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In this supplementary file, we provide the additional figure in the data application and the proofs of
the results in the paper.

S1 Proof of Theorem 1

Since yl, .+, Yy, are mutually independent, the consistency of 4 follows from the standard argument,
so that 72 and B are also consistent. In what follows, we derive the asymptotic expressions of the
estimators.

First we consider the asymptotic approximation of 72 — 72. From (6), we obtain
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where uy; = mN 1 D ity {(yij — T )2 — afj} — 72 and we used the fact that Bopg — 8 = O,(m=1/2)

and N71Y7, >t (yiy — xiiB)Tij = O,(m~1/2) from the central limit theorem.
For the asymptotic expansion of 4, remember that the estimator 7 is given as the solution of the
estimating equation
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Using Taylor expansions, we have
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so that the second terms in the expansion formula is op(m_l/ 2). Then we get
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Under (A1)-(A5), we have
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From the independence of y,...,vy,, and the fact E(ug;) = 0, we can use the central limit theorem
to show that the leading term in the expansion of 4 — ~ is Op(m*1/2). Thus,
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Using the approximation of 4 — v and 4y — v = Op(m_l/ %), we get the asymptotic expression of

72 — 72 from (S1), which establishes the result for ?zand y.
Finally we consider the asymptotic expansion of 3 — 3. From the expression in (4), it follows that
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Under (A1)-(A5), we have BZ — B =0,(m~Y2) for a € {T,71,...,74}, whereby B -8= Op(m~1/2),
Since ¥ — v = O,(m~/2) and 72 — 72 = O,(m~'/?) as shown above, we get
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which completes the proof.

S2 Proof of Corollary 1

Let 6 = (61,...,0p1411) = (B,7,7%)". Note that wie’“,k =1,...,p+ q+ 1 does not depend on
YooY 1:Yir1s-- - Y and that yy,...,y,, are mutually independent. Then,
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where €y is the (k,1)-element of Q and we used the fact that E[¢?k|yz] = E[¢]e’“] = 0 for j # 1.

Hence, we get the result from the asymptotic approximation of 0 given in Theorem 1.

S3 Proof of Theorem 2
We begin by deriving the conditional asymptotic bias of 4. Let 4 be the solution of the equation
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with 0’% = o?(2! ;7). For notational simplicity, we use F' instead of F(v; 3) without any confusion and
F,,r =1,...,q denotes the r-th component of F, namely F = (Fi,..., F;)". Define the derivatives
F(a) and Fh(ab) by
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It is noted that Fj,(g,) = 0. Expanding F(7; BOLS) = 0, we obtain
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where t5 = (ts1,...,ts),s = 1,2 for
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so that F(,Y) is non-stochastic. Thus we have
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In what follows, we shall evaluate the each term in the parenthesis in the above expression. For the
first term, since yq,...,¥,, are mutually independent and E(ug;) = 0, we have
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For evaluation of the second term, we define Zy, = diag(zir, ..., 2Zkn,r), Where 24, denotes the r-th
element of zp;. Then it follows that
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Noting that it holds for £=1,...,m and k # ¢

vi| = L= xe ElBos — Blul = (X'X) ™ Xi(y; - X.8),

.

S {EkzkrEka(X’X)—lxch [(ye ~ X8)(yy, — X1.8)
/=1

= tr {(X'X) ' X\ S ErZi Ex X1}

E |y~ XuB) (v — X1

we have

E |:(yk — X48) ExZ 1 Ex X (Bors — B)

v}

which is O(m~!) and

1 ~
N(yi - X.8)EZ,Ex X E [50Ls -8

vi| = op(m ™).



Thus, we get
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where the leading term is O(m™!). For the third and forth terms, note that
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which are non-stochastic. Then for h=1,...,q,
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for Vors = (X' X)) 1 X' X (X'X)~!, where we used Corollary 1 and
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which follows from the similar argument to the proof of Corollary 1. Thus we obtain
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where {a, }, denotes the ¢-dimensional vector (ai,...,aq). Therefore, we have established the result

for 7 in (13).
We next derive the result for 72. Let
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Using the Taylor series expansion, we have
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where we used the fact that 9°72/9v93" = 0. The straight calculation shows that
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which are non-stochastic. Thus we obtain
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From the expression of 72, it holds that
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for uy; defined in (8). Also, we immediately have
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Moreover, Corollary 1 and (S4) enable us to obtain the expression of B;3(y;) and Br5(y;), whereby
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which completes the proof for 72 in (13).



We finally derive the result for B By the Taylor series expansion,
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which can be proved by the same arguments as in Corollary 1. Thus from Corollary 1 and the fact
that

B[3- By = (x5 x)" XI5, X08),

we obtain the result for 3 in (13).

S4 Proof of (18)

From the expansion of [i;, we have
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It is noted that
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using Holder’s inequality. Since both 9f;/00; and 9%[i; /900,00, are linear functions of y;, the first
term of (S5) is finite under (A4). Moreover, from Theorem 1, it follows \/m|6; — 6;| < C(y) for some

quadratic function of ¥, so that the second term in (S5) is also finite. Hence, we have U; = o(m™1).
Similarly, we also obtain Uy = o(m™!). Therefore, using Corollary 1, we have
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since ¢(y;) is fourth-order function of y; and O, /06 is a linear function of y,;, which completes the
proof.

S5 Derivation of R3;(¢, k)

Since y; given v;, €; is non-stochastic, we have
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Using the expression (13) and (17), it follows that
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To evaluate My;; and Mo;;, we first prove the following result for fixed j,k,¢ € {1,...,n;}.
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Now, we return to the evaluation of My;; and Mo;;. It follows that
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S6 Evaluation of Rss;(¢)

Since y,; given v; and €; is non-stochastic, we have
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where 07" is an intermediate value between 6; and 60;. Further note that the third order partial
derivatives of fi; is a linear function of y;, so that the second term of Rsy; is o(m_l). Similarly, it

follows that
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since the second order partial derivatives of 1; is a linear function of y;; — x;j,ﬁ and the identity (S6).
Therefore, we finally get R32;(¢p) = o(m™1).
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S7 Predicted values of i; in data analysis
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Figure 1: Predicted Values of p; from Each Model.
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