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Abstract: This paper examines the goodness-of-fit of a polynomial regression model.

We derive the asymptotic distribution of two generalizations of the classical F test

by means of spline estimators. Furthermore, we propose an analysis of variance

technique that extends the classical one from linear to nonparametric regression,

and we put forward a coefficient of determination for nonparametric models.
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1. Introduction

Consider the regression model

yi = m(xi) + εi, i = 1, . . . , n, (1)

where it is assumed that m(x), the regression function, belongs to a space of
smooth functions M and the εi are i.i.d. random variables with zero expectation
and finite variance σ2. It is also assumed that the design points are regularly
distributed, with density f , in a finite interval, taken to be [0, 1] without loss of
generality. That is,

∫ xi
0 f(x)dx = (i − 0.5)/n, i = 1, . . . , n. We require f to be

continuous, positive and bounded away from zero. Suppose we are interested in
testing the goodness of fit of a pth order polynomial model:

H0 : m(x) ∈ M0 against H1 : m(x) ∈ M\M0, (2)

where M0 represents the space formed by the polynomials of degree less than
or equal to p − 1, Pp = {θ1 + θ2x + · · · + θpx

p−1 : (θ1, . . . , θp) ∈ R
p}, and M

is a larger space. If M = Pq with q > p, we have the classical test of nullity of
parameters θp+1, . . . , θq. Our attention is focused on more general spaces of a
nonparametric nature, such as the Sobolev spaces Wq

2 [0, 1] = {g : the jth order
derivative g(j) is absolutely continuous for 0 ≤ j ≤ q − 1 and

∫ 1
0 [g(q)(x)]2dx is

finite}.
Despite this general setting, classical theory (see Seber (1977)) can be applied

to motivate a test statistic, since both hypotheses in (2) allow us to consider linear
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estimators of m. It is possible to construct an n×n matrix Mi for each hypothesis
so that the vector of estimates at the design points is m̂i = MiY . Under the null
hypothesis, least squares estimation is available, but under the alternative there
is a need to apply nonparametric estimation of the regression curve. Most of these
estimators are local averages of the response data, m̂(x) = n−1 ∑n

j=1 Wnj(x)yj.

Thus, possible choices for M0 and M1 are P0 = X0(Xt
0X0)−1Xt

0 with X0 =
[xj−1

i ]i=1,...,n,j=1,...,p, and H = [n−1Wnj(xi)]i,j=1,...,n, respectively. In the clas-
sical setting with M = Pq, M1 is given as P1 = X1(Xt

1X1)−1Xt
1 where X1 =

[xj−1
i ]i=1,...,n,j=1,...,q.

For (2), the following three types of statistics are developed.
1. Residual sums of squares RSS(M1,M0) = Y t(M1 − M0)t(M1 − M0)Y =∑n

i=1[m̂1(xi) −m̂0(xi)]2, or more generally RSSD = Y tDY, where D is a positive
semidefinite matrix.

2. χ2-type statistics of the form RSSD/σ2. Under the null hypothesis with
i.i.d. N(0, σ2) errors, RSS(P1, P0)/σ2 follows a χ2

ν distribution with ν =tr(P1 −
P0). When D is a function of the hat matrix H of a nonparametric estimator,
a transformation of RSSD such as S = [2tr(D2)]−1/2[σ−2RSSD−tr(D)] has a
distribution which can be approximated by a standardized χ2

ν (see Ramil Novo
and González Manteiga (1998)).

3. F statistics of the form F = σ̂2
0/σ̂

2, where σ̂2
0 and σ̂2 are estimators of σ2

generalizing those used in the classical F test statistic,

FC =
[RSS(I, P0) − RSS(I, P1)]/tr(P1 − P0)

RSS(I, P1)/tr(I − P1)
. (3)

Replacing P1 by H, where H is the hat matrix of an appropriate smoothing
technique, gives an F statistic like the one proposed by Cleveland and Devlin
(1988) (see also Hastie and Tibshirani (1990, Chap. 3) and Azzalini and Bowman
(1993)):

FCD =
[RSS(I, P0) − RSS(I,H)]/tr((I − P0)t(I − P0) − (I − H)t(I − H))

RSS(I,H)/tr((I − H)t(I − H))
.

(4)
Section 2 examines the asymptotic distribution of the above statistic. We

consider both convergence to normality and χ2 approximations. For our purpose,
an appropriate choice of H is the matrix associated with a spline estimator of
order 2q with q ≥ p (considering q = p is convenient to avoid strong smoothness
assumptions about m(x)). Since HX0 = X0, this choice provides exact estima-
tion when the relation is polynomial; a consequence is that m̂ is unbiased under
the null hypothesis. The same could be said of local polynomial regression of
order q ≥ p, although in this case H does not have the interesting property of
symmetry. This type of estimator has already been considered by Cleveland and
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Devlin (1988) and Azzalini and Bowman (1993), though they consider different
ways of approximating the distribution of the FCD statistic when the errors are
normally distributed. In contrast to the above papers, we consider spline esti-
mators. Furthermore, we study the asymptotic distribution of the FCD statistic
together with the generalization of related topics. Given that Cleveland and De-
vlin (1988) considered a multiple regression setting, we suggest that our theory
can be generalized to deal with more general parametric models than polynomials
ones.

Section 3 is dedicated to analysis of variance associated with the FCD statistic
and other decompositions of the variance related to classical analysis of variance
techniques. Section 4 examines a new way to generalize the F test based on the
projections of the response data vector onto the spaces M0 and M. The same
idea can be used to generalize the multiple determination coefficient in a natural
way. Section 5 illustrates the theory with a simple example based on real data,
as well as a simulation study. The Appendix provides the proofs.

