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Abstract: Based on the work of Owen (1997a,b) who studied the variance of quadra-

ture under a scrambled net with sample size n = λbm, this paper investigates scram-

bled sequences with sample sizes other than λbm. First, the variance of quadrature

under a scrambled sequence which is a union of two nets in base b is found. The

scrambling schemes applied to the two nets can be independent or simultaneous.

The results can be extended to the union of more than two nets. For finite sample

sizes, the scrambled net-union variance is bounded by a small constant multiple of

the Monte Carlo variance. Second, it is shown that for any Lipschitz integrand on

[0,1), the variance is O(n−3) for a scrambled net, and O(n−3+α) for a union of two

scrambled nets in base b, for a certain α ∈ [0, 1]. For any multivariate smooth inte-

grand on [0, 1)s, the scrambled net-union variance is O(n−3+α(log n)(s−1)1α<1 ) for

a certain α ∈ [0, 1]. It turns out that adding some additional points may sometimes

cause a large loss of efficiency.
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1. Introduction

We consider the problem of approximating an integral I =
∫
[0,1)s f(x)dx for

s ≥ 1 by the sample mean În = n−1∑n
i=1 f(xi), where the xi are n points care-

fully chosen from the unit cube, [0, 1)s. We assume that f is square integrable,
that is, f ∈ L2[0, 1)s.

For the high dimensional case, Monte Carlo methods and equidistribution or
Quasi-Monte Carlo methods are most widely used. Under simple Monte Carlo
methods, n points xi are independently drawn from the uniform distribution on
[0, 1)s, and so the estimator În is a random variable with mean I and variance
σ2/n where σ2 =

∫
[0,1)s [f(x) − I]2dx. Thus the error of simple Monte Carlo

integration is of order n−1/2 in probability. Equidistribution methods use de-
terministic sequences of n points xi, such as good lattice points, (t,m, s)-nets
and (t, s)-sequences, that are constructed to avoid gaps and clusters among the
xi. See Hua and Wang (1981), Niederreiter (1992), Sloan and Joe (1994) and
Fang and Wang (1994) for the general theory, applications, and further devel-
opments in equidistribution methods. These methods are usually more accurate
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than simple Monte Carlo methods, but it is much easier to estimate the accuracy
under Monte Carlo methods. Owen (1995, 1997a) proposed a hybrid of these two
techniques based on scrambling the digits in a (t,m, s)-net or (t, s)-sequence in
base b. The resulting method provides unbiased estimates of I with a variance
that is o(n−1) along the sequence n = λbm, 1 ≤ λ < b, 0 ≤ m, for every inte-
grand in L2[0, 1)s. Further, Owen (1997b) shows that under mild smoothness
conditions on f , the variance of În for a scrambled (λ, 0,m, s)-net in base b is of
order n−3(log n)s−1 as n = λbm → ∞.

Based on the work of Owen (1997a,b), one may ask about the variance
of În for a scrambled sequence where the sample size n is not equal to λbm,
but is, for example, λ0b

m0 + λ1b
m1 . For such a sequence, of what order is the

scrambled variance as n → ∞? On the other hand, it is well known that under
simple Monte Carlo methods adding additional points improves the accuracy
of the estimate. Is this true for the estimate under scrambled equidistribution
methods? In addition, do the results of Owen (1997b) hold for the integrands
satisfying a weaker smoothness condition? This paper is concerned with these
problems in understanding the base b scrambling scheme of Owen.

This paper proceeds as follows: in Section 2 we briefly review the equidis-
tribution methods known as (t,m, s)-nets and (t, s)-sequences, and the related
material in Owen (1997a). In Section 3 we derive the variance of În based on a
union of two scrambled (λj , 0,mj , s)-nets in base b, j = 0, 1. Such a variance is
called a scrambled net-union variance. The sample size n used here is equal to
λ0b

m0 + λ1b
m1 . We assume that m0 ≥ m1 and n < bm0+1. It is reasonable to

require the two nets to be disjoint and chosen from a (0,m0 + 1, s)-net in base
b, in order to preserve some equidistribution properties. The base b scrambling
schemes applied to the two nets may be independent or simultaneous. For finite n
the scrambled net-union variance is bounded by a small constant multiple of the
simple Monte Carlo variance. Note that the results can be extended immediately
to the union of more than two scrambled nets. In Section 4 we consider the order
of the scrambled net-union variance as n → ∞. For the one-dimensional case,
we find the order of the scrambled net or net-union variance for any integrand
satisfying a Lipschitz condition on [0,1). The results seem to be sharper than any
similar result in the literature. For the multidimensional case, we find the order
of the scrambled net-union variance for smooth integrands in the sense of Owen
(1997b). Section 5 presents an example of an integrand for which it is possible
to compute both the scrambled net-union variance and the simple Monte Carlo
variance. The numerical results show that adding n1 = λ1b

m1 additional points
to n0 = λ0b

m0 points may often inflate the variance and cause a large loss of effi-
ciency for most m0 ≤ s and n1 < n0. However, if m0 > s then adding additional
points improves accuracy of the estimate. We also give a comparison between
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the variances under unions of independently and simultaneously scrambled nets,
respectively. Section 6 contains discussion.

