Supplementary Materials for "Heteroscedastic Nested Error Regression Models with Variance Functions"

Shonosuke Sugasawa¹ and Tatsuya Kubokawa²

¹ The Institute of Statistical Mathematics and ² University of Tokyo

In this supplementary file, we provide the additional figure in the data application and the proofs of the results in the paper.

S1 Proof of Theorem 1

Since y_1, \ldots, y_m are mutually independent, the consistency of $\widehat{\gamma}$ follows from the standard argument, so that $\widehat{\tau}^2$ and $\widehat{\beta}$ are also consistent. In what follows, we derive the asymptotic expressions of the estimators.

First we consider the asymptotic approximation of $\hat{\tau}^2 - \tau^2$. From (6), we obtain

$$\hat{\tau}^{2} - \tau^{2} = \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \left\{ (y_{ij} - \mathbf{x}'_{ij} \hat{\boldsymbol{\beta}}_{\text{OLS}})^{2} - \hat{\sigma}_{ij}^{2} \right\} - \tau^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \left\{ (y_{ij} - \mathbf{x}'_{ij} \boldsymbol{\beta})^{2} - \sigma_{ij}^{2} \right\} - \tau^{2} - \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \sigma_{ij(1)}^{2} \mathbf{z}'_{ij} (\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma})$$

$$- \frac{2}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (y_{ij} - \mathbf{x}'_{ij} \boldsymbol{\beta}) \mathbf{x}'_{ij} (\hat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) + o_{p}(\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + o_{p}(\hat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta})$$

$$= \frac{1}{m} \sum_{i=1}^{m} u_{1i} - \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \sigma_{ij(1)}^{2} \mathbf{z}'_{ij} (\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + o_{p}(m^{-1/2}) + o_{p}(\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}), \tag{S1}$$

where $u_{1i} = mN^{-1}\sum_{j=1}^{n_i} \left\{ (y_{ij} - \boldsymbol{x}'_{ij}\boldsymbol{\beta})^2 - \sigma_{ij}^2 \right\} - \tau^2$ and we used the fact that $\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta} = O_p(m^{-1/2})$ and $N^{-1}\sum_{i=1}^{m}\sum_{j=1}^{n_i} (y_{ij} - \boldsymbol{x}'_{ij}\boldsymbol{\beta})\boldsymbol{x}_{ij} = O_p(m^{-1/2})$ from the central limit theorem.

For the asymptotic expansion of $\hat{\gamma}$, remember that the estimator $\hat{\gamma}$ is given as the solution of the estimating equation

$$\frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[\left\{ y_{ij} - \bar{y}_i - (\boldsymbol{x}_{ij} - \bar{\boldsymbol{x}}_i)' \widehat{\boldsymbol{\beta}}_{\text{OLS}} \right\}^2 \boldsymbol{z}_{ij} - \sigma_{ij}^2 (\boldsymbol{z}_{ij} - 2n_i^{-1} \boldsymbol{z}_{ij} + n_i^{-1} \bar{\boldsymbol{z}}_i) \right] = \boldsymbol{0}$$

Using Taylor expansions, we have

$$\mathbf{0} = \frac{1}{m} \sum_{i=1}^{m} u_{2i} - \frac{2}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left\{ y_{ij} - \bar{y}_i - (\boldsymbol{x}_{ij} - \bar{\boldsymbol{x}}_i)' \boldsymbol{\beta} \right\} \boldsymbol{z}_{ij} (\boldsymbol{x}_{ij} - \bar{\boldsymbol{x}}_i)' (\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta})$$

$$- \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \sigma_{ij(1)}^2 (\boldsymbol{z}_{ij} - 2n_i^{-1} \boldsymbol{z}_{ij} + n_i^{-1} \bar{\boldsymbol{z}}_i) \boldsymbol{z}'_{ij} (\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + o_p(\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + o_p(m^{-1/2}),$$

where

$$\mathbf{u}_{2i} = mN^{-1} \sum_{j=1}^{n_i} \left[\left\{ y_{ij} - \bar{y}_i - (\mathbf{x}_{ij} - \bar{\mathbf{x}}_i)' \boldsymbol{\beta} \right\}^2 \mathbf{z}_{ij} - \sigma_{ij}^2 (\mathbf{z}_{ij} - 2n_i^{-1} \mathbf{z}_{ij} + n_i^{-1} \bar{\mathbf{z}}_i) \right].$$

From the central limit theorem, it follows that

$$\frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left\{ y_{ij} - \bar{y}_i - (\boldsymbol{x}_{ij} - \bar{\boldsymbol{x}}_i)' \boldsymbol{\beta} \right\} \boldsymbol{z}_{ij} (\boldsymbol{x}_{ij} - \bar{\boldsymbol{x}}_i)' = O_p(m^{-1/2}),$$

so that the second terms in the expansion formula is $o_p(m^{-1/2})$. Then we get

$$\widehat{\gamma} - \gamma = \frac{N}{m} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_i} \sigma_{ij(1)}^2 (\boldsymbol{z}_{ij} - 2n_i^{-1} \boldsymbol{z}_{ij} + n_i^{-1} \bar{\boldsymbol{z}}_i) \boldsymbol{z}'_{ij} \right)^{-1} \sum_{i=1}^{m} \boldsymbol{u}_{2i} + o_p(\widehat{\gamma} - \boldsymbol{\gamma}) + o_p(m^{-1/2}).$$

Under (A1)-(A5), we have

$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} \sigma_{ij(1)}^2(\boldsymbol{z}_{ij} - 2n_i^{-1} \boldsymbol{z}_{ij} + n_i^{-1} \bar{\boldsymbol{z}}_i) \boldsymbol{z}'_{ij} = O(m).$$

From the independence of y_1, \ldots, y_m and the fact $E(u_{2i}) = \mathbf{0}$, we can use the central limit theorem to show that the leading term in the expansion of $\hat{\gamma} - \gamma$ is $O_p(m^{-1/2})$. Thus,

$$\widehat{\gamma} - \gamma = rac{N}{m} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_i} \sigma_{ij(1)}^2 (m{z}_{ij} - 2n_i^{-1} m{z}_{ij} + n_i^{-1} ar{m{z}}_i) m{z}_{ij}' \right)^{-1} \sum_{i=1}^{m} m{u}_{2i} + o_p(m^{-1/2}).$$

Using the approximation of $\hat{\gamma} - \gamma$ and $\hat{\gamma} - \gamma = O_p(m^{-1/2})$, we get the asymptotic expression of $\hat{\tau}^2 - \tau^2$ from (S1), which establishes the result for $\hat{\tau}^2$ and $\hat{\gamma}$.