2. Distribution of the Cleveland and Devlin F Statistic

Let H be the matrix of weights associated with the spline estimator of order
2p, that is, H = [n−1Wλj(xi)]i,j=1,...,n, where m̂(x) = n−1 ∑n

j=1 Wλj(x)yj is the
function which minimizes

Mnλ(g) = n−1
n∑

i=1

[g(xi) − yi]2 + λ

∫ 1

0
[g(p)(x)]2dx (5)

over g ∈ Wp
2 [0, 1]. It is well-known (see for example, Cox (1983)) that m̂ be-

longs to the space of natural splines Sp
n = {g : g ∈ C2p−2[0, 1], g is a polyno-

mial of degree 2p − 1 on [xi, xi+1], i = 1, . . . , n − 1, and of degree p − 1 on
[0, x1], [xn, 1]}. Demmler and Reinsch (1975) introduced a basis {φkn}n

k=1 for
Sp

n satisfying n−1 ∑n
i=1 φjn(xi)φkn(xi) = δjk and

∫ 1
0 φ

(p)
jn (x)φ(p)

kn (x)dx = γknδjk

(j, k = 1, . . . , n), with 0 = γ1n = · · · = γpn < γ(p+1) n ≤ · · · ≤ γnn, such that
{φkn}p

k=1 forms a basis for Pp (see Ragozin (1985)). With this basis, m̂ can
be expressed as m̂(x) =

∑p
j=1 θ̂jx

j−1 +
∑n

j=p+1(1 + λγjn)−1αjnφjn(x), where
αjn = n−1 ∑n

i=1 φjn(xi)yi and m̂0(x) =
∑p

j=1 θ̂jx
j−1 is the least squares es-

timator (see Eubank (1988, Section 5.3.3)). A detailed study of the relation
between spline estimators and the least squares estimator can be seen in Eu-
bank (1984). A remarkable property of the hat matrix H shown in his work is
that HX0 = X0 (and thus HP0 = P0). Furthermore, writing H in terms of the
Demmler and Reinsch basis, H = ΦΓΦt, where Φ = [n−1/2φjn(xi)]i,j=1,...,n and
Γ =diag[(1 + λγjn)−1], shows the symmetry of this matrix. All these properties
make spline estimators especially attractive for testing polynomial models.
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Writing H = ΦΓΦt is useful to the study of asymptotic properties of splines
(see Eubank (1988, Section 6.3.2)). The traces of the first two powers of H are
given by

n−1tr(Hr) ∼ (2πnλ1/(2p))−1c(f)
∫

(1 + x2p)−rdx, r = 1, 2, (6)

where c(f) =
∫ 1
0 f(x)1/(2p)dx (see Speckman (1981) or Eubank (1988, Section

6.3.2)). It has been proved that the same representation holds for powers of
greater order.

The properties of spline estimators have also been studied using the relation-
ship between m̂ and a function m̃ which minimizes a continuous version of (5),
given by

Mλ(g) =
∫ 1

0
[g(x) − m(x)]2f(x)dx + λ

∫ 1

0
[g(p)(x)]2dx,

over g ∈ Wp
2 [0, 1]. Cox (1984) proved that if m ∈ L2[0, 1], m̃ can be characterized

as the unique solution of the differential equation

(−1)pλf−1(x)
d2pg(x)
dx2p

+ g(x) = m(x) x ∈ [0, 1],

with boundary conditions g(j)(0) = g(j)(1) = 0, j = p, . . . , 2p − 1. This allows
the representation m̃(x) =

∫
Gλ(x, t)m(t)f(t)dt, where Gλ(x, t) is the Green’s

function for the differential operator (−1)pλD2p + f acting on Np[0, 1] = {g ∈
C2p[0, 1] : g(j)(0) = g(j)(1) = 0 for p ≤ j ≤ 2p − 1} (see Cox (1993)) .

For each t ∈ [0, 1] let Ant(g) = n−1 ∑n
i=1 g2(xi) − 2g(t) + λ

∫ 1
0 [g(p)(x)]2dx,

and let Wλ(x, t) be the function which minimizes this functional. Given that
Wλj(x) = Wλ(x, xj), Wλ(x, t) plays a role for m̂ analogous to what Gλ(x, t) does
for m̃. Silverman (1984) proved that under appropriate conditions, Wλ(x, t) can
be approximated by a Priestley-Chao kernel,

Wλ(x, t) � 1
f(t)

1
h(t)

K(
x − t

h(t)
),

where h(t) = [λ/f(t)]1/(2p) and K(u) is the kernel whose Fourier transform is
ϕ(x) = (1 + x2p)−1, that is,

K(u) = (2π)−1
∫

(1 + x2p)−1 exp(−ixu)dx. (7)

Nychka (1995) proved that Wλ(x, t) can be approximated uniformly by Gλ(x, t).
The kernel in (7) was also studied by Messer and Goldstein (1993).
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We now present a result which is important for establishing a relationship
between the FCD statistic based on a spline of order 2p and the χ2-type statistics
SES (Eubank and Spiegelman (1990)) and SC (Chen (1994)):

SES = [2tr(H − P0)4]−1/2[σ−2Y t(H − P0)2Y − tr(H − P0)2] (8)

and

SC = [2tr(H − H2)2]−1/2[σ−2Y t(H − H2)Y − tr(H − H2)]

(these statistics are motivated in the following section).

Lemma 1. Let H be the matrix associated with a spline estimator of order 2p,
and A be an n×n matrix with all elements equal to n−1. The following identities
hold:
a) (I − P0)2 − (I − H)2 = (H − P0)2 + 2(H − H2),
b) (I − A)2 = (I − H)2 + (H − P0)2 + 2(H − H2) + (P0 − A)2,
c) (I − A)2 = (I − H)2 + (H − A)2 + 2(H − H2).