2. Preliminaries

This section briefly reviews background material. We begin with some no-
tation. A typical point in the unit cube [0, 1)s is denoted by x = (x1, . . . , xs). A
finite sequence of points is denoted by {xi}n

i=1, an infinite sequence of points is
denoted by {xi}i≥1.

Let u be a subset of {1, . . . , s}, |u| be the cardinality of u, and ū be the
complement {1, . . . , s} − u. By [0, 1)u we denote the |u|-dimensional unit cube
involving the coordinates in u, by xu we denote the coordinate projection of x

onto [0, 1)u, and dxu =
∏

r∈u dx
r.

An integer b ≥ 2 is used throughout this paper as a base for representing
points in [0, 1). Thus the rth component of a point xi can be uniquely represented
as xr

i =
∑∞

k=1 xirkb
−k, where xirk is an integer with 0 ≤ xirk < b.

2.1. Equidistribution and its randomization

Here we briefly introduce equidistribution methods known as (t,m, s)-nets
and (t, s)-sequences. See Niederreiter (1992) for other methods. In principle,
equidistribution methods produce sequences {xi}n

i=1 from [0, 1)s such that the
discrete uniform distribution on the xi closely approximates the continuous uni-
form distribution on [0, 1)s.

An elementary interval of [0, 1)s in base b is a set of the form

E =
s∏

r=1

[ �r
bkr

,
�r + 1
bkr

)

with integers kr ≥ 0, 0 ≤ �r < bkr for 1 ≤ r ≤ s. Let t and m be nonnegative
integers. A finite sequence {xi}n

i=1 of points in [0, 1)s with n = bm is a (t,m, s)-
net in base b if every elementary interval in base b of volume bt−m contains
exactly bt points of the sequence. Clearly, smaller values of t imply stronger
equidistribution properties of the net. When t = 0, every elementary interval of
volume 1/n contains one of the n points in the sequence. We will confine our
consideration to this particular case.

An infinite sequence {xi}i≥1 of points in [0, 1)s is a (t, s)-sequence in base b

if for all integers k ≥ 0 and m ≥ t the finite sequence {xi}(k+1)bm

i=kbm+1 is a (t,m, s)-
net in base b. An advantage of using nets taken from (t, s)-sequences is that
one can increase n through a sequence of values n = λbm, 1 ≤ λ < b, so that
all of the points used in Îλbm are also used in Î(λ+1)bm . Note that the initial
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λbm points of a (t, s)-sequence are well equidistributed but are not ordinarily a
(t,m, s)-net. Owen (1997a) introduces the following definition to describe such
point sequences.

Let s,m, t, b, λ be integers with s ≥ 1, m ≥ 0, 0 ≤ t ≤ m, b ≥ 2 and
1 ≤ λ < b. A finite sequence {xi}n

i=1 of points in [0, 1)s with n = λbm is called
a (λ, t,m, s)-net in base b if every elementary interval in base b of volume bt−m

contains λbt points of the sequence and no elementary interval in base b of volume
bt−m−1 contains more than bt points of the sequence.

From the above definitions, a (t,m, s)-net in base b is a (1, t,m, s)-net. If
{xi}bm+1

i=1 is a (t,m, s)-net in base b, then {xi}λbm

i=1 is a (λ, t,m, s)-net in base
b, for 1 ≤ λ < b. In particular, if {xi}i≥1 is a (t, s)-sequence in base b then
{xi}kbm+1+λbm

i=kbm+1+1 is a (λ, t,m, s)-net in base b, for integers k ≥ 0 and 1 ≤ λ < b.

Numerical integration by averaging over the points of a (t,m, s)-net has an
error |În−I| = O(n−1(log n)s−1), for integrands of bounded variation in the sense
of Hardy and Krause. See Niederreiter (1992) for this result and some sharper
versions of it.

The randomization of (t,m, s)-nets proposed by Owen (1995, 1997a, 1997b)
preserves equidistribution properties of the nets. The randomization scheme can
be briefly described as follows: Suppose that {ai}n

i=1 is a (t,m, s)-net in base
b. Write the components of ai as ar

i =
∑∞

k=1 airkb
−k. For i = 1, . . . , n, let

xi = (x1
i , . . . , x

s
i ) with xr

i =
∑∞

k=1 xirkb
−k, where xirk is a random permutation

applied to airk. The xi’s satisfy the following rules:
(1) Each digit xirk is uniformly distributed on the set {0, 1, . . . , b− 1};
(2) For any two points xi and xj the s pairs (x1

i , x
1
j ), . . . , (x

s
i , x

s
j) are mutually

independent;
(3) If ar

i and ar
j share the same first k digits, but their k+1st digits are different,

then
(a) xirh = xjrh for h = 1, . . . , k;
(b) the pair (xir k+1, xjr k+1) is uniformly distributed on the set {(di, dj) :

di �= dj ; di, dj ∈ {0, 1, . . . , b− 1}} and
(c) xir k+2, xir k+3, · · · , xjr k+2, xjr k+3, · · · are mutually independent.

We call this a base b scrambling scheme and call the sequence {xi}n
i=1 a scrambled

version of {ai}n
i=1. A geometrical description of this scheme is given in Owen

(1997b) which may help us visualize the randomization. Owen (1995, 1997a)
proves the following two propositions.

Proposition 1. If {ai} is a (λ, t,m, s)-net in base b, then the scrambled version
{xi} is a (λ, t,m, s)-net in base b with probability 1.