Finally we consider the asymptotic expansion of $\hat{\beta} - \beta$. From the expression in (4), it follows that

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta} + \sum_{s=1}^{q} \left(\frac{\partial}{\partial \gamma_s} \widetilde{\boldsymbol{\beta}} \right)' (\widehat{\gamma}_s - \gamma) + \left(\frac{\partial}{\partial \tau^2} \widetilde{\boldsymbol{\beta}} \right)' (\widehat{\tau}^2 - \tau^2) + o_p(\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + o_p(\widehat{\tau}^2 - \tau^2).$$

Since

$$\frac{\partial}{\partial \tau^2} \boldsymbol{\Sigma}_i = \boldsymbol{J}_{n_i}, \quad \frac{\partial}{\partial \gamma_s} \boldsymbol{\Sigma}_i = \boldsymbol{W}_{i(s)}, \quad s = 1, \dots, q,$$

for $W_{i(s)} = \text{diag}(\sigma_{i1(1)}^2 z_{i1s}, \dots, \sigma_{in_i(1)}^2 z_{in_is})$, we have

$$\frac{\partial}{\partial \tau^{2}} \widetilde{\boldsymbol{\beta}} = \left(\boldsymbol{X}' \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \left(\sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{J}_{n_{i}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i} \right) \left(\widetilde{\boldsymbol{\beta}}_{\tau}^{*} - \widetilde{\boldsymbol{\beta}} \right),
\frac{\partial}{\partial \gamma_{s}} \widetilde{\boldsymbol{\beta}} = \left(\boldsymbol{X}' \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \left(\sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{W}_{i(s)} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i} \right) \left(\widetilde{\boldsymbol{\beta}}_{\gamma_{s}}^{*} - \widetilde{\boldsymbol{\beta}} \right), \quad s = 1 \dots, q,$$
(S2)

where

$$\widetilde{\boldsymbol{\beta}}_{\tau}^{*} = \left(\sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{J}_{n_{i}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{J}_{n_{i}} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{y}_{i},$$

$$\widetilde{\boldsymbol{\beta}}_{\gamma_{s}}^{*} = \left(\sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{W}_{i(s)} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1} \sum_{i=1}^{m} \boldsymbol{X}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{W}_{i(s)} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{y}_{i}, \quad s = 1, \dots, q.$$

Under (A1)-(A5), we have $\widetilde{\boldsymbol{\beta}}_a^* - \boldsymbol{\beta} = O_p(m^{-1/2})$ for $a \in \{\tau, \gamma_1, \dots, \gamma_q\}$, whereby $\widetilde{\boldsymbol{\beta}}^* - \widetilde{\boldsymbol{\beta}} = O_p(m^{-1/2})$. Since $\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma} = O_p(m^{-1/2})$ and $\widehat{\tau}^2 - \tau^2 = O_p(m^{-1/2})$ as shown above, we get

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} = (\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X})^{-1} \sum_{i=1}^{m} \boldsymbol{X}_{i}\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}_{i} - \boldsymbol{X}_{i}\boldsymbol{\beta}) + o_{p}(m^{-1/2}),$$

which completes the proof.

S2 Proof of Corollary 1

Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_{p+q+1})' = (\boldsymbol{\beta}', \boldsymbol{\gamma}', \tau^2)'$. Note that $\psi_i^{\theta_k}, k = 1, \dots, p+q+1$ does not depend on $\boldsymbol{y}_1, \dots, \boldsymbol{y}_{i-1}, \boldsymbol{y}_{i+1}, \dots, \boldsymbol{y}_m$ and that $\boldsymbol{y}_1, \dots, \boldsymbol{y}_m$ are mutually independent. Then,

$$\frac{1}{m^2} E\left[\left(\sum_{j=1}^m \psi_j^{\theta_k}\right) \left(\sum_{j=1}^m \psi_j^{\theta_l}\right) \middle| \boldsymbol{y}_i \right] = \frac{1}{m^2} \sum_{j=1, j \neq i}^m E\left[\psi_j^{\theta_k} \psi_j^{\theta_l}\right] + \frac{1}{m^2} \psi_i^{\theta_k} \psi_i^{\theta_l}$$

$$= \Omega_{kl} + \frac{1}{m^2} \left\{\psi_i^{\theta_k} \psi_i^{\theta_l} - E\left[\psi_i^{\theta_k} \psi_i^{\theta_l}\right]\right\},$$

where Ω_{kl} is the (k,l)-element of Ω and we used the fact that $E[\psi_j^{\theta_k}|\boldsymbol{y}_i] = E[\psi_j^{\theta_k}] = 0$ for $j \neq i$. Hence, we get the result from the asymptotic approximation of $\widehat{\boldsymbol{\theta}}$ given in Theorem 1.

S3 Proof of Theorem 2

We begin by deriving the conditional asymptotic bias of $\hat{\gamma}$. Let $\hat{\gamma}$ be the solution of the equation

$$F(\gamma; oldsymbol{eta}) \equiv rac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[\left\{ y_{ij} - ar{y}_i - (oldsymbol{x}_{ij} - ar{oldsymbol{x}}_i)' oldsymbol{eta}
ight\}^2 oldsymbol{z}_{ij} - \sigma_{ij}^2 (oldsymbol{z}_{ij} - 2n_i^{-1} oldsymbol{z}_{ij} + n_i^{-1} ar{oldsymbol{z}}_i)
ight] = oldsymbol{0}$$

with $\sigma_{ij}^2 = \sigma^2(\mathbf{z}'_{ij}\boldsymbol{\gamma})$. For notational simplicity, we use \boldsymbol{F} instead of $\boldsymbol{F}(\boldsymbol{\gamma};\boldsymbol{\beta})$ without any confusion and $F_r, r = 1, \ldots, q$ denotes the r-th component of \boldsymbol{F} , namely $\boldsymbol{F} = (F_1, \ldots, F_q)'$. Define the derivatives $\boldsymbol{F}_{(a)}$ and $F_{h(ab)}$ by

$$F_{(a)} = \frac{\partial F}{\partial a'}, \quad F_{r(ab)} = \frac{\partial^2 F_r}{\partial a \partial b'}.$$

