for T = 1, 024, we first used 16 blocks, and 32

frequency points in each block; we then used 16 block with 64 frequency points.
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For T = 2, 048, the first setting used 16 blocks with 64 frequency points, and the

second setting used 32 blocks with 32 time points. For each case, we simulated

100 time series, and calculated the average mean squared errors. Each case takes

about 20 minutes to finish on a typical PC. The results are given in Figure 5.1.
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Figure 5.1. Boxplot of the average mean squared errors. A1: 16 blocks,

32 frequency points; A2: 16 blocks, 64 frequency points; B2: 32 blocks, 32

frequency points.

From a plot, we can see that that the average mean squared errors for

T = 2, 048 are smaller than those for T = 1, 024, even if the total number of

time-frequency points are the same. For the same time series with different

partitions, the more time-frequency points used, the smaller the average mean

squared errors. This confirms the results from Theorem 3.2 that the average

mean squared errors are determined by both the length of the time series and

the total number of time-frequency points. In comparing the three choices of a,

we find that our method gives similar results for a = 0.1 and a = 0.4, where

the spectrum varies slowly over time. The mean squared errors are substantially
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larger when a = 1. This means that when the spectrum changes rapidly over

time, a locally stationary model may not be a good approximation. A new model,

a faster sampling rate, or a longer time series may be needed.

Because of heavy computational demands, it is unreasonable to calculate the

bootstrap confidence intervals for all the simulations. We only calculate the 95%

bootstrap confidence intervals using 100 bootstrap draws for the first simulated

series under each setting. The percentages of the coverage under the 12 settings

are close to the nominal level: 97.66, 95.26, 97.45, 96.79, 96.44, 93.12, 97.9, 96.12,

97.22, 95.83, 96.22, 95.75 and 94.24.

6. EEG Data

We apply our proposed method to the bivariate EEG time series shown

in Figure 1.1. The sampling rate is 100 Hz and the length of the time series

T = 16, 000. The time series was partitioned into 40 equal-sized blocks and,

on each block, 40 frequency points were selected to calculate the initial and

final spectral estimates. Figure 6.1 shows the estimates of the spectrum and

cross-spectrum, together with their 95% bootstrap confidence intervals using 500

draws. The first time series is the P3 channel and the second is the T3 channel.

Before the seizure the energy is mainly concentrated at the lower frequencies.

During the seizure the energy spreads to all the frequencies, but the power at

the lower frequencies is still much greater than that at the high frequencies. It is

interesting to see that the energy at all frequencies increases by about the same

magnitude in both channels. In examining the cross spectrum, the imaginary

part is essentially zero because of the associated wide confidence intervals. This

indicates that the spread of the seizure is almost instantaneously and it is difficult

to detect the lag between the two time series although, from clinical knowledge,

it is known that in this patient P3 is the leading channel. The real part of the

cross spectrum takes a similar shape as do the two spectra, but only at about

half the magnitude. This indicates that the two channels synchronize mainly

in the lower frequencies before the seizure while this synchrony spreads to the

higher frequencies during the seizure. This is consistent with current knowledge

on seizure propagation.

7. Discussion

Computational intensity of the smoothing spline ANOVA prevents us from

directly applying the proposed method to a long time series without choosing a

very coarse initial time-frequency grid. We are developing an O(N) algorithm

for the smoothing spline ANOVA model by constructing equivalent state space

models. The recursive nature of the state space model will also enable the method

to be implemented online.
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Figure 6.1. Left: The spectral estimates for the EEG data. Middle: lower

confidence intervals. Right: upper confidence intervals.

We have not explicitly modeled the heterogeneous variances of the Cholesky

elements in this paper. This is equivalent to using the average of the variances.

Because of the robustness of smoothing spline ANOVA models, the proposed

method usually produces satisfactory results in our simulations and applications.

However, we expect that explicitly modeling the heteroscedasticity may improve

the efficiency of the estimates, and we will pursue this in our future research. The

smoothness assumption of the underlying transfer function can also be relaxed to

include a finite numbers of abrupt changes in time using an approach similar to

that of Ombao, Raz, von Sachs and Malow (2001). The main difference is that

we need to replace the smoothing spline ANOVA by a wavelet based method

(e.g. von Sachs and MacGibbon (2000)) in smoothing the Cholesky elements.