Proposition 2. Let a be a point in [0, 1)s and x be the scrambled version of a

as described above. Then x has the uniform distribution on [0, 1)s.
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2.2. ANOVA and Haar-like decomposition of L2[0, 1)s

The ANOVA decomposition approach has been widely used in statistics
and quadrature since it was introduced in Efron and Stein (1981); see Wahba
(1990), Owen (1992), and Hickernell (1996). For f ∈ L2[0, 1)s, define α∅ =∫
[0,1)s f(x)dx = I and

αu(x) =
∫
[0,1)ū

[
f(x) −

∑
v⊂u

αv(x)
]
dxū, ∅ �= u ⊆ {1, . . . , s},

where the sum is over strict subsets v �= u. The crossed ANOVA decomposition
of f is

f(x) =
∑

u⊆{1,...,s}
αu(x),

where the sum is over all 2s subsets of {1, . . . , s}. The following properties are
well known:∫

[0,1)
αudx

r = 0, r ∈ u;
∫
[0,1)s

αuαvdx = 0, u �= v.

It follows that

σ2 =
∫

[0,1)s
(f − I)2dx =

∑
|u|>0

∫
[0,1)s

α2
udx ≡

∑
|u|>0

σ2
u,

which is the usual ANOVA decomposition.
Another kind of ANOVA decomposition, called nested ANOVA decomposi-

tion, is used to derive a formula for the variance over one-dimensional scrambled
nets. The terms of the nested ANOVA are as follows: β0 =

∫
[0,1) f(x)dx = I, and

βk(x) = bk
∫
�bkz�=�bkx�

[
f(x) −

∑
0≤h<k

βh(z)
]
dz, k ≥ 1,

where 
z� denotes the greatest integer less than or equal to z. The equality

bkz� = 
bkx� means that z and x agree to k ≥ 0 places past the decimal point
in base b ≥ 2. Each βk is a constant on intervals of the form [�b−k, (� + 1)b−k)
for integers 0 ≤ � < bk, that is, βk(x) = βk(
bkx�b−k). For k ≥ 1, βk(x) may be
expressed as

βk(x) = bk
∫
�bkz�=�bkx�

f(z)dz − bk−1
∫
�bk−1z�=�bk−1x�

f(z)dz

with
∑b−1

c=0 βk((b�+ c)b−k) = 0 for 0 ≤ � < bk−1 and

K∑
k=0

βk(x) = bK
∫
�bKz�=�bKx�

f(z)dz.
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Furthermore f may be expressed as

f(x) =
∞∑

k=0

βk(x); (2.1)

then

σ2 =
∫
[0,1)

[f(x) − β0]2dx =
∞∑

k=1

∫
[0,1)

[βk(x)]2dx ≡
∞∑

k=1

σ2
k. (2.2)

As to the multidimensional case, Owen (1997a) develops a multivariate base
b Haar-like multiresolution of L2[0, 1)s using ideas from Jawerth and Sweldens
(1994), Daubechies (1992) and Madych (1992). For u ⊆ {1, . . . , s}, let κ be a
vector of |u| nonnegative integers kr, r ∈ u, and let |κ| denote

∑
r∈u kr. Then

there are b|u|+|κ| elementary intervals

Eu,κ,τ =
∏
r∈u

[ �r
bkr+1

,
�r + 1
bkr+1

)
,

where τ is a |u| vector of nonnegative integers �r < bkr+1. Define

ν∅,0 = I, νu,κ(x) =
∑

τ(u,κ)

∑
γ(u)

〈f, ψuκτγ〉ψuκτγ(x), (2.3)

where ψuκτγ is

ψuκτγ(x) =
∏
r∈u

(
b(kr+1)/21�bkr+1xr�=b�r+cr

− b(kr−1)/21�bkr xr�=�r

)
,

〈·, ·〉 is the L2-inner product, and γ(u) is a |u| vector of nonnegative integers 0 ≤
cr < b. Each νu,κ is constant within each of b|u|+|κ| elementary intervals Eu,κ,τ .
Moreover, the νu,κ are mutually orthogonal. The multiresolution decomposition
of f ∈ L2[0, 1)s is

f(x) = I +
∑
|u|>0

∑
κ

νu,κ(x). (2.4)

The ANOVA decomposition in terms of the νu,κ is

σ2 =
∫
[0,1)s

[f(x) − I]2dx =
∑
|u|>0

∑
κ

∫
[0,1)s

[νu,κ(x)]2dx ≡
∑
|u|>0

∑
κ

σ2
u,κ. (2.5)

3. Variance over a Scrambled Union of Nets

Suppose that f is in L2[0, 1)s. Let Pn0 and Pn1 be two sequences of n0 and
n1 points in [0, 1)s, respectively. We write Pn0 = {ai}n0

i=1 and Pn1 = {ãj}n1
j=1.
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By Pn we denote the union of the two sequences, Pn = Pn0 ∪ Pn1 . Then the
number of points in Pn is n = n0 +n1. The components of ai and ãj are written
ar

i =
∑∞

k=1 airkb
−k and ãr

j =
∑∞

k=1 ãjrkb
−k for r = 1, . . . , s, respectively. We

consider two kinds of randomizations on Pn: One is to apply a scrambling scheme
to each of Pn0 and Pn1 independently; another is to apply a single scrambling
scheme to the n points of Pn, which implies that the randomizations performed
on Pn0 and Pn1 are not independent. We say that the randomizations on Pn0 and
Pn1 in the latter case are simultaneous.