It is noted that $F_{h(\beta\gamma)} = 0$. Expanding $F(\widehat{\gamma}; \widehat{\beta}_{OLS}) = 0$, we obtain

$$\mathbf{0} = \mathbf{F} + \mathbf{F}_{(\boldsymbol{\gamma})}(\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) + \mathbf{F}_{(\boldsymbol{\beta})}(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) + \frac{1}{2}\mathbf{t}_1 + \frac{1}{2}\mathbf{t}_2 + o_p(m^{-1}),$$

where $\mathbf{t}_s = (t_{s1}, \dots, t_{sq}), s = 1, 2$ for

$$t_{1r} = (\widehat{\gamma} - \gamma)' F_{r(\gamma\gamma)}(\widehat{\gamma} - \gamma), \qquad t_{2r} = (\widehat{\beta}_{OLS} - \beta)' F_{r(\beta\beta)}(\widehat{\beta}_{OLS} - \beta).$$

It is also noted that

$$egin{aligned} m{F}_{(m{\gamma})} &= -rac{1}{m} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \sigma_{kj(1)}^2 (m{z}_{kj} - 2n_k^{-1} m{z}_{kj} + n_k^{-1} ar{m{z}}_k) m{z}_{kj}' \ m{F}_{(m{eta})} &= -rac{2}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \left\{ y_{kj} - ar{y}_k - (m{x}_{kj} - ar{m{x}}_k)' m{eta}
ight\} m{z}_{ij} (m{x}_{kj} - ar{m{x}}_k)', \end{aligned}$$

so that $F_{(\gamma)}$ is non-stochastic. Thus we have

$$E[\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma} | \boldsymbol{y}_i] = -(\boldsymbol{F}_{(\boldsymbol{\gamma})})^{-1} \left\{ E[\boldsymbol{F}(\boldsymbol{\gamma}; \boldsymbol{\beta}) | \boldsymbol{y}_i] + E\left[\boldsymbol{F}_{(\boldsymbol{\beta})}(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) \middle| \boldsymbol{y}_i \right] + \frac{1}{2} E[\boldsymbol{t}_1 | \boldsymbol{y}_i] + \frac{1}{2} E[\boldsymbol{t}_2 | \boldsymbol{y}_i] \right\} + o_p(m^{-1}).$$

In what follows, we shall evaluate the each term in the parenthesis in the above expression. For the first term, since y_1, \ldots, y_m are mutually independent and $E(u_{2i}) = 0$, we have

$$E[\boldsymbol{F}(\boldsymbol{\gamma};\boldsymbol{\beta})|\boldsymbol{y}_i] = \frac{1}{m}\boldsymbol{u}_{2i}.$$

For evaluation of the second term, we define $\mathbf{Z}_{kr} = \operatorname{diag}(z_{k1r}, \dots, z_{kn_kr})$, where z_{kjr} denotes the r-th element of \mathbf{z}_{kj} . Then it follows that

$$\begin{split} E\left[\boldsymbol{F}_{r(\boldsymbol{\beta})}(\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}-\boldsymbol{\beta})\Big|\boldsymbol{y}_{i}\right] &= -\frac{2}{N}\sum_{k=1}^{m}E\left[(\boldsymbol{y}_{k}-\boldsymbol{X}_{k}\boldsymbol{\beta})'\boldsymbol{E}_{k}\boldsymbol{Z}_{kr}\boldsymbol{E}_{k}\boldsymbol{X}_{k}(\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}-\boldsymbol{\beta})\Big|\boldsymbol{y}_{i}\right] \\ &= -\frac{2}{N}\sum_{k=1}^{m}E\left[(\boldsymbol{y}_{k}-\boldsymbol{X}_{k}\boldsymbol{\beta})'\boldsymbol{E}_{k}\boldsymbol{Z}_{kr}\boldsymbol{E}_{k}\boldsymbol{X}_{k}(\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}-\boldsymbol{\beta})\Big|\boldsymbol{y}_{i}\right] - \frac{2}{N}(\boldsymbol{y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta})'\boldsymbol{E}_{i}\boldsymbol{Z}_{ir}\boldsymbol{E}_{i}\boldsymbol{X}_{i}E\left[\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}-\boldsymbol{\beta}\Big|\boldsymbol{y}_{i}\right]. \end{split}$$

Noting that it holds for $\ell = 1, ..., m$ and $k \neq i$

$$E\left[(\boldsymbol{y}_{\ell}-\boldsymbol{X}_{\ell}\boldsymbol{\beta})(\boldsymbol{y}_{k}-\boldsymbol{X}_{k}\boldsymbol{\beta})'\middle|\boldsymbol{y}_{i}\right]=1_{\{\ell=k\}}\boldsymbol{\Sigma}_{k},\quad E\left[\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}-\boldsymbol{\beta}\middle|\boldsymbol{y}_{i}\right]=\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}_{i}'(\boldsymbol{y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}),$$

we have

$$\begin{split} E & \left[(\boldsymbol{y}_k - \boldsymbol{X}_k \boldsymbol{\beta})' \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k (\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) \middle| \boldsymbol{y}_i \right] \\ & = \sum_{\ell=1}^m \operatorname{tr} \left\{ \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}_k' E \left[(\boldsymbol{y}_\ell - \boldsymbol{X}_\ell \boldsymbol{\beta}) (\boldsymbol{y}_k - \boldsymbol{X}_k \boldsymbol{\beta})' \middle| \boldsymbol{y}_i \right] \right\} \\ & = \operatorname{tr} \left\{ (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}_k' \boldsymbol{\Sigma}_k \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k \right\}, \end{split}$$

which is $O(m^{-1})$ and

$$\frac{1}{N}(\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})' \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k E \left[\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta} \middle| \boldsymbol{y}_i \right] = o_p(m^{-1}).$$