Theorem 1 below gives the relationship between the numerator in FCD and
the statistics SES and SC , as well as the asymptotic distributions implied by this
relationship. Let K denote the kernel (7) and, for simplicity, let RSS(I, P0) and
RSS(I,H) be written as RSS0 and RSS1, respectively. Our assumptions A, B

and C will be used to show some of the results in the theorem. Assumption A

is used in Chen (1994) and Jayasuriya (1996) to apply Nychka’s (1995) approxi-
mations to the spline weight function. This assumption has been shown to hold
with some additional assumptions about f and p. See Chen (1994), Messer and
Goldstein (1993) and Nychka’s (1995). Messer and Goldstein’s (1993) results
imply that equations (9) and (10) hold with constant ζ equal to 0 (see below),
and f constant. Nychka (1995) showed that they also hold for ζ = 0, p = 1 and f

with a uniformly continuous derivative. Thus, assumption A could be replaced
by any of these additional assumptions about f and p.

A. Let Gλ(s, t) be Green’s function for the differential operator (−1)pλD2p+
f with domain Np[0, 1], and h = λ1/(2p). There exist finite, positive constants α,
ζ and k such that for all s, t ∈ [0, 1],

|Gλ(s, t)| ≤ k

h1+ζ
exp(−α|s − t|/h),

∣∣∣∣ ∂

∂s
Gλ(s, t)

∣∣∣∣ ≤ k

h2+ζ
exp(−α|s − t|/h).

(9)
If s �= t, then ∣∣∣∣∣

∂2

∂s∂t
Gλ(s, t)

∣∣∣∣∣ ≤
k

h3+ζ
exp(−α|s − t|/h). (10)
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Either (∂2/∂s∂t)Gλ(s, t) exists for s = t, in which case (10) holds, or for all
continuous functions g on [0,1],
∣∣∣∣ ∂

∂s

∫ 1

0
[
∂

∂t
Gλ(s, t)]g(t)dt

∣∣∣∣ ≤
(

k

h3+ζ

) [∫ 1

0

1
2

exp(−α|s − t|/h)|g(t)|dt + |g(s)|
]
.

B. 0 < µ4 = E[ε4
i ] < ∞.

C. The εi are normally distributed.
Assumptions A,B and C are used to form the following conditions.

Condition 1. Assumptions A and B, p ≥ 2, n → ∞ and λ → 0 such that
nλ

(4p+1)/(4p) → ∞ and nλ
(3+4ζ)/(4p) → ∞.

Condition 2. Assumption C, p ≥ 2, n → ∞ and λ → 0 such that nλ → ∞.

For notational simplicity f is the uniform density function, only trivial
changes are needed for a different f .

Let SCD = [2tr((I−P0)2−(I−H)2)2]−1/2[σ−2(RSS0−RSS1)−tr((I−P0)2−
(I − H)2)].

Theorem 1. Under the assumptions of Model (1),
a) [tr((I −P0)2 − (I −H)2)]−1[σ−2(RSS0 −RSS1)]− 1 = c1(H)SES + c2(H)SC ,

where c1(H) = [2tr(H − P0)4]1/2/tr((H − P0)2 + 2(H − H2)) and c2(H) =
2[2tr(H − H2)2]1/2/tr((H − P0)2 + 2(H − H2)).

b) If H0 is true and Condition 2 is satisfied, then supx |Pr{SCD ≤ x}
−Pr{(2ν)−1/2(χ2

ν − ν) ≤ x}| ≤ cλ1/(2p), where c is a constant that does
not depend on n or λ, and ν = (tr(2H − H2)3 − p)−2(tr(2H − H2)2 − p)3.

c) SCD = k1(H)SES + k2(H)SC , where each of k1(H) and k2(H) converges to
a constant. If Condition 1 or 2 is satisfied, then

c.1) SCD → N(0, 1) as n → ∞ under H0, and
c.2) SCD = S0

CD + [2σ4c(H)]−1/2 ‖g‖2 + op(1), where S0
CD has the same dis-

tribution as SCD under H0 and c(H) = limn→∞ λ1/(2p)tr((I −P0)2 − (I −
H)2)2 =

∫
(2K − K∗2)2, if m(x) = m0(x) + c(n)g(x), where m0(x) ∈ Pp,

c(n) = n−1/2(λ1/(2p))−1/4, g(x) ∈ Wp
2 [0, 1] such that

∫ 1
0 xj−1g(x)dx = 0

for j = 1, . . . , p, and K∗2 is the convolution of K with itself.

Comments on Theorem 1.
1. Part a) of Theorem 1 states that the numerator of FCD is an unbiased esti-

mator of the error variance only under H0.

2. Part b) provides χ2 approximations for SCD analogous to those stud-
ied by Ramil Novo and González Manteiga (1998) for SES, SC and other
related statistics. It is an extension of the classical result that under H0,
σ−2[RSS(I, P0) − RSS(I, P1)] ∼ χ2

ν , ν =tr(P1 − P0). Part c) extends the
convergence to normality that holds in the classical context with ν → ∞.
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3. Replacing σ2 by an estimator σ̂2 in SCD gives a test statistic ŜCD such that
SCD−ŜCD = σ̂−2(σ̂2−σ2){SCD+[2tr((I−P0)2−(I−H)2)2]−1/2tr((I−P0)2−(I−H)2)}.

(11)
Hence parts b) and c) are still valid for ŜCD if σ̂2 = σ2 + op((λ1/(2p))1/2). Hall
and Marron (1990) and Buckley, Eagleson and Silverman (1988) proved that
σ̂2

CD = RSS1/tr(I − H)2 satisfies this property under the conditions in Theo-
rem 1. Because the ŜCD statistic corresponding to this estimator is [2tr((I −
P0)2 − (I − H)2)2]−1/2tr((I − P0)2 − (I − H)2)(FCD − 1), the limiting distribu-
tion of FCD is also determined by Theorem 1. Hall and Marron also show that
optimal estimation of σ2 demands less smoothing than optimal estimation of the
regression curve. This suggests that it might be convenient to use a different
smoothing parameter in the numerator and denominator of the FCD statistic.
Choice of the smoothing parameter for the numerator should be made to op-
timally estimate the discrepancy with respect to the null hypothesis, while the
smoothing parameter in the denominator should be chosen to optimally estimate
the error variance.