The other steps in the estimation procedure remain unchanged.
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Appendix. Proof of Results

Proof of Lemma 2.1. First we have that

Sk(ω; j) =

bk+1−1
∑

t=bk

hk(t; j)Xt exp(−i2πωt)

=

bk+1−1
∑

t=bk

hk(t; j)

∫ 1

0
A(

t

T
, v) exp{i2π(v − ω)t}dZ(v).

If S̃k(ω; j) =
∑bk+1−1

t=bk
hk(t; j)

∫ 1
0 A(uk, v) exp{i2π(v − ω)t}dZ(v). Then

Sk(ω; j)−S̃k(ω; j)=

bk+1−1
∑

t=bk

hk(t; j)

∫ 1

0
{A(

t

T
, v)−A(uk, v)} exp{i2π(ω−v)t}dZ(v).

Since ESk(ω; j) = ES̃k(ω; j) = 0, and A(u, ω) is Lipschitz continuous w.r.t. u,

we have that

var
{

Sk(ω; j) − S̃k(ω; j)
}

=

bk+1−1
∑

t, s=bk

hk(t; j)hk(s; j)

∫ 1

0

[{

A(
t

T
, v) −A(uk, v)

}

exp{i2π(v − ω)(t− s)}
{

A(
s

T
, v)∗ −A(uk, v)

∗

}]

dv

≤
bk+1−1
∑

t, s=bk

|hk(t; j)hk(s; j)|
∫ 1

0

∣

∣

∣

{

A(
t

T
, v)−A(uk, v)

}{

A(
s

T
, v)∗−A(uk, v)

∗

}
∣

∣

∣
dv

= O(
Bk

T
)2

bk+1−1
∑

t, s=bk

|hk(t; j)hk(s; j)| ≤ O(
Bk

T
)2

bk+1−1
∑

t, s=bk

[{hk(t; j)}2 + {hk(s; j)}2]

= O{(Bk)
3

T 2
}.

SinceB2
k = O(T ), O(B3

k/T
2) = O(Bk/T ). So we have that Sk(ω; j)−S̃k(ω; j) → 0

in probability. From Walden (2000) and Dahlhaus (1997), S̃k(ω; j) are asymp-

totically independent at different frequency, different block and different k, the

asymptotic distribution is normal with mean zero and covariance matrix F (uk, ω).

So we have that the Sk(ω; j) are asymptotically independent, the asymptotic dis-

tribution is normal with mean zero and covariance matrix F (uk, ω). The asymp-

totic distribution of Pk(ω) then follows.
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To find the order of E{Sk(ω; j)Sk(ω; j)∗} − F (uk, ω), we have

E{Sk(ω; j)Sk(ω; j)∗}

=

bk+1−1
∑

t, s=bk

hk(t; j)hk(s; j)

∫ 1

0

[

A(
t

T
, v)A(

s

T
, v)∗ exp{i2π(v − ω)(t− s)}

]

dv.

Since A(u, v) has second continuous partial derivative w.r.t. u, we can write

A(t/T, v) = A(uk, v)+∂A(u∗t , v)/∂u(t/T −uk), where u∗t is some point between
uk and t/T . Thus the above expansion is

bk+1−1
∑

t, s=bk

hk(t; j)hk(s; j)

∫ 1

0

[{

A(uk, v) +
∂A(u∗t , v)

∂u
(
t

T
− uk)

}

×
{

A(uk, v) +
∂A(u∗s , v)

∗

∂u
(
s

T
− uk)

}

exp{i2π(v − ω)(t− s)}
]

dv

=

bk+1−1
∑

t, s=bk

hk(t; j)hk(s; j)

∫ 1

0
F (uk, v) exp{i2π(v − ω)(t− s)}dv + O(

B3
k

T 2
)

+

bk+1−1
∑

t=bk

hk(t; j)

∫ 1

0

∂A(u∗t , v)

∂u
(
t

T
− uk)A(uk, v)

∗

bk+1−1
∑

s=bk

hk(s; j) exp{i2π(v − ω)(t− s)}dv

+

bk+1−1
∑

s=bk

hk(s; j)

∫ 1

0

∂A(u∗s, v)
∗

∂u
(
s

T
− uk)A(uk, v)

bk+1−1
∑

t=bk

hk(t; j) exp{i2π(v − ω)(t− s)}dv

= F (uk, ω) + O(
1

B k
) + O(

Bk

T
)

+

bk+1−1
∑

t=bk

hk(t; j)

Bk

{∂A(u∗t , ω)

∂u
(
t

T
− uk)A(uk, ω)∗ + O(

1

Bk
)
}

+

bk+1−1
∑

s=bk

hk(s; j)

Bk

{∂A(u∗s, ω)∗

∂u
(
s

T
− uk)A(uk, ω) + O(

1

Bk
)
}

= F (uk, ω) + O(
1

Bk
) + O(

Bk

T
).