Now let Qn0 and Qn1 be the scrambled versions of Pn0 and Pn1 , respectively.
Let

Qn0 = {xi}n0
i=1, Qn1 = {x̃j}n1

j=1 and Qn ≡ Qn0 ∪Qn1.

Denote the estimates of the integral I =
∫
f(x)dx based on Qn0, Qn1 and Qn by

În0, În1 and În, respectively, that is,

În0 =
1
n0

n0∑
i=1

f(xi), În1 =
1
n1

n1∑
j=1

f(x̃j), În =
1
n

[
n0În0 + n1În1

]
. (3.1)

Proposition 2 implies that these estimates are all unbiased. Now we consider the
scrambled net-union variance. We have

Var (În) =
1
n2

[
n2

0Var (În0) + n2
1Var (În1) + 2n0n1 Cov (În0 , În1)

]
. (3.2)

Since Var (Înj ), j = 0, 1, has been investigated by Owen (1997a,b) for square
integrable and smooth integrands, it is enough to find Cov (În0, În1) for the case
where the scrambling schemes performed on Pn0 and Pn1 are not independent. We
shall only consider simultaneous scrambling and call the Qnj ’s the simultaneously
scrambled versions of the Pnj ’s. We will require that both Pn0 and Pn1 satisfy
the following equidistribution properties:

Assumption 1. The Pnj ’s are (λj , 0,mj , s)-nets in base b, j = 0, 1, with integers
0 ≤ m1 ≤ m0, 1 ≤ λ0, λ1 < b, and n = λ0b

m0 + λ1b
m1 < bm0+1.

Assumption 2. No elementary interval of volume b−m0−1 contains more than
one point of the union Pn = Pn0 ∪ Pn1 .

Remark 1. Note that the union Pn may not be a net. However, if m1 = m0,
then the two assumptions ensure that Pn is a (λ0 +λ1, 0,m0, s)-net in base b. On
the other hand, Assumption 2 implies that Pn0 and Pn1 are disjoint. Such nets
Pnj , j = 0, 1, may be disjoint pieces of a (0,m0 + 1, s)-net in base b which is a
subsequence of a (0, s)-sequence in base b.
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3.1. One-dimensional case

First we consider the one-dimensional case. It is assumed that the integrand
f is in L2[0, 1). Two sequences of points in [0,1) are written Pn0 = {ai}n0

i=1 and
Pn1 = {ãj}n1

j=1. We write

ai =
∞∑

k=1

aikb
−k and ãj =

∞∑
k=1

ãjkb
−k

for i = 1, . . . , n0 and j = 1, . . . , n1. At first, we do not assume that both Pn0 and
Pn1 have any nontrivial equidistribution properties. We treat the case in which
the base b scrambling schemes are simultaneously applied to both Pn0 and Pn1.
Write the corresponding simultaneously scrambled versions by Qn0 = {xi}n0

i=1

and Qn1 = {x̃j}n1
j=1, respectively.

Using the nested ANOVA of f given by (2.1) and Proposition 2, we have

Cov (În0, În1) =
1

n0n1

n0∑
i=1

n1∑
j=1

∑
k>0

∑
h>0

E{βk(xi)βh(x̃j)}.

From Lemmas 1 and 2 of Owen (1997a), we get

E{βk(xi)βh(x̃j)} = 0, k �= h

and

E{βh(x̃j)|xi} = βk(xi)
( b

b− 1
1�bkai�=�bk ãj� −

1
b− 1

1�bk−1ai�=�bk−1ãj�
)

for all xi ∈ Qn0 and x̃j ∈ Qn1. It follows that

Cov (În0 , În1) =
1

n0n1

∑
k>0

n0∑
i=1

n1∑
j=1

E[βk(xi)E{βh(x̃j)|xi}]

=
1

n0n1

∑
k>0

n0∑
i=1

n1∑
j=1

( b

b− 1
1�bkai�=�bk ãj�−

1
b− 1

1�bk−1ai�=�bk−1ãj�
)
σ2

k,

where σ2
k = E{[βk(xi)]2} =

∫
[0,1)s [βk(x)]2dx, see (2.2). Define for k ≥ 0

M∗
k = M∗

k (Pn0 , Pn1) =
n0∑
i=1

n1∑
j=1

1�bkxi�=�bk x̃j� =
n0∑
i=1

n1∑
j=1

1�bkai�=�bk ãj�. (3.3)

Note that the meaning of such an M∗
k is different from that of Mk defined by

Owen (1997a), since Pn0 �= Pn1 . M
∗
k (Pn0 , Pn1) counts the number of times that
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an xi ∈ Qn0 and an x̃j ∈ Qn1 share the same first k (or more) digits, and reflects
how close Qn0 is to Qn1. For k ≥ 0 define

Gk =
bM∗

k −M∗
k−1

b− 1
. (3.4)

We then obtain the following result:

Lemma 1. Suppose that f is in L2[0, 1). Let Qnj , j = 0, 1, be simultaneously
scrambled versions of two sequences Pnj , j = 0, 1, and În0, În1 , M