3. Analysis of Variance

The classical analysis of variance allows for a natural extension to the new
context with a nonparametric alternative, providing a way of expressing the
quantities required for the FCD test in an anova table. Part a) of Lemma 1
gives the following decomposition,

Y t(I − P0)2Y = Y t(H − P0)2Y + 2Y t(H − H2)Y + Y t(I − H)2Y,

that is,

n∑
i=1

[yi− m̂0(xi)]2 =
n∑

i=1

[m̂(xi)− m̂0(xi)]2 +2nλ

∫ 1

0
[m̂(p)(x)]2dx+

n∑
i=1

[yi − m̂(xi)]2.

(12)
This decomposition, which generalizes the classical one for linear models,

allows for the following interpretation. The term on the left hand side, SSNE =∑n
i=1[yi−m̂0(xi)]2, is the variability not explained by the model of the null hypoth-

esis. The first term on the right hand side, SSD =
∑n

i=1[m̂(xi)− m̂0(xi)]2, repre-
sents the variability component due to the discrepancy with respect to the model
of the null hypothesis, and the second term, SSB = 2nλ

∫ 1
0 [m̂(p)(x)]2dx, can be

considered as the variability component due to the bias of nonparametric esti-
mation of the discrepancy with respect to the model (note that

∫ 1
0 [m̂(p)(x)]2dx =∫ 1

0 [dp/dxp(m̂ − m̂0)(x)]2dx). Finally, SSR =
∑n

i=1[yi − m̂(xi)]2 is the residual
variability.
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The above decomposition helps to compare χ2 type statistics. The SES

statistic in Eubank and Spiegelman (1990) and Jayasuriya (1996) uses SSD,
Chen’s (1988) SC uses SSB, and SCD is based on SSD + SSB , combining both
measures of discrepancy with respect to the model.

Let SST =
∑n

i=1(yi−y)2 be the total variability of the response variable and
SSM =

∑n
i=1(m̂0(xi) − y)2 be the variability explained by the model of the null

hypothesis. Then part b) of Lemma 1 leads to the following anova table:

Sum of Degrees of Mean
Variability squares freedom squares

Explained
by the model SSM p − 1 SSM/(p − 1)
Discrepancy
with the model SSD tr(H2) − p SSD/(tr(H2) − p)

Bias SSB 2tr(H) − 2tr(H2) SSB/(2tr(H)−2tr(H2))

Residual SSR n+tr(H2) − 2tr(H) SSR/(n+tr(H2) − 2tr(H))
Total SST n − 1

This table suggests several tests. For example, assuming that m ∈ Pp, we
could test the null hypothesis that the predictor variable has no effect using the
classical F test

F =
SSM

SST − SSM
· n − p

p − 1
=

SST − SSNE

SSNE
· n − p

p − 1
. (13)

Avoiding the assumption of a polynomial model, we could have a test statistic
to study the significance of the predictor variable, given by

F =
SST − SSR

SSR
· n + tr(H2) − 2tr(H)
2tr(H) − tr(H2) − 1

. (14)

Replacing σ2 by its estimator σ̂2
R in (8) leads to an expression of Eubank and

Spiegelman’s statistic by mean squares: F =[2(tr(H4)−p)]−1/2(tr(H2)−p)(σ̂2
D/σ̂2

R

−1). Likewise, Chen’s statistic can be expressed as F = [2tr(H−H2)2]−1/2tr(H−
H2)(σ̂2

B/σ̂2
R − 1).

The total variability also admits a simpler decomposition. By part c) of
Lemma 1:

n∑
i=1

(yi − y)2 =
n∑

i=1

(m̂(xi) − y)2 + 2nλ

∫ 1

0
[m̂(p)(x)]2dx +

n∑
i=1

[yi − m̂(xi)]2, (15)

where SSE =
∑n

i=1(m̂(xi)− y)2 measures the variability explained by the regres-
sion. This new decomposition is, in fact, an abbreviated version of the previous
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one given that SSE = SSM + SSD. Equation (15) provides an alternative test
statistic to that given by (14):

F =
SSE

SSR
· n + tr(H2) − 2tr(H)

tr(H2) − 1
=

SST − (SSR + SSB)
SSR

· n + tr(H2) − 2tr(H)
tr(H2) − 1

.

Two special cases of this statistic were studied in Eubank and Hart (1993) and
Eubank and LaRiccia (1993), among others.

We have shown that decompositions of the variance generalize the classical
ones. In the classical context, the sums of squares are associated with an orthog-
onal decomposition. In the following section we examine orthogonality in the
nonparametric context. As we will see, the classical inner product is not used
since it is not the most convenient one for our purpose.

4. Natural Generalization of the F Test

The spline estimator can be seen as a projection of the response variable
onto Wp

2 ≡ Wp
2 [0, 1] in the following way (see Cox (1984) or Speckman (1981)).

Let X = R
n × L2[0, 1], where R

n is the n-dimensional Euclidean space. Let
us consider for λ > 0 the norm in X given by ‖(Y, g)‖2

X = ‖Y ‖2
n + λ‖g‖2, where

‖Y ‖2
n = n−1 ∑n

i=1 y2
i and ‖g‖2 =

∫ 1
0 [g(x)]2dx are the ordinary norms in R

n and
L2[0, 1] respectively. If n ≥ p, g� = ((g(x1), . . . , g(xn))t, g(p)) is an injective
bounded linear transformation from Wp

2 into X. Hence, by the Closed Range
and Open Mapping Theorems, Wp�

2 , the image of Wp
2 , is closed, and Wp

2 is
complete under the induced norm

‖g‖2
n,λ = ‖g�‖2

X = n−1
n∑

i=1

g2(xi) + λ

∫ 1

0
[g(p)(x)]2dx.