So E{Pk(ω)} = F (uk, ω) + O(1/Bk) + O(Bk/T ).
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Proof of Theorem 2.2. Since the distribution of P is 1/mWc(m,F ), there
exists Dq, q = 1, . . . ,m, which are independently distributed as complex normal
with zero mean and covariance matrix F such that P = 1/m

∑m
q=1DqD

∗

q . The
result follows by induction.

The distribution of p11 is f11χ
2
2m/(2m), where χ2

k denotes the chi-square
distribution with k degrees of freedoms, (Brillinger (1981, Exercise 4.8.4)). The
probability density function of χ2

2m is

g(x) =
1

Γ(m)2m
xm−1 exp(−x/2), x > 0.

The first Cholesky decomposition γ11 = (p11)
1/2. It is easy to find that

E(γ11) = δ1(f11)
1/2 where δ1 = Γ(m+1/2)/{(m)1/2Γ(m)}. Thus the result holds

for γ11.
Suppose the result holds for k, i.e., for Γk = {γsj}k

s, j=1 Lk = {lsj}k
s, j=1

∆k = {δsj}k
s, j=1 and Lk = Γk∆

−1
k , E(Lk) = Qk, where Qk = {qsj}k

s, j=1. Since
∆k is a constant matrix, we have that E(Γk) = Qk∆k.

Rewrite

Γk+1 =
(

Γk 0
Γk+1,1 γk+1,k+1

)

, Pk+1 =
(

Pk P ∗

k+1,1

Pk+1,1 pk+1,k+1

)

, Fk+1 =
(

Fk F ∗

k+1,1

Fk+1,1 fk+1,k+1

)

,

Qk+1 =
(

Qk 0
Qk+1,1 qk+1,k+1

)

. Lk+1 =
(

Lk 0
Lk+1,1 lk+1,k+1

)

, ∆k+1 =
(

∆k 0
0 δk+1,k+1

)

.

To calculate the expectation for Lk+1,1, for s = 1, . . . ,m, let Hs be the
k × 1 vector consisting of the first k elements of Ds and hs be the (k + 1)th

element of Ds. Thus the distribution of
(

Hs

hs

)

is normal with zero mean and

covariance matrix Fk+1. Let h̃s = hs − Fk+1,1F
−1
k Hs, s = 1, . . . ,m. Then h̃s is

independent of Hs and the mean is zero. Thus from the definition of the Cholesky
decomposition, we have

Γk+1,1 = Pk+1,1(Γ
∗

k)
−1 =

1

m

m
∑

s=1

hsH
∗

s (Γ∗

k)
−1

=
1

m

m
∑

s=1

(h̃s + Fk+1,1F
−1
k Hs)H

∗

s (Γ∗

k)
−1,

E(Γk+1,1) =
1

m

m
∑

s=1

E{h̃sH
∗

s (Γ∗

k)
−1} + E{ 1

m

m
∑

s=1

Fk+1,1F
−1
k HsH

∗

s (Γ∗

k)
−1}.

Since E(h̃s) = 0 for s = 1, . . . ,m, {h̃s, s = 1, . . . ,m} are independent of {Hs, s =
1, . . . ,m}, and Γk only depends on {Hs, s = 1, . . . ,m}, the last expression is

Fk+1,1F
−1
k E{ 1

m

m
∑

s=1

HsH
∗

s (Γ∗

k)
−1} = Fk+1,1F

−1
k E{Pk(Γ∗

k)
−1}

= Fk+1,1F
−1
k E{ΓkΓ

∗

k(Γ
∗

k)
−1} = Fk+1,1F

−1
k E(Γk) = Fk+1,1F

−1
k Qk∆k. (A.1)
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From the definition of the Cholesky decomposition, we have that E(Lk+1,1) =

E(Γk+1,1)∆
−1
k = Qk+1,1.