Thus, we get

$$E\left[\boldsymbol{F}_{r(\boldsymbol{\beta})}(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) \middle| \boldsymbol{y}_{i}\right] = -\frac{2}{m} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} \operatorname{tr}\left\{ (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}_{k}' \boldsymbol{\Sigma}_{k} \boldsymbol{E}_{k} \boldsymbol{Z}_{kr} \boldsymbol{E}_{k} \boldsymbol{X}_{k} \right\} + o_{p}(m^{-1}), \tag{S3}$$

where the leading term is $O(m^{-1})$. For the third and forth terms, note that

$$F_{r(\gamma\gamma)} = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \sigma_{kj(2)}^2 (\boldsymbol{z}_{kj} - 2n_k^{-1} \boldsymbol{z}_{kj} + n_k^{-1} \bar{\boldsymbol{z}}_k) \boldsymbol{z}_{kj}' \boldsymbol{z}_{kjr} \quad F_{r(\beta\beta)} = \frac{2}{N} \sum_{k=1}^{m} \boldsymbol{X}_k' \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k,$$

which are non-stochastic. Then for $h = 1, \dots, q$

$$E[t_{1r}|\boldsymbol{y}_{i}] = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} z_{kjr} \sigma_{kj(2)}^{2} (\boldsymbol{z}_{kj} - 2n_{k}^{-1} \boldsymbol{z}_{kj} + n_{k}^{-1} \bar{\boldsymbol{z}}_{k})' \boldsymbol{\Omega}_{\gamma\gamma} \boldsymbol{z}_{kj} + o_{p}(m^{-1}),$$

$$E[t_{2r}|\boldsymbol{y}_{i}] = \frac{2}{N} \sum_{k=1}^{m} \operatorname{tr} \left(\boldsymbol{X}_{k}' \boldsymbol{E}_{k} \boldsymbol{Z}_{kr} \boldsymbol{E}_{k} \boldsymbol{X}_{k} \boldsymbol{V}_{\text{OLS}} \right) + o_{p}(m^{-1}),$$

for $\boldsymbol{V}_{\text{OLS}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1},$ where we used Corollary 1 and

$$E\left[(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta})'|\boldsymbol{y}_i\right] = \boldsymbol{V}_{\text{OLS}} + o_p(m^{-1}), \tag{S4}$$

which follows from the similar argument to the proof of Corollary 1. Thus we obtain

$$E[\boldsymbol{t}_1|\boldsymbol{y}_i] = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \boldsymbol{z}_{kj} \sigma_{kj(2)}^2 (\boldsymbol{z}_{kj} - 2n_k^{-1} \boldsymbol{z}_{kj} + n_k^{-1} \bar{\boldsymbol{z}}_k)' \boldsymbol{\Omega}_{\gamma\gamma} \boldsymbol{z}_{kj} + o_p(m^{-1}),$$

$$E[\boldsymbol{t}_2|\boldsymbol{y}_i] = \frac{2}{N} \sum_{k=1}^{m} \left\{ \operatorname{tr} \left(\boldsymbol{X}_k' \boldsymbol{E}_k \boldsymbol{Z}_{kr} \boldsymbol{E}_k \boldsymbol{X}_k \boldsymbol{V}_{\text{OLS}} \right) \right\}_r + o_p(m^{-1}),$$

where $\{a_r\}_r$ denotes the q-dimensional vector (a_1, \ldots, a_q) . Therefore, we have established the result for $\widehat{\gamma}$ in (13).

We next derive the result for $\hat{\tau}^2$. Let

$$\widetilde{ au}^2 = rac{1}{N} \sum_{k=1}^m \left\{ (oldsymbol{y}_k - oldsymbol{X}_k oldsymbol{eta})' (oldsymbol{y}_k - oldsymbol{X}_k oldsymbol{eta}) - \sum_{j=1}^{n_k} \sigma_{kj}^2
ight\}.$$

Using the Taylor series expansion, we have

$$\begin{split} \widehat{\tau}^2 &= \widetilde{\tau}^2 + \frac{\partial \widetilde{\tau}^2}{\partial \gamma} (\widehat{\gamma} - \gamma) + \frac{1}{2} (\widehat{\gamma} - \gamma)' \left(\frac{\partial^2 \widetilde{\tau}^2}{\partial \gamma \partial \gamma'} \right) (\widehat{\gamma} - \gamma) \\ &+ \frac{\partial \widetilde{\tau}^2}{\partial \beta} (\widehat{\beta}_{\text{OLS}} - \beta) + \frac{1}{2} (\widehat{\beta}_{\text{OLS}} - \beta)' \left(\frac{\partial^2 \widetilde{\tau}^2}{\partial \beta \partial \beta'} \right) (\widehat{\beta}_{\text{OLS}} - \beta) + o_p(m^{-1}), \end{split}$$

where we used the fact that $\partial^2 \tilde{\tau}^2/\partial \gamma \partial \beta' = 0$. The straight calculation shows that

$$\frac{\partial \widetilde{\tau}^2}{\partial \boldsymbol{\gamma}} = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \sigma_{kj(1)}^2 \boldsymbol{z}_{kj}, \quad \frac{\partial^2 \widetilde{\tau}^2}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\gamma}'} = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \sigma_{kj(2)}^2 \boldsymbol{z}_{kj} \boldsymbol{z}'_{kj}, \quad \frac{\partial^2 \widetilde{\tau}^2}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \frac{2}{N} \sum_{k=1}^{m} \boldsymbol{X}'_i \boldsymbol{X}_i,$$

which are non-stochastic. Thus we obtain

$$\begin{split} E[\widehat{\tau}^2 - \tau^2 | \boldsymbol{y}_i] &= E[\widetilde{\tau}^2 - \tau^2 | \boldsymbol{y}_i] + \left(\frac{\partial \widetilde{\tau}^2}{\partial \boldsymbol{\gamma}}\right)' E\left[\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma} | \boldsymbol{y}_i\right] + \frac{1}{2} \mathrm{tr} \left\{ \left(\frac{\partial^2 \widetilde{\tau}^2}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\gamma}'}\right) E\left[(\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma})'(\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma})' | \boldsymbol{y}_i\right] \right\} \\ &+ E\left[\left(\frac{\partial \widetilde{\tau}^2}{\partial \boldsymbol{\beta}}\right)' (\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}} - \boldsymbol{\beta}) \middle| \boldsymbol{y}_i \right] + \frac{1}{2} \mathrm{tr} \left\{ \left(\frac{\partial^2 \widetilde{\tau}^2}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right) E\left[(\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}} - \boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}} - \boldsymbol{\beta})' \middle| \boldsymbol{y}_i \right] \right\} + o_p(m^{-1}) \\ &\equiv B_{\tau 1}(\boldsymbol{y}_i) + B_{\tau 2}(\boldsymbol{y}_i) + B_{\tau 3}(\boldsymbol{y}_i) + B_{\tau 4}(\boldsymbol{y}_i) + B_{\tau 5}(\boldsymbol{y}_i) + o_p(m^{-1}). \end{split}$$