Letting Y � = ((y1, . . . , yn)t, 0) ∈ X; the spline estimator m̂(x) of order 2p is
the unique element in Wp

2 that solves the minimization problem, ming∈Wp
2
‖Y � −

g�‖2
X , and thus, m̂� = ((m̂(x1), . . . , m̂(xn))t, m̂(p)) is the projection of Y � onto

Wp�
2 . Considering m̂�

0 = ((m̂0(x1), . . . , m̂0(xn))t, 0) = (P0Y, 0) ∈ X,

‖Y � − m̂�
0‖2

X = ‖Y � − m̂�‖2
X + ‖m̂� − m̂�

0‖2
X , (16)

since m̂� is the perpendicular projection of Y � onto the closed subspace Wp�
2

in the norm ‖ ‖X . However if we write m̂ = (m̂(x1), . . . , m̂(xn))t and m̂0 =
(m̂0(x1), . . . , m̂0(xn))t, then the summands in (16) are ‖Y � − m̂�

0‖2
X = ‖Y −

m̂0‖2
n = n−1SSNE , ‖Y �−m̂�‖2

X = ‖Y −m̂‖2
n +λ‖m̂(p)‖2 = n−1SSR +(2n)−1SSB

and ‖m̂� − m̂�
0‖2

X = ‖m̂ − m̂0‖2
n + λ‖m̂(p)‖2 = n−1SSD + (2n)−1SSB. In this

way we arrive at the same decomposition of variance as in (12) but seen from a
different angle. Equation (16) generalizes the classical decomposition for M = Pq
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(with q > p) used in the numerator of the classical F test in (3). In view of this,
we can consider a new generalization of the F statistic given by:

FN =
‖m̂� − m̂�

0‖2
X / tr(H − P0)

‖Y � − m̂�‖2
X / tr(I − H)

=
‖Y � − m̂�

0‖2
X − ‖Y � − m̂�‖2

X

‖Y � − m̂�‖2
X

· tr(I − H)
tr(H − P0)

.

(17)
By analogy with the classical F statistic we use the following notation: RSS0 =∑

i[yi−m̂0(xi)]2 = Y t(I−P0)Y and RSS1 =
∑

i[yi−m̂(xi)]2+nλ
∫ 1
0 [m̂(p)(x)]2dx =

Y t(I − H)Y .
Let SN = [2(tr(H2) − p)]−1/2[σ−2(RSS0 − RSS1) − (tr(H) − p)].

Theorem 2. Under the assumptions of the Model (1),
a) [tr(H−P0)]−1[σ−2(RSS0−RSS1)]−1 = c1(H)SES+c2(H)SC , where c1(H) =

[2tr(H − P0)4]1/2/tr(H − P0) and c2(H) = [2tr(H − H2)2]1/2/tr(H − P0).
b) If H0 is true and Condition 2 is satisfied, then supx |Pr{SN ≤x}−Pr{(2ν)−1/2

(χ2
ν − ν) ≤ x}| ≤ cλ1/(2p), where c is a constant which does not depend on n

or λ and ν = (tr(H3) − p)−2(tr(H2) − p)3.
c) SN = k1(H)SES + k2(H)SC , where each of k1(H) and k2(H) converges to a

constant, and, if one of the Conditions 1 or 2 is satisfied,
c.1) SN → N(0, 1) as n → ∞ under H0, and
c.2) SN = S0

N + [2σ4c(H)]−1/2 ‖g‖2 + op(1), where S0
N has the same distri-

bution as SN under H0 and c(H) = limn→∞ λ1/(2p)tr(H2) =
∫

K2, if
m(x) = m0(x) + c(n)g(x), where m0(x) ∈ Pp, c(n) = n−1/2(λ1/(2p))−1/4

and g(x) ∈ Wp
2 [0, 1] such that

∫ 1
0 xj−1g(x)dx = 0 for j = 1, . . . , p.

A decomposition analogous to that in equations (15) and (16) allows us to
define a coefficient of determination for regression models that generalizes the
classical one in a natural way. Let m ∈ M = Pq or Wq

2 (q ≥ 1) and m̂(x) be the
function which minimizes ‖Y � − g�‖2

X over g ∈ M. We can define the model’s
M coefficient of determination as

R2
M =

‖m̂� − Ȳ �‖2
X

‖Y � − Ȳ �‖2
X

=
explained variability

total variability
, (18)

where Ȳ � = ((ȳ, . . . , ȳ)t, 0) ∈ X. With this definition, when the departure model
is M = Pq, R2

M is the usual multiple coefficient of determination.
The natural F statistic in (17), can now be expressed as

FN =
R2 − R2

0

1 − R2
· tr(I − H)
tr(H − P0)

,

where R2 and R2
0 are the coefficients of determination for M = Wp

2 and M0= Pp

respectively, generalizing the usual expression for linear models.
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Final remarks
Both SCD and SN can be expressed as S = [2tr(D2)]−1/2[σ−2Y tDY −tr(D)],

where D = (2H−H2)−P0 in SCD and D = H−P0 in SN . This permits us to show
the consistency of the corresponding tests for fixed alternatives with an argument
like the one in Eubank and Spiegelman (1990). Consider m(x) = m0(x) + g(x),
with m0(x) ∈ Pp and g(x) ∈ Wp

2 [0, 1], such that
∫ 1
0 xj−1g(x)dx = 0 for j =

1, . . . , p. It holds that n−1[2tr(D2)]1/2S = σ−2n−1gtDg+n−1[σ−2εtDε−tr(D)]+
2σ−2n−1gtDε. Under either Condition 1 or 2, the last two summands in this
equation are op(1), n−1gtDg → ‖g‖2 and n−1[2 tr(D2)]1/2 → 0. Thus consistency
is guaranteed.

5. Examples and Simulation Results

We begin this section by analyzing a mortality table from Green and Silver-
man (1994, Chap. 5, p.101). Of interest is the relationship between the age x and
the natural logarithm of the estimated mortality rate, y. The mortality rate for
each age group is the ratio between the annual number of deaths and the number
of individuals in the group. A plot of y versus x shows that the relationship is
approximately linear between the ages 65 and 92.

y

x
Figure 1. Logarithm of the annual mortality rate versus age.