∗
k and σ2

k be as
described above. Then

Cov (În0 , În1) =
1

n0n1

∑
k>0

Gkσ
2
k. (3.5)

Now assume that Pnj , j = 0, 1, satisfies Assumptions 1 and 2 with s = 1. For
0 ≤ k ≤ m0 and each ãj ∈ Pn1 there are λ0b

m0−k points ai ∈ Pn0 with 
bkai� =

bkãj�. From the definition of M∗

k in (3.3) it follows that M∗
k = n1λ0b

m0−k for
0 ≤ k ≤ m0. For k ≥ m0 + 1 and each ãj ∈ Pn1 no point in Pn0 shares the first
k digits with ãj ∈ Pn1 , by Assumption 2. Therefore, (3.4) becomes

Gk =



−λ0n1

b− 1
, k = m0 + 1,

0, otherwise.

It follows that

Cov (În0 , În1) = − σ2
m0+1

bm0(b− 1)
≡ C1(m0). (3.6)

Here, the subscript in C1 indicates the one-dimensional case. Applying (3.6) and
the result of Owen (1997a), we obtain the following theorem:

Theorem 1. Suppose that Pnj satisfies Assumptions 1 and 2 with s = 1, j = 0, 1.
Let Qn be a union of simultaneously scrambled versions of Pnj , j = 0, 1, and În
be defined as in (3.1). Then

Var (În) =
1
n2

[
n2

0V1(λ0,m0) + n2
1V1(λ1,m1) + 2n0n1C1(m0)

]
, (3.7)

where C1(m0) is given by (3.6), and

V1(λj ,mj) =
1

λjbmj

(b− λj

b− 1
σ2

mj+1 +
∑

k≥mj+2

σ2
k

)
. (3.8)

Remark 2a. We can extend to a union of more than two simultaneously scram-
bled nets. Suppose that the Pnj , j = 0, 1, . . . , p, are (λj , 0,mj , 1)-nets in base b,
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with integers 0 ≤ mp ≤ · · · ≤ m0. Assume that each pair of Pnj and Pnk
, j < k,

satisfy Assumptions 1 and 2 with s = 1. Let Qn be a union of simultaneously
scrambled versions of the Pnj ’s, and În be the estimate of I based on Qn, where
n =

∑p
j=0 λjb

mj . Then we have

Var (În) =
1
n2

[ p∑
j=0

n2
jV1(λj ,mj) + 2

∑
j<k

njnkC1(mj)
]
, (3.9)

where C1(mj) is given by (3.6), with m0 repalced by mj .

Remark 2b. Under the conditions given in Theorem 1 or Remark 2a, the vari-
ance of În based on a union of simultaneously scrambled nets should be smaller
than that based on a union of independently scrambled nets, since the covari-
ance in (3.6) is negative. Furthermore, the covariance for two simultaneously
scrambled (λj , 0,mj , 1)-nets in base b, j = 0, 1, only depends on the value of m0

but not on λ0, λ1 and m1. Here is a simple example. Suppose that {ai}i≥1 is a
(0, 1)-sequence in base b = 5. Then the sequence Pn = {ai}125

i=1 is a (0, 3, 1)-net
in base b. One may write

Pn = {ai}100
i=1 ∪ {aj}125

j=101, (3.10a)

the union of a (4, 0, 2, 1)-net and a (1, 0, 2, 1)-net in base b. From (3.7), the
simultaneously scrambled net-union variance is

Var (În) =
1

125

∑
k>3

σ2
k. (3.10b)

Alternatively, one may write

Pn = {ai}75
i=1 ∪ {aj}100

j=76 ∪ {ah}125
h=101, (3.10c)

which is the union of a (3, 0, 2, 1)-net, a (1, 0, 2, 1)-net and a (1, 0, 2, 1)-net in
base b. Straightforward calculation in (3.9) yields the same scrambled variance
for (3.10c) as that for (3.10a). On the other hand, the variance for the scrambled
(0, 3, 1)-net in base b can be obtained from (3.8), which is identical to (3.10b).

Remark 2c. It is easy to see from (3.7) that

Var (În) ≤ 1
n

∑
k≥m1+1

σ2
k ≤ σ2

n
.

This means that the scrambled net-union variance is less than the simple Monte
Carlo variance. On the other hand, it can be verified from (3.8) that

Var (Î(λ0+λ1)bm0 ) ≤ Var (Îλ0bm0+λ1bm1 ), 0 ≤ m1 ≤ m0.
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Furthermore, if m0 tends to ∞ and m1 is bounded or also tends to ∞, then we
have nVar (În) → 0 since njVar (Înj ) ≤ σ2 and njVar (Înj ) → 0 as mj → ∞
(Owen (1997a)). It turns out that for any non-constant integrand f the ratio of
the scrambled net-union variance to the simple Monte Carlo variance also tends
to zero as n→ ∞.

3.2. Multidimensional case

Suppose that f is in L2[0, 1)s, s > 1. Let Pnj , Qnj and Înj , În be as described
at the beginning of this section. We begin with the covariance of În0 and În1 for
simultaneously scrambled versions Qn0 and Qn1. At first, we do not assume that
both Pn0 and Pn1 have any nontrivial equidistribution properties.