Since γ2
k+1,k+1 = pk+1,k+1 − Pk+1,1P

−1
k P ∗

k+1,1 and the distribution of Pk+1

is 1/mWc(m,Fk+1), the distribution of γ2
k+1,k+1 is 1/mWc(m − k, fk+1,k+1 −

Fk+1,1F
−1
k F ∗

k+1,1), Brillinger (1981, Exercise 4.8.8). From Brillinger (1981) Ex-

ercise 4.8.4, the distribution of γ2
k+1,k+1 is 1/(2m)(fk+1,k+1 − Fk+1,1F

−1
k F ∗

k+1,1)

χ2
2(m−k). As with γ11, it is easy to find that

E(γk+1,k+1) = δk+1qk+1,k+1, (A.2)

where δk+1 = Γ(m− k + 1/2)/{(m)1/2Γ(m− k)}.
From Equations (A.1) and (A.2), we have E(Lk+1) = Qk+1. This proves the

result.

Proof of Theorem 3.1. From (1), we have that for t, s = 1, . . . , T ,

Cov (Yt, Ys) =
1

T

T
∑

k=1

Ψ(
t

T
,
k

T
)Ψ(

s

T
,
k

T
)∗ exp{i2πk(t − s)

T
}. (A.3)

Let VT (u, ω) be a smooth n× n matrix passing through {t/T, k/T, Ψ(t/T ,

k/T )}, t, k = 1, . . . , T , and let UT (ω) be the countting measure on [0, 1] that has

jump 1/T at (k/T, k = 1, . . . , T ). Then (A.3) can be written as

Cov (Yt, Ys) =

∫ 1

0
VT (

t

T
, ω)VT (

s

T
, ω)∗ exp{i2πω(t− s)}dUT (ω).

From Karhunen’s Theorem (Grenander and Rosenblatt (1984)), there exists an

orthogonal process Z(ω) on [0, 1] such that Yt =
∫ 1
0 VT (t/T, ω) exp(i2πωt)dZ(ω),

Thus Yt is locally stationary and the spectrum FT (u, ω) of the time series Yt

is VT (u, ω)VT (u, ω)∗. From the construction of the function VT (u, ω), we have

that for t, k = 1, . . . , T , FT (t/T, k/T ) = F (t/T, k/T ). This proves the first part

of the theorem.

The second part of the theorem follows from the Lipschitz continuity of

FT (u, ω) and F (u, ω), which is implied by the smoothness condition on F (u, ω).

The proof of Theorem 3.2 is based on the following lemma and the consis-

tency of the smoothed Cholesky decomposition of the initial spectral estimate.

Lemma A.1. For a given constant c, 0 < c < 1, if for all k, j = 1, . . . , n,
∫ 1
0

∫ 1
0 E{l̂kj(u, ω)−qkj(u, ω)}2dudω = O(T−c), then

∫ 1
0

∫ 1
0 E(f̂kj(u, ω)−fkj(u, ω))2

dudω = O(T−c) for all k, j.

Proof. The proof of this Theorem is based on a Taylor expansion. It is

obvious that that the spectrum F (u, ω) = {fkj(u, ω)}n
k, j=1 is a known func-

tion of {qkj(u, ω))}n
k, j=1, the Cholesky decomposition of the spectrum, so let
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fkj(u, ω) = fkj(qvs(u, ω), v, s = 1, . . . , n). From a Taylor expansion, there exist

(bvs, v, s = 1, . . . , n) such that

f̂kj(u, ω) = fkj(l̂vs(u, ω), v, s = 1, . . . , n) = fkj(qvs(u, ω), v, s = 1, . . . , n)

+
n

∑

v, s=1

∂fkj(u, ω)

∂qvs(u, ω)

∣

∣

bvs, v, s=1,...,n
{l̂vs(u, ω) − qvs(u, ω)}.

Then we have E{f̂kj(u, ω)−fkj(u, ω)}2 ≤ n2C
∑n

v, s=1 E{l̂vs(u, ω)−qvs(u, ω)}2,

where C = max
v, s

sup{∂fkj(u, ω)/∂qvs(u, ω)}2. The result follows.

Proof of Theorem 3.2. The convergence rate for the smoothed Cholesky

decomposition was given by Lin (2000). This can be stated as

∫ 1

0

∫ 1

0
E|q̂kj(u, ω) − qkj(u, ω)|2dudω = O{( N

logN
)−

4

5 }, (A.4)

for any k, j = 1, . . . , n. The result then follows. The second part of the theorem

follows from Lemma A.1, Lemma 2.1 and Equation (A.4).

When N = T and Bk ≡ B, then

∫ 1

0

∫ 1

0
E|f̂kj(u, ω) − fkj(u, ω)|2dudω = O{( T

log T
)−

4

5 } + O(
1

B2
) + O(

B2

T 2
).

Thus the optimal convergence rate occurs when B = O(T 1/2), and the rate is

O{T/ log T )−4/5}.
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