To test this hypothesis we considered a transformation of x by recentering and
rescaling such that xi = (i−0.5)/28. We applied three different tests: the classical
F test for linear models assuming that m(x) ∈ P4 and tests based on FCD and
FN - the latter two defined in terms of a cubic spline estimator. We chose P4 as
the alternative model for the classical F test since a polynomial of degree three
provides a good fit in the whole region (see Figure 1). For the same reason we use
a cubic spline for nonparametric F tests. Results of these three tests are presented
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in the anova tables below. For the FCD anova table, SSNE , SSD, SSB and SSR

are taken from equation (12), and in the FN anova table, SSD = n‖m̂� − m̂�
0‖2

X

and SSR = n‖Y � − m̂�‖2
X . Evaluating the general cross validation function

in a wide range of bandwidths (see Craven and Wahba (1979)) for the data
corresponding to ages between 65 and 92 one observes that, although decreasing,
the function becomes nearly constant after h = λ1/4 = 0.0925. Therefore, we
consider h = 0.0925 an adequate value to show the F tables based on splines.
Nonetheless, how to select h in practice to get the most appropriate anova table
needs to be studied.

classical F test - anova table

Source SS D.F. MS
D .027903 2 .013951
R .191895 24 .007996
NE .219798 26
FC= 1.744863 p value=.196106

FCD test - anova table FN test - anova table

Source SS D.F. MS
D .010137 1.563893 .006482
B .019528 1.572836 .012416
R .190133 22.863272 .008316
NE .219798 26

FCD= 1.13724 p value=.323964

Source SS D.F. MS
D .019901 2.35031 .008467
R .199897 23.64969 .008452
NE .219798 26

FN=1.00178 p value=.379358

The coefficients of determination in (18) are .991204, .992321 and .992001 for
a straight line fit, a cubic polynomial fit and a cubic spline fit, respectively. They
all have similar values and none of the tests is significant. However, nonparamet-
ric tests show stronger evidence that a polynomial of degree one is enough to get
a satisfactory fit. Including in the analysis all pairs of data for which there were
a reasonable number of individuals to estimate the mortality rate (ages between
55 and 97) gives the following p values : p < .0001 for the classical F test as-
suming m(x) ∈ P4, p = .6371 assuming only that m(x) ∈ P3, and p < .0001 for
both the FCD and FN tests (based on a bandwidth selected by the generalized
cross validation procedure with h = .0523). Thus, nonparametric tests again give
satisfactory p values.

Simulation results
In order to study the performance of nonparametric F tests with small sample

sizes, carried out a small simulation study to examine the level and power of
these tests. We generated 1,000 samples of size n = 50 from each of the following
models:



F TESTS AND ANOVA BASED ON SMOOTHING SPLINES 831

model 0: yi = 1 + 2xi + εi and model 1: yi = 1 + 2xi + x2
i + εi,

where xi = (i − 0.5)/50, i = 1, . . . , 50, and the errors εi are i.i.d. N(0, σ2) with
σ = 0.25. We used each sample to test the polynomial model of degree one
(H0 : m(x) ∈ P2) with the following tests: the classical F test with alternative
hypothesis m(x) ∈ P3, tests based on SCD, SN , SES and SC (assuming that σ2 is
known), tests based on FCD and FN (since σ2 is not usually known), and finally,
two bootstrap versions based on B = 500 resamples from each original data set.
Resamples were generated by a naive bootstrap from the residuals (see González
Manteiga and Cao Abad (1993)) and were used to calculate the bootstrap version
of the corresponding RSS0−RSS1 in the numerator of both Cleveland-Devlin and
natural F statistics. Nonparametric tests are based on a cubic spline estimator.
All the tests were carried out at a significance level α = 0.05. The four line charts
below show the percentage of rejections for values of h = λ1/4 (the equivalent
bandwidth) varying from 0.02 to 0.26 with a step of 0.01. Figure 2 represents
the percentage of rejections with test statistics requiring σ2 to be known (SCD,
SN , SES and SC). Critical values were calculated using both normal and χ2

approximations. With respect to χ2 approximations we used Theorems 1 and 2,
and Theorems 2.2 and 2.4 of Ramil Novo and González Manteiga (1998). We
only show results for χ2 approximations as the normal approximations lead to
a higher than expected level under the null hypothesis for all the S statistics
considered. This was already observed by Eubank and Spiegelman (1990) and
Chen (1994) for their S statistics. Charts on Figure 3 represent the percentage
of rejections for tests applicable when the error variance is not known (such as
those based on FCD and FN ) and the corresponding bootstrap tests. For the
same reason as with the S tests, critical values for the F statistics were obtained
through the χ2 approximations.

h h

Figure 2. Percentage of rejections assuming σ2 known. Left: Model 0. Right:
Model 1. Test statistics: —— natural SN , − - − Cleveland and Devlin’s SCD,
−−− Eubank and Spiegelman’s SES , and, - - - - Chen’s SC , all based on χ2

critical values. Horizontal reference line: classical F test.
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h h

Figure 3. Percentage of rejections assuming σ2 unknown. Left: Model 0.
Right: Model 1. F tests: —— natural FN , − − − Cleveland and Devlin’s
FCD. Bootstrap tests: − - − natural, - - - - Cleveland and Devlin. Horizontal
reference line: classical F test.

Results of our simulation study reveal several interesting facts.
1. Considering the performance of SN , SCD, FN and FCD statistics under

the null hypothesis (see charts on the left), one sees that χ2 approximations give
a rate of rejections very similar to that of the classical F test and, therefore, very
close to the α level. However, a comparison between Figure 2-left and Figure 3-
left charts shows that when σ2 is known the problem of the bandwidth selection
is not relevant since the S tests are not very sensitive to the selection of the
bandwidth.