For each ai = (a1
i , . . . , a

s
i ) ∈ Pn0 and each ãj = (ã1

j , . . . , ã
s
j) ∈ Pn1 , define

Nijrkr = 1�bkr+1ar
i �=�bkr+1ãr

j �, Wijrkr = 1�bkr ar
i �=�bkr ãr

j �.

These are indicator functions designating “narrow” and “wide” matches, respec-
tively, between the components ar

i and ãr
j . For each u ⊆ {1, . . . , s} with |u| > 0

and κ = κ(u), define

Gu,κ = Gu,κ(Pn0 , Pn1) =
1

(b− 1)|u|

n0∑
i=1

n1∑
j=1

∏
r∈u

(bNijrkr −Wijrkr). (3.11)

Lemma 2. Let f be in L2[0, 1)s. Suppose that Qn0 and Qn1 are simultaneously
scrambled versions of sequences Pn0 and Pn1 , respectively. Let În0, În1 and Gu,κ

be as described above, and σ2
u,κ be as in (2.5). Then we have

Cov (În0 , În1) =
1

n0n1

∑
|u|>0

∑
κ(u)

Gu,κσ
2
u,κ. (3.12)

Proof. By using the multiresolution of f shown in (2.4), we have

Cov (În0 , În1) =
1

n0n1

n0∑
i=1

n1∑
j=1

∑
|u|>0

∑
κ(u)

∑
|u′|>0

∑
κ′(u′)

E{νu,κ(xi)νu′,κ′(x̃j)},

where νu,κ and νu′,κ′ are as in (2.3). From Lemmas 4 and 5 of Owen (1997a), we
get

E{νu,κ(xi)νu′,κ′(x̃j)} = 0

if u �= u′ or κ �= κ′, and

E{νu,κ(x̃j)|xi} = νu,κ(xi)
∏
r∈u

( b

b− 1
Nijrkr −

1
b− 1

Wijrkr

)
.
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It follows from the definition of Gu,κ in (3.11) that

Cov (În0 , În1) =
1

n0n1

n0∑
i=1

n1∑
j=1

∑
|u|>0

∑
κ(u)

E{νu,κ(xi)E[νu,κ(x̃j)|xi]}

=
1

n0n1

∑
|u|>0

∑
κ(u)

Gu,κE{νu,κ(xi)}2.

Then (3.12) follows from the definition of σ2
u,κ in (2.5).

After straightforward calculation, Gu,κ can be expressed as

Gu,κ =
1

(b− 1)|u|
∑
v⊆u

(−1)|u|−|v|b|v|
n0∑
i=1

n1∑
j=1

(∏
r∈v

Nijrkr

)( ∏
r∈u−v

Wijrkr

)
. (3.13)

Now assume that Pn0 and Pn1 satisfy Assumptions 1 and 2. Then for a given
u ⊂ {1, . . . , s} and κ = κ(u) we can find a convenient expression for Gu,κ. From
the equidistribution properties, for each ãj ∈ Pn1 , if |κ| + |v| ≤ m0, there are
λ0b

m0−|κ|−|v| points ai ∈ Pn0 such that


bkr+1ar

i � = 
bkr+1ãr
j� for all r ∈ v,


bkrar
i � = 
bkr ãr

j� for all r ∈ u− v,

else no point in Pn0 meets these conditions. Then expression (3.13) becomes

Gu,κ =
1

(b− 1)|u|
∑
v⊆u

(−1)|u|−|v|b|v|n1λ0b
m0−|κ|−|v|1|κ|+|v|≤m0

=
(−1)|u|

(b− 1)|u|
λ0n1b

m0−|κ|
|u|∑
q=0

( |u|
q

)
(−1)q1|κ|+|v|≤m0

.

Therefore, for |κ| ≤ m0−|u| or |κ| ≥ m0 +1 we have Gu,κ = 0, and for m0−|u| <
|κ| ≤ m0 we have

Gu,κ =
(−1)|u|

(b− 1)|u|
λ0n1b

m0−|κ|
m0−|κ|∑

q=0

( |u|
q

)
(−1)q

=
(−1)m0+|u|−|κ|

(b− 1)|u|
λ0n1b

m0−|κ|( |u| − 1
m0 − |κ|

)

and so (3.12) becomes

Cov (În0 , În1) =
1
bm0

∑
|u|>0

∑
m0−|u|<|κ|≤m0

(−1)m0+|u|−|κ|

(b− 1)|u|
bm0−|κ|( |u| − 1

m0 − |κ|
)
σ2

u,κ

≡ Cs(m0). (3.14)
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Here the subscript in Cs stands for the s-dimensional case. Combining (3.14)
with Corollary 4 of Owen (1997a), we get

Theorem 2. Suppose that f is in L2[0, 1)s. Let Pnj , j = 0, 1, satisfies As-
sumptions 1 and 2. Then the variance for a union of simultaneously scrambled
versions of the Pnj ’s is

Var (În) =
1
n2

[
n2

0Vs(λ0,m0) + n2
1Vs(λ1,m1) + 2n0n1Cs(m0)

]
, (3.15)

where Cs(m0) is given in (3.14), and

Vs(λj ,mj) =
1

λjbmj

∑
|u|>0

[ ∑
mj−|u|<|κ|≤mj

Γu,κ(λj ,mj)σ2
u,κ +

∑
|κ|≥mj+1

σ2
u,κ

]
, (3.16)

where

Γu,κ(λj ,mj)=1+
(−1)|u|

(b− 1)|u|
[
λjb

mj−|κ|( |u| − 1
mj − |κ|

)
(−1)mj−|κ| −

mj−|κ|∑
q=0

( |u|
q

)
(−b)q

]
.