From the expression of $\tilde{\tau}^2$, it holds that

$$B_{\tau 1}(\boldsymbol{y}_{i}) = \frac{1}{N} \sum_{k=1, k \neq i}^{m} n_{k} \tau^{2} + \frac{1}{N} \left\{ (\boldsymbol{y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta})' (\boldsymbol{y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}) - \sum_{j=1}^{n_{i}} \sigma_{ij}^{2} \right\} - \tau^{2}$$
$$= \left(1 - \frac{n_{i}}{N}\right) \tau^{2} + \frac{1}{m} u_{1i} + \frac{n_{i}}{N} \tau^{2} - \tau^{2} = \frac{1}{m} u_{1i},$$

for u_{1i} defined in (8). Also, we immediately have

$$B_{\tau 2}(\boldsymbol{y}_i) = -\frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_k} \sigma_{kj(1)}^2 \boldsymbol{z}'_{kj} \boldsymbol{b}_{\gamma}^{(i)}(\boldsymbol{y}_i)$$

For evaluation of $B_{\tau 4}(\boldsymbol{y}_i)$, note that

$$\frac{\partial \widetilde{\tau}^2}{\partial \boldsymbol{\beta}} = -\frac{2}{N} \sum_{k=1}^m \boldsymbol{X}_k' (\boldsymbol{y}_k - \boldsymbol{X}_k \boldsymbol{\beta}).$$

Similarly to (S3), we get

$$B_{\tau 4}(\boldsymbol{y}_i) = -\frac{2}{N} \sum_{k=1}^{m} E\left[(\boldsymbol{y}_k - \boldsymbol{X}_k \boldsymbol{\beta})' \boldsymbol{X}_k (\widehat{\boldsymbol{\beta}}_{\text{OLS}} - \boldsymbol{\beta}) \middle| \boldsymbol{y}_i \right]$$
$$= -\frac{2}{N} \sum_{k=1}^{m} \text{tr}\left\{ (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}_k' \boldsymbol{\Sigma}_k \boldsymbol{X}_k \right\} + o_p(m^{-1}).$$

Moreover, Corollary 1 and (S4) enable us to obtain the expression of $B_{\tau 3}(\boldsymbol{y}_i)$ and $B_{\tau 5}(\boldsymbol{y}_i)$, whereby we get

$$b_{\tau}^{(i)}(\boldsymbol{y}_{i}) = m^{-1}u_{1i} - \frac{1}{N} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} \sigma_{kj(1)}^{2} \boldsymbol{z}_{kj}^{\prime} \left\{ \boldsymbol{b}_{\gamma}^{(i)}(\boldsymbol{y}_{i}) - \boldsymbol{b}_{\gamma} \right\} + b_{\tau},$$

which completes the proof for $\hat{\tau}^2$ in (13).

We finally derive the result for $\widehat{\beta}$. By the Taylor series expansion,

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta} + \sum_{s=1}^{q} \left(\frac{\partial}{\partial \gamma_s} \widetilde{\boldsymbol{\beta}} \right) (\widehat{\gamma}_s - \gamma) + \left(\frac{\partial}{\partial \tau^2} \widetilde{\boldsymbol{\beta}} \right) (\widehat{\tau}^2 - \tau^2) + o_p(m^{-1}),$$

since

$$\left(\frac{\partial \widetilde{\boldsymbol{\beta}}}{\partial \boldsymbol{\phi}}\right)'(\widehat{\boldsymbol{\phi}} - \boldsymbol{\phi})(\widehat{\boldsymbol{\phi}} - \boldsymbol{\phi})'\left(\frac{\partial \widetilde{\boldsymbol{\beta}}}{\partial \boldsymbol{\phi}}\right) = o_p(m^{-1}),$$

from $\partial \widetilde{\beta}/\partial \phi = O_p(m^{-1/2})$ as shown in the proof of Theorem 1. From (S2), we have

$$\begin{split} \sum_{s=1}^{q} \left(\frac{\partial}{\partial \gamma_{s}} \widetilde{\boldsymbol{\beta}} \right) (\widehat{\gamma}_{s} - \gamma_{s}) \\ &= \left(\boldsymbol{X}' \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \sum_{s=1}^{q} \left(\sum_{k=1}^{m} \boldsymbol{X}'_{i} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{W}_{i(s)} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i} \right) \left\{ \left(\widetilde{\boldsymbol{\beta}}_{\gamma_{s}}^{*} - \boldsymbol{\beta} \right) (\widehat{\gamma}_{s} - \gamma_{s}) - (\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}) (\widehat{\gamma}_{s} - \gamma_{s}) \right\}, \end{split}$$

and

$$\left(\frac{\partial}{\partial \tau^2} \widetilde{\boldsymbol{\beta}}\right) (\widehat{\tau}^2 - \tau^2) = \left(\boldsymbol{X}' \boldsymbol{\Sigma}^{-1} \boldsymbol{X}\right)^{-1} \left(\sum_{k=1}^m \boldsymbol{X}_k' \boldsymbol{\Sigma}_k^{-1} \boldsymbol{J}_{n_k} \boldsymbol{\Sigma}_k^{-1} \boldsymbol{X}_k\right) \left\{ (\widetilde{\boldsymbol{\beta}}_\tau^* - \boldsymbol{\beta}) (\widehat{\tau}^2 - \tau^2) - (\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}) (\widehat{\tau}^2 - \tau^2) \right\}.$$

Let $\Omega_{\beta^*\gamma_s} = E[(\widetilde{\boldsymbol{\beta}}_{\gamma_s}^* - \boldsymbol{\beta})(\widehat{\gamma}_s - \gamma_s)]$ and $\Omega_{\beta^*\tau} = E[(\widetilde{\boldsymbol{\beta}}_{\tau}^* - \boldsymbol{\beta})(\widehat{\tau} - \tau)]$. Then it can be shown that

$$E[(\widetilde{\boldsymbol{\beta}}_{\tau}^* - \boldsymbol{\beta})(\widehat{\tau} - \tau)|\boldsymbol{y}_i] = \boldsymbol{\Omega}_{\beta^*\gamma_s} + o_p(m^{-1}), \quad E[(\widetilde{\boldsymbol{\beta}}_{\gamma_s}^* - \boldsymbol{\beta})(\widehat{\gamma}_s - \gamma_s)|\boldsymbol{y}_i] = \boldsymbol{\Omega}_{\beta^*\tau} + o_p(m^{-1}),$$

which can be proved by the same arguments as in Corollary 1. Thus from Corollary 1 and the fact that

$$E\left[\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta} | \boldsymbol{y}_i\right] = \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}_i'\boldsymbol{\Sigma}_i^{-1}(\boldsymbol{y}_i - \boldsymbol{X}_i\boldsymbol{\beta}),$$

we obtain the result for $\widehat{\beta}$ in (13).