2. Under the alternative (Model 1, charts on the right), SN and SCD can be
decomposed in three terms, namely S = S0 + S1 + S2 (see the final remarks of
Section 4 and Appendix for details). The component S0 has the same distribution
as S under H0 and S2 has zero expectation, thus Pr{S ≥ cα} = Pr{S0 ≥ cα −
S1 − S2} depends on h through S1.

3. A comparison among all the S statistics (see Figure 2) shows that the
power of SES is bigger than the others. However this should be interpreted with
care, because SES tends to have a larger type I error. The power of the natural
S or F tests is higher than that of the corresponding Cleveland and Devlin tests,
but they have a similar behavior to the classical F test, for a wide range of
bandwidths. Chen’s S statistic has poor power for small bandwidths. There
seems to be a common range of optimal bandwidths for all S statistics. The
optimal selection of h for these S and F statistics is still an open problem that
needs research.

4. Both bootstrap tests (Cleveland and Devlin’s and the natural) show
good performance, but selecting a good bandwidth is important. Moreover, they
appeared to be less stable than the corresponding S or F tests.
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Our final conclusion is that if one selects an adequate bandwidth, there is
hardly anything to lose using nonparametric F tests when classical methods are
applicable. Using nonparametric estimators, we can estimate a much wider class
of smooth functions, and thus avoid strong smoothness and shape assumptions
about the regression curve.
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Appendix

Proof of Lemma 1.
Part a). Write I = (I −H)2 + H2 + 2(H −H2). Now, observing that (I −P0) =

(I −P0)2 and that H2−P0 = (H −P0)2 (since H and P0 are symmetric
matrices, HP0 = P0 and P0 is idempotent), we obtain

(I − P0)2 = (I − H)2 + (H − P0)2 + 2(H − H2).

Part b). It is an immediate consequence of Part a) as (I − P0)2 = (I − A)2 −
(P0 − A)2.

Part c). Proof of a) is valid for any matrix H associated with a spline of order
2q with q ≥ p, thus c) is a particular case of a) as P0 = A when
X0 = (1, . . . , 1)t.

Let the r-times (r ≥ 2 an integer) convolution product of the kernel ( 7) be
written as K∗r, so that K∗2 = K ∗ K, etc. For r = 0, 1, let K∗r be Kr. The
following lemma shows that asymptotic expressions of n−1tr(Hr) in terms of the
powers of ϕ can be expressed in terms of Silverman’s kernel. As a consequence,
integrals of linear combinations of the powers of ϕ can be expressed in terms of
K.

Lemma 2. Let K(u) = (2π)−1
∫
(1 + x2p)−1 exp(−ixu)dx. Then

(2π)−1
∫

(1 + x2p)−rdx =
∫

K(x)K∗(r−1)(x)dx = K∗r(0) for r = 1, 2, . . .

In particular, when r = 2s, (2π)−1
∫
(1 + x2p)−rdx =

∫
[K∗s(x)]2dx for s =

1, 2, . . . .
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Proof. Given f ∈ L1(R), denote by f̂(t) =
∫

f(x) exp(ixt)dx its Fourier trans-
form. The Fourier Inverse Theorem gives ϕ(x) = K̂(x) and ϕ̂ = 2πK. Since
(f ∗ g)̂ = f̂ · ĝ, by Fubini’s Theorem it holds that

(2π)−1
∫

ϕ(x)rdx = (2π)−1
∫

ϕ(x)[K̂(x)]r−1dx

= (2π)−1
∫

ϕ(x)(K∗(r−1) )̂ (x)dx = (2π)−1
∫

K∗(r−1)(t)[
∫

ϕ(x) exp(ixt)dx]dt

= (2π)−1
∫

K∗(r−1)(t)ϕ̂(t)dt =
∫

K(t)K∗(r−1)(t)dt = K∗r(0).

See Bhattacharya and Rao (1986, Chap. 2) for properties of Fourier transforms.

Proofs of Theorems.
First note that all the S statistics are of the type S = [2tr(D2)]−1/2[σ−2Y tDY

−tr(D)], where D is (I − P0)2 − (I − H)2 = 2H − H2 − P0 in the case of SCD,
is H − P0 for SN , is (H − P0)2 for SES, and is H − H2 for SC .

Part a) of both theorems concerns the terms [Y tDY/tr(D)]/σ2 − 1. Setting
RSS0 = RSS(I, P0) and RSS1 = RSS(I,H), σ−2(RSS0 − RSS1) = σ−2Y tDY

where D = (I − P0)2 − (I − H)2. By Lemma 1, D = (H − P0)2 + 2(H − H2).
Thus,

σ−2Y tDY − tr(D) = σ−2(Y t(H − P0)2Y − tr(H − P0)2) + 2(σ−2Y t(H − H2)Y

−tr(H − H2)). (19)

Analogously, defining RSS0 = Y t(I − P0)Y and RSS1 = Y t(I − H)Y, we
obtain σ−2(RSS0−RSS1) = σ−2Y tDY with D = H−P0 = (H−P0)2+(H−H2)
(as (H − P0)2 = H2 − P0). Thus,

σ−2Y tDY − tr(D) = σ−2(Y t(H − P0)2Y − tr(H − P0)2) + (σ−2Y t(H − H2)Y

−tr(H − H2)). (20)

Dividing (19) and (20) by the corresponding tr(D) term, the equality stated
in a) of each of the theorems is attained:

[Y tDY/tr(D)]/σ2 − 1 = c1(H)SES + c2(H)SC , (21)

where c1(H) = [2tr(H − P0)4]1/2/tr(D) and c2(H) = 2[2tr(H − H2)2]1/2/tr(D)
if D = (I − P0)2 − (I − H)2, c2(H) = [2tr(H − H2)2]1/2/tr(D) if D = H − P0.

To prove b) and c), consider a decomposition of each S into three terms,
S = S0 + S1 + S2, where S0 = [2tr(D2)]−1/2[σ−2εtDε−tr(D)], S1 = σ−2nc2(n)[2
tr(D2)]−1/2 [n−1gtDg] and S2 = 2σ−2c(n) [2tr(D2)]−1/2[gtDε]. The summands
Si corresponding to Eubank and Spiegelman’s statistic (with D = H2 −P0) and
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Chen’s statistic (with D = H −H2) will be denoted as Si
ES and Si

C , i = 0, 1 and
2.