(3.17)

Remark 2d. As in the case s = 1, under Assumptions 1 and 2, the covariance
for two simultaneously scrambled (λ0, 0,m0, s)-net and (λ1, 0,m1, s)-net in base
b with m1 ≤ m0 only depends on m0 but not on λ0, λ1 and m1. Moreover, since
the terms

bm0−|κ|( |u| − 1
m0 − |κ|

)

are nondecreasing as m0 − |κ| increases from 0 to |u| − 1, for large m0 the most
significant term in (3.14) occurs at |κ| = m0 − |u| + 1. It follows that for large
m0

Cs(m0) ∼ − 1
bm0

∑
|u|>0

∑
|κ|=m0−|u|+1

( b

b− 1

)|u|
σ2

u,κ.

That is, Cs(m0) is negative for large m0. Therefore, for large m0 the simulta-
neously scrambled net-union variance should be smaller than the independently
scrambled net-union variance. Furthermore, we have the following bounds for
Cs(m0):

−σ
2

n0
e ≤ −σ

2

n0

( b

b− 1

)s−1 ≤ Cs(m0) ≤ σ2

n0

( b

b− 1

)s−2 ≤ σ2

n0
e. (3.18)

On the other hand, formula (3.15) can be extended to the case where the estimate
is based on a union of more than two simultaneously scrambled nets in base b.
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Remark 2e. The constants Γu,κ are interpreted as “gains” that multiply the
variance contribution of νu,κ. See Owen (1997a,b) for a full discussion of these
gain factors. From Theorem 1 of Owen (1997b) and the bounds in (3.18), it is
easy to show that

Var (În) ≤ σ2

n
(1 + 2e)

for a union of simultaneously scrambled nets in base b. That is, the simultane-
ously scrambled-net union variance is never more than a constant multiple the
simple Monte Carlo variance for any square integrable f in any dimension.

4. The Order of the Variance

In this section, we consider the variance of the sample mean based on a
union of two scrambled (λ0, 0,m0, s)-net and (λ1, 0,m1, s)-net in base b, as n =
λ0b

m0 + λ1b
m1 → ∞, with m1 ≤ m0. We do not need both nets to satisfy

Assumption 2, and the scrambling schemes applied to both nets may or may
not be independent. For the one-dimensional case we assume that f satisfies a
Lipschitz condition on [0, 1), while for the multidimensional case we assume that
f is smooth on [0, 1)s, as was done in Owen (1997b).

4.1. One-dimensional case

Here we take λ0 = λ1 = 1 for simplicity, that is, we assume that Pn0 and
Pn1 are a (0,m0, 1)-net and a (0,m1, 1)-net in base b, respectively, with m1 ≤ m0

and nj = bmj , j = 0, 1. Let Qnj , j = 0, 1, be scrambled versions of the Pnj ’s,
which may or may not be independent. First we give the following lemma:

Lemma 3. Suppose f satisfies the Lipschitz condition

|f(x′) − f(x′′)| ≤ B|x′ − x′′| (4.1)

for a finite B ≥ 0 and any x′, x′′ ∈ [0, 1). Then the variance of În is O(n−3) as
n = bm → ∞.

Proof. Let {xi}n
i=1 be a scrambled (0,m, 1)-net in base b with n = bm. Then

from the definition of a net, each interval of the form [�b−m, (� + 1)b−m), 0 ≤
� < bm, contains exactly one of the xi. We denote it by z�. Then the z� are
independent random variables with the uniform distribution over [�b−m, (� +
1)b−m). Put x̄� = (�+ 0.5)/n. Then we have

În =
1
n

n∑
i=1

f(xi) =
1
n

n−1∑
�=0

f(z�) =
1
n

n−1∑
�=0

f(x̄�) +
1
n

n−1∑
�=0

[f(z�) − f(x̄�)].
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It follows that

Var (În) =
1
n2

n−1∑
�=0

Var {f(z�) − f(x̄�)}

≤ 1
n2

n−1∑
�=0

E{|f(z�) − f(x̄�)|2}

≤ B2

n2

n−1∑
�=0

E{|z� − x̄�|2} =
B2

12n3
. (4.2)

The last inequality follows from the Lipschitz condition (4.1), and the last equal-
ity holds since Var (z�) = 1/(12n2).

Remark 3. Owen (1997b) shows that for a smooth integrand f on [0, 1), (the
derivative df/dx satisfies a Lipschitz condition on [0, 1)), the variance over a
scrambled (0,m, 1)-net in base b is O(n−3) as n = bm → ∞. Now Lemma 3
shows that this result is also true under a weaker condition on the integrand.

Theorem 3. Suppose that f satisfies a Lipschitz condition on [0, 1). Consider
the union of two scrambled (0,mj , 1)-nets in base b with m1 ≤ m0. If there is a
constant α ∈ [0, 1] such that (1 − α)m0 −m1 is bounded as m0 → ∞, then

Var (În) = O(n−3+α)

as n = bm0 + bm1 → ∞, regardless of whether the scrambling schemes are inde-
pendent or not.