S4 Proof of (18)

From the expansion of $\widehat{\mu}_i$, we have

$$E\left[(\widehat{\mu}_i - \widetilde{\mu}_i)^2\right] = E\left[\left\{\left(\frac{\partial \widetilde{\mu}_i}{\partial \boldsymbol{\theta}}\right)'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})\right\}^2\right] + \frac{1}{2}U_1 + \frac{1}{4}U_2,$$

where

$$\begin{split} &U_{1} = E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})'\left(\frac{\partial^{2} \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{*}}\right)(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})\right] \\ &U_{2} = E\left[\left\{(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})'\left(\frac{\partial^{2} \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{*}}\right)(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})\right\}^{2}\right]. \end{split}$$

It is noted that

$$U_{1} = \sum_{j=1}^{p+q+1} \sum_{k=1}^{p+q+1} \sum_{\ell=1}^{p+q+1} E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \theta_{j}}\right) \left(\frac{\partial^{2} \widetilde{\mu}_{i}}{\partial \theta_{k} \partial \theta_{\ell}}\Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{*}}\right) (\widehat{\theta}_{j} - \theta_{j}) (\widehat{\theta}_{k} - \theta_{k}) (\widehat{\theta}_{\ell} - \theta_{\ell})\right] \equiv \sum_{j=1}^{p+q+1} \sum_{k=1}^{p+q+1} \sum_{\ell=1}^{p+q+1} U_{1jk\ell},$$

and

$$|U_{1jkl}| \leq E \left[\left| \left(\frac{\partial \widetilde{\mu}_{i}}{\partial \theta_{j}} \right) \left(\frac{\partial^{2} \widetilde{\mu}_{i}}{\partial \theta_{k} \partial \theta_{\ell}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{*}} \right) \left| \left| (\widehat{\theta}_{j} - \theta_{j}) (\widehat{\theta}_{k} - \theta_{k}) (\widehat{\theta}_{\ell} - \theta_{\ell}) \right| \right]$$

$$\leq E \left[\left| \left(\frac{\partial \widetilde{\mu}_{i}}{\partial \theta_{j}} \right) \left(\frac{\partial^{2} \widetilde{\mu}_{i}}{\partial \theta_{k} \partial \theta_{\ell}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{*}} \right) \right|^{4} \right]^{1/4} E \left[\left| (\widehat{\theta}_{j} - \theta_{j}) (\widehat{\theta}_{k} - \theta_{k}) (\widehat{\theta}_{\ell} - \theta_{\ell}) \right|^{4/3} \right]^{3/4}$$
(S5)

using Holder's inequality. Since both $\partial \widetilde{\mu}_i/\partial \theta_j$ and $\partial^2 \widetilde{\mu}_i/\partial \theta_k \partial \theta_\ell$ are linear functions of \boldsymbol{y}_i , the first term of (S5) is finite under (A4). Moreover, from Theorem 1, it follows $\sqrt{m}|\widehat{\theta}_j - \theta_j| \leq C(\boldsymbol{y})$ for some quadratic function of \boldsymbol{y} , so that the second term in (S5) is also finite. Hence, we have $U_1 = o(m^{-1})$. Similarly, we also obtain $U_2 = o(m^{-1})$. Therefore, using Corollary 1, we have

$$E\left[\left(\widehat{\mu}_{i} - \widetilde{\mu}_{i}\right)^{2}\right] = E\left[\left\{\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})\right\}^{2}\right] + o(m^{-1})$$

$$= \operatorname{tr}\left\{E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'E\left((\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})'\middle|\boldsymbol{y}_{i}\right)\right]\right\} + o(m^{-1})$$

$$= \operatorname{tr}\left\{E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'\Omega + \left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'c(\boldsymbol{y}_{i})o(m^{-1})\right]\right\} + o(m^{-1})$$

$$= \operatorname{tr}\left\{E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'\right]\Omega\right\} + o(m^{-1})$$

since $c(\boldsymbol{y}_i)$ is fourth-order function of \boldsymbol{y}_i and $\partial \widetilde{\mu}_i/\partial \boldsymbol{\theta}$ is a linear function of \boldsymbol{y}_i , which completes the proof.

S5 Derivation of $R_{31i}(\boldsymbol{\phi}, \boldsymbol{\kappa})$

Since y_i given v_i , ϵ_i is non-stochastic, we have

$$E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})w_{i}\right]$$

$$= E\left[E\left[\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})w_{i}\middle|v_{i}, \boldsymbol{\epsilon}_{i}\right]\right] = E\left[E(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}|\boldsymbol{y}_{i})'\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\theta}}\right)w_{i}\right]$$

$$= E\left[\boldsymbol{b}_{\boldsymbol{\beta}}^{(i)}(\boldsymbol{y}_{i})'\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\beta}}\right)w_{i}\right] + E\left[\boldsymbol{b}_{\boldsymbol{\gamma}}^{(i)}(\boldsymbol{y}_{i})'\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\gamma}}\right)w_{i}\right] + E\left[\boldsymbol{b}_{\boldsymbol{\tau}}^{(i)}(\boldsymbol{y}_{i})\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\gamma}}\right)w_{i}\right] + o(m^{-1})$$

$$\equiv R_{31i}(\boldsymbol{\phi}) + o(m^{-1}).$$

It is noted that $E(w_i) = 0$ and

$$E\left[(y_{ij} - \mathbf{x}'_{ij}\boldsymbol{\beta})w_i\right] = E\left[(v_i + \varepsilon_{ij})w_i\right] = \left(\sum_{j=1}^{n_i} \lambda_{ij} - 1\right)\tau^2 + \sum_{j=1}^{n_i} \lambda_{ij}\sigma_{ij}^2 = 0.$$
 (S6)