When H0 is true, S = S0. This permits us to obtain the χ2 approxima-
tions found in b) of each theorem as an application of the uniform bound of
Equation 3 in Buckley and Eagleson (1988, Section 2). We use the follow-
ing notation for constants involved in that bound: β = max1≤i≤n λ2

i /
∑n

k=1 λ2
k,

η =
∑n

k=1 λ4
k/(

∑n
k=1 λ2

k)
2 and ν = (

∑n
k=1 λ2

k)
3/(

∑n
k=1 λ3

k)
2, where the λi are the

eigenvalues of D, and thus tr(Dr) =
∑n

k=1 λr
k. Since max1≤i≤n λ4

i /(
∑n

k=1 λ2
k)

2

= β2 ≤ (
∑n

k=1 λ4
k)/(

∑n
k=1 λ2

k)
2 = η, it is possible to work only with traces

of powers of D to obtain an asymptotic expression of Buckley and Eagleson’s
bound.

Let D = 2H−H2−P0. Since HP0 = P0, Dr = (2H−H2)r−P0 r = 1, 2, . . . .
Let tr = (2π)−1

∫
(1 + x2p)−rdx. Given that n−1tr(Hr) ∼ (nλ1/(2p))−1tr, then

n−1tr(Dr) ∼ (nλ1/(2p))−1dr, where dr =
∑r

k=0 r!/[k!(r − k)!]2k(−1)r−kt2r−k.

Thus η = {[n−2tr(D4)]/ [n−1tr(D2)]2} ∼ d0λ
1/(2p), where d0 = d4/d

2
2. Anal-

ogously, ν−1 = {n−1[n−1tr(D3)]2/ [n−1tr(D2)]3} ∼ d′0λ1/(2p), where d′0 = d2
3/d

3
2.

Then, letting c(x) = (10 + 3(1 − 8/x)−2)/2π, as λ → 0, both c(β−1) and c(ν)
converge to a constant c0. Constant c in Theorem 1 can be obtained by observing
that c(β−1)η + c(ν)ν−1 ∼ c0(d0λ

1/(2p) + d′0λ1/(2p)). Constant c in b) of Theorem
2 can be obtained in a similar way by taking D = H − P0, bearing in mind that
(H − P0)r = Hr − P0 and that n−1tr(Hr) ∼ (nλ1/(2p))−1tr.

c). Equation (21) gives the expressions of SCD and SN statistics as linear
combinations of SES and SC since

S =[2tr(D2)]−1/2[σ−2Y tDY −tr(D)]=[2tr(D2)]−1/2tr(D){[Y tDY/tr(D)]/σ2−1},
and thus S = k1(H)SES + k2(H)SC , where ki(H) = [2tr(D2)]−1/2tr(D)ci(H).

Consider first D = H − P0, that is S = SN . In this case, k1(H) = [tr(H −
P0)4/tr(D2)]1/2 ∼ k1 = [

∫
(K∗2)2/

∫
K2]1/2 and k2(H) = [tr(H−H2)2/tr(D2)]1/2

∼ k2 = [
∫
(K − K∗2)2/

∫
K2]1/2, by Lemma 2.

c.1). When H0 is true, SN = S0
N = S0

ESk1(H) + S0
Ck2(H). Thus if H0

and Condition 1 hold, convergence to a standard normal is a straightforward
consequence of Theorem 2.1 in Jayasuriya (1996) and Theorem 1 in Chen (1994)
since these show, respectively, that S0

ES and S0
C are asymptotically N(0, 1).

If H0 and Condition 2 hold, asymptotic normality can be deduced from the
Lemma in Eubank and Spiegelman (1990). Certainly, if λ1 ≤ · · · ≤ λn are the
eigenvalues of D = H − P0, it holds that 0 ≤ β2 = (maxi λ

2
i /

∑n
k=1 λ2

k)
2 ≤

η = [n−2tr(D4)]/[n−1tr(D2)]2 ∼ aλ1/(2p), where a = t4/t
2
2. Consequently β =

maxi λ
2
i /

∑n
k=1 λ2

k → 0.
c.2). Taking into account that c(n) = n−1/2(λ1/(2p))−1/4 along with the as-

sumptions about g, it holds that S1
ESk1(H) = [2σ4λ1/(2p)tr(D2)]−1/2[n−1gt(H2−
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P0)g] ∼ [2σ4c(H)]−1/2 ‖g‖2, and that S1
Ck2(H)=[2σ4λ1/(2p)tr(D2)]−1/2[n−1gt(H

−H2)g] ∼ λ[2σ4c(H)]−1/2‖g(p)
λ ‖2, where c(H) = limn→∞ λ1/(2p)tr(D2) =

∫
K2.

Here gλ denotes the spline function of order 2p corresponding to {xi, g(xi)}n
i=1.

Thus as λ→0, it follows that S1
N =S1

ESk1(H)+S1
Ck2(H)=[2σ4λ1/(2p)tr(D2)]−1/2

[n−1gtDg] ∼ [2σ4c(H)]−1/2‖g‖2. Similar arguments allow us to conclude that
S2

N = S2
ESk1(H)+S2

Ck2(H) is negligible, since both S2
ESk1(H) and S2

Ck2(H) are
negligible.

Consider now D = 2H − H2 − P0, that is, S = SCD. In this case, k1(H) =
[tr(H−P0)4/tr(D2)]1/2 ∼ k1 = [

∫
(K∗2)2/

∫
(2K−K∗2)2]1/2 and k2(H) = 2[tr(H−

H2)2/tr(D2)]1/2 ∼ k2 = 2[
∫
(K −K∗2)2/

∫
(2K −K∗2)2]1/2. The rest of the proof

follows from the same arguments as those given for D = H − P0.
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