Proof. Note that

|Cov (În0 , În1)| ≤ [Var (În0)Var (În1)]
1/2. (4.3)

From the expression for Var (În) in (3.2) and the last inequality in (4.2) we have

Var (În) ≤ 1
n2

{
n2

0Var (În0) + n2
1Var (În1) + 2n0n1[Var (În0)Var (În1)]

1/2
}

≤ B2

12n2

[ 1
n0

+
1
n1

+
2

(n0n1)1/2

]

=
B2

12n3−α
b(1−α)m0−m1(1 + bm1−m0)1−α(1 + bm1−m0 + 2b(m1−m0)/2).

It follows from the boundedness of (1 − α)m0 − m1 and m1 − m0 ≤ 0 that
Var (În) = O(n−3+α) as n = bm0 + bm1 → ∞.

Remark 4. If m1 = m0 − d where d is positive and bounded as n → ∞, then
Var (În) = O(n−3). If m1 = 
ωm0� for a fixed 0 ≤ ω ≤ 1, then Var (În) =
O(n−(2+ω)). However, if m1 is bounded, then Var (În) = O(n−2).
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4.2. Multidimensional case

For the multidimensional case, Owen (1997b) shows that if there exists finite
B ≥ 0 and β ∈ (0, 1] such that

∣∣∣ ∂s

∂x
f(x′) − ∂s

∂x
f(x′′)

∣∣∣ ≤ B‖x′ − x′′‖β (4.4)

for any x′, x′′ ∈ [0, 1)s, where ‖ · ‖ is the Euclidean norm, then the variance of În
based on a scrambled (λ, 0,m, s)-net in base b is O(n−3(log n)s−1) as n = λbm →
∞. High powers of log n might not be negligible until n is very large, so this
raises the possibility that the scrambled net variance might be worse than the
Monte Carlo variance for finite n.

Under the smoothness condition (4.4), we have the following theorem:

Theorem 4. Suppose that f satisfies (4.4). Consider the union of two scrambled
(λj , 0,mj , s)-nets in base b with 1 ≤ λj < b and m1 ≤ m0. If there is a constant
α ∈ [0, 1] such that (1 − α)m0 −m1 is bounded as m0 → ∞, then

Var (În) =



O(n−2), if α = 1

O(n−3+α(log n)s−1), if α < 1

as n = λ0b
m0 + λ1b

m1 → ∞, regardless of whether the scrambling schemes are
independent or not.

Proof. Consider each of the three terms in expression (3.2). From Theorem 2
of Owen (1997b), for large n0 we have

n2
0

n2
Var (În0) = O

(
(log n0)s−1

n2n0

)
= O

(
(log n)s−1

n3

)
. (4.5)

Consider the second term in the right side of (3.2). Suppose that there is a
constant α ∈ [0, 1] such that (1 − α)m0 −m1 is bounded as m0 → ∞. If α = 1,
that is, m1 is bounded as m0 → ∞, then n1 is finite and so

n2
1

n2
Var (În1) ≤

n2
1

n2

σ2

n1
(1 + e) = O(n−2), (4.6a)

since Var (În1) ≤ n−1
1 σ2(1 + e). If α < 1, then m1 → ∞ as m0 → ∞, and so

n2
1

n2
Var (În1) = O

(
(log n1)s−1

n2n1

)
= O

(
(log n)s−1

n3−α

n1−α

n1

( log n1

log n

)s−1
)
.

Note that
n1−α

n1
= λ−1

1 b(1−α)m0−m1

(
λ0 + λ1b

m1−m0

)1−α
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and
log n1

log n
=

log λ1 +m1 log b
log λ0 +m0 log b

log n0

log n0 + log(1 + λ−1
0 λ1bm1−m0)

are both bounded for m1 ≤ m0. It follows that

n2
1

n2
Var (În1) = O(n−3+α(log n)s−1). (4.6b)

Furthermore, applying (4.3), (4.5), (4.6a) and (4.6b) yields

2n0n1

n2
|Cov (În0 , În1)| =



O(n−5/2(log n)(s−1)/2) if α = 1,

O(n−3+α/2(log n)s−1) if α < 1.
(4.7)

The desired result follows from

Var (În) ≤ 1
n2

{
n2

0Var (În0) + n2
1Var (În1) + 2n0n1|Cov (În0 , În1)|

}

and (4.5), (4.6a), (4.6b) and (4.7).

5. An Illustrative Example

We consider the following multilinear integrand

f(x) = 12s/2
s∏

r=1

(xr − 0.5) (5.1)

which has integral I = 0 and variance σ2 = 1 for any s ≥ 1. Owen (1997b) shows
that it only has s-dimensional structure, and

σ2
u,κ = 1|u|=sb

−2|κ|(b2 − 1
b2

)s
.

The variance formula given by Theorem 2 has been evaluated numerically for
s = 1, . . . , 11, b equal to all primes between s and 11 inclusive and all n =
λ0b

m0 + λ1b
m1 from n = 1 to the smallest such n greater than or equal to 107,

where 1 ≤ λ0, λ1 < b, 0 ≤ m1 ≤ m0, and λ1b
m1 ≤ bm0 . Some of the computation

results are shown in Figure 1. In each plot, the horizontal axis displays sample
size n and the vertical axis displays the square root of the variance, [