Using the expression (13) and (17), it follows that

$$E\left[\boldsymbol{b}_{\boldsymbol{\beta}}^{(i)}(\boldsymbol{y}_{i})'\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\beta}}\right)w_{i}\right] = \left(\boldsymbol{c}_{i} - \sum_{j=1}^{n_{i}} \lambda_{ij}\boldsymbol{x}_{ij}\right)'\left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}_{i}'\boldsymbol{\Sigma}_{i}^{-1}E\left[(\boldsymbol{y}_{i} - \boldsymbol{X}_{i}\boldsymbol{\beta})w_{i}\right] = 0$$

$$E\left[\boldsymbol{b}_{\boldsymbol{\gamma}}^{(i)}(\boldsymbol{y}_{i})'\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\gamma}}\right)w_{i}\right] = \eta_{i}^{-2}\sum_{j=1}^{n_{i}} \sigma_{ij}^{-2}\boldsymbol{\delta}_{ij}'\left(\sum_{k=1}^{m}\sum_{h=1}^{n_{k}} \sigma_{kh(1)}^{2}\boldsymbol{z}_{kh}\boldsymbol{z}_{kh}'\right)^{-1}\boldsymbol{M}_{2ij}(\boldsymbol{\phi},\boldsymbol{\kappa})$$

$$E\left[\boldsymbol{b}_{\boldsymbol{\tau}}^{(i)}(\boldsymbol{y}_{i})\left(\frac{\partial \widetilde{\mu}_{i}}{\partial \boldsymbol{\tau}}\right)w_{i}\right] = \boldsymbol{m}^{-1}\eta_{i}^{-2}\sum_{j=1}^{n_{i}} \sigma_{ij}^{-2}\left\{\boldsymbol{M}_{1ij}(\boldsymbol{\phi},\boldsymbol{\kappa}) - \boldsymbol{T}_{1}(\boldsymbol{\gamma})'\boldsymbol{T}_{2}(\boldsymbol{\gamma})\boldsymbol{M}_{2ij}(\boldsymbol{\phi},\boldsymbol{\kappa})\right\},$$

where

$$\mathbf{M}_{2ij}(\boldsymbol{\phi}, \boldsymbol{\kappa}) = E\left[\mathbf{u}_{2i}(y_{ij} - \mathbf{x}'_{ij}\boldsymbol{\beta})w_i\right], \quad M_{1ij}(\boldsymbol{\phi}, \boldsymbol{\kappa}) = E\left[u_{1i}(y_{ij} - \mathbf{x}'_{ij}\boldsymbol{\beta})w_i\right].$$

To evaluate M_{1ij} and M_{2ij} , we first prove the following result for fixed $j, k, \ell \in \{1, \dots, n_i\}$.

$$E[(v_{i} + \varepsilon_{ij})(v_{i} + \varepsilon_{ik})(v_{i} + \varepsilon_{i\ell})w_{i}] = \tau^{2}\eta_{i}^{-1} \left[\tau^{2}(3 - \kappa_{v}) + \kappa_{\varepsilon}\sigma_{ij}^{2}1_{\{j=k=\ell\}} + \sigma_{ij}^{2}(1_{\{j=k\neq\ell\}} - 1_{\{j=k\}}) + \sigma_{ij}^{2}(1_{\{j=\ell\neq k\}} - 1_{\{j=\ell\}}) + \sigma_{ik}^{2}(1_{\{k=\ell\neq j\}} - 1_{\{k=\ell\}})\right].$$
(S7)

To show (S7), we note that the left side can be rewritten as

$$-\eta_i^{-1} E\left[(v_i + \varepsilon_{ij})(v_i + \varepsilon_{ik})(v_i + \varepsilon_{i\ell})v_i \right] + \sum_{h=1}^{n_i} \lambda_{ih} E\left[(v_i + \varepsilon_{ij})(v_i + \varepsilon_{ik})(v_i + \varepsilon_{i\ell})\varepsilon_{ih} \right]$$
 (S8)

from the definition of w_i . Using the fact that $\varepsilon_{i1}, \ldots, \varepsilon_{in_i}$ and v_i are independent, the first term in (S8) is calculated as

$$E\left[v_i^4 + (\varepsilon_{ij}\varepsilon_{ik} + \varepsilon_{ij}\varepsilon_{i\ell} + \varepsilon_{ik}\varepsilon_{i\ell})v_i^2\right] = \kappa_v \tau^4 + \tau^2 \left(\sigma_{ij}^2 1_{\{j=k\}} + \sigma_{ij}^2 1_{\{j=\ell\}} + \sigma_{ik}^2 1_{\{k=\ell\}}\right).$$

Moreover, we have

$$E\left[(v_i + \varepsilon_{ij})(v_i + \varepsilon_{ik})(v_i + \varepsilon_{i\ell})\varepsilon_{ih}\right] = E\left[\varepsilon_{ih}(\varepsilon_{ij} + \varepsilon_{i\ell} + \varepsilon_{ik})v_i^2 + \varepsilon_{ij}\varepsilon_{ik}\varepsilon_{i\ell}\varepsilon_{ih}\right]$$

$$= \tau^2 \sigma_{ih}^2 \left(1_{\{h=j\}} + 1_{\{h=k\}} + 1_{\{h=\ell\}}\right) + \kappa_\varepsilon \sigma_{ih}^4 1_{\{j=k=\ell=h\}}$$

$$+ \sigma_{ih}^2 \left(\sigma_{ij}^2 1_{\{j=k\neq\ell=h\}} + \sigma_{ij}^2 1_{\{j=\ell\neq k=h\}} + \sigma_{ik}^2 1_{\{j=h\neq k=\ell\}}\right),$$

whereby the second term in (S8) can be calculated as

$$\tau^2 \eta_i^{-1} \left[3\tau^2 + \kappa_\varepsilon \sigma_{ij}^2 \mathbb{1}_{\{j=k=\ell\}} + \sigma_{ij}^2 \mathbb{1}_{\{j=k\neq\ell\}} + \sigma_{ij}^2 \mathbb{1}_{\{j=\ell\neq k\}} + \sigma_{ik}^2 \mathbb{1}_{\{k=\ell\neq j\}} \right],$$

where we used the expression $\lambda_{ih} = \tau^2 \eta_i^{-1} \sigma_{ih}^{-2}$. Then we established the result (S7). From (S7), we immediately have

$$\sum_{\ell=1}^{n_i} E[(v_i + \varepsilon_{ij})(v_i + \varepsilon_{ik})(v_i + \varepsilon_{i\ell})w_i] = \tau^2 \eta_i^{-1} \left[n_i \tau^2 (3 - \kappa_v) + \sigma_{ij}^2 (\kappa_\varepsilon - 3) \mathbf{1}_{\{j=k\}} \right]$$
$$= E[(v_i + \varepsilon_{ij})(v_i + \varepsilon_{ik})^2 w_i].$$

Now, we return to the evaluation of M_{1ij} and M_{2ij} . It follows that

$$M_{1ij}(\boldsymbol{\phi}, \boldsymbol{\kappa}) = \frac{m}{N} \sum_{h=1}^{n_i} E\left[(y_{ih} - \boldsymbol{x}'_{ih}\boldsymbol{\beta})^2 (y_{ij} - \boldsymbol{x}'_{ij}\boldsymbol{\beta}) w_i \right]$$
$$= mN^{-1}\eta_i^{-1}\tau^2 \left\{ n_i \tau^2 (3 - \kappa_v) + \sigma_{ij}^2 (\kappa_\varepsilon - 3) \right\}$$

and

$$\mathbf{M}_{2ij}(\boldsymbol{\phi}, \boldsymbol{\kappa}) = \frac{m}{N} \sum_{h=1}^{n_i} \boldsymbol{z}_{ih} E\left[\left\{ v_i + \varepsilon_{ih} - (v_i + \bar{\varepsilon}_i) \right\}^2 (v_i + \varepsilon_{ij}) w_i \right]
= \frac{m}{N} \sum_{h=1}^{n_i} \boldsymbol{z}_{ih} \left\{ E\left[(v_i + \varepsilon_{ih})^2 (v_i + \varepsilon_{ij}) w_i \right] - 2n_i^{-1} \sum_{k=1}^{n_i} E\left[(v_i + \varepsilon_{ij}) (v_i + \varepsilon_{ik}) (v_i + \varepsilon_{ih}) w_i \right] \right.
+ n_i^{-2} \sum_{k=1}^{n_i} \sum_{\ell=1}^{n_i} E\left[(v_i + \varepsilon_{ij}) (v_i + \varepsilon_{ik}) (v_i + \varepsilon_{i\ell}) w_i \right] \right\}.$$

Using the identity given in (S7), we have

$$\mathbf{M}_{2ij}(\boldsymbol{\phi}, \boldsymbol{\kappa}) = mN^{-1}\tau^{2}\eta_{i}^{-1}\sum_{h=1}^{n_{i}}\boldsymbol{z}_{ih} \Big\{ \sigma_{ij}^{2}(\kappa_{\varepsilon} - 3)(1_{\{j=h\}} - 2n_{i}^{-1}1_{\{j=h\}} + n_{i}^{-2}) \Big\}$$

$$= mN^{-1}\tau^{2}\eta_{i}^{-1}n_{i}^{-2}(n_{i} - 1)^{2}(\kappa_{\varepsilon} - 3)\sigma_{ij}^{2}\boldsymbol{z}_{ij},$$

which completes the result in (20).

S6 Evaluation of $R_{32i}(\phi)$

Since y_i given v_i and ϵ_i is non-stochastic, we have

$$\begin{split} R_{32i}(\boldsymbol{\phi}) &= \frac{1}{2} E\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})' \left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} \right) (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}) w_i \right] = \frac{1}{2} E\left[E\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})' \left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} \right) (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}) w_i \middle| v_i, \boldsymbol{\epsilon}_i \right] \right] \\ &= \frac{1}{2} \mathrm{tr} \left\{ \mathbf{\Omega} E\left[\left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \middle|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} \right) w_i \right] \right\} + o(m^{-1}) E\left[\mathrm{tr} \left\{ c(\boldsymbol{y}_i) \left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \middle|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} \right) \right\} w_i \right], \end{split}$$

where we used Corollary 1 in the last equation. Note that

$$\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} = \frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} + \sum_{k=1}^{p+q+1} (\theta_k^* - \theta_k) \left(\frac{\partial^3 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}' \partial \theta_k} \Big|_{\theta_k = \theta_k^{**}} \right), \tag{S9}$$

where θ_k^{**} is an intermediate value between θ_k^{*} and θ_k . Further note that the third order partial derivatives of $\widetilde{\mu}_i$ is a linear function of \boldsymbol{y}_i , so that the second term of R_{32i} is $o(m^{-1})$. Similarly, it follows that

$$E\left[\left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}}\Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*}\right) w_i\right] = E\left[\left(\frac{\partial^2 \widetilde{\mu}_i}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}}\right) w_i\right] + o(1) = o(1),$$

since the second order partial derivatives of $\widetilde{\mu}_i$ is a linear function of $y_{ij} - x'_{ij}\beta$ and the identity (S6). Therefore, we finally get $R_{32i}(\phi) = o(m^{-1})$.

S7 Predicted values of μ_i in data analysis

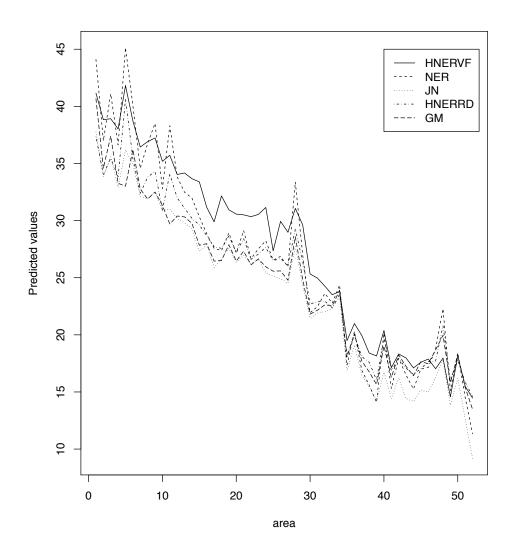


Figure 1: Predicted Values of μ_i from Each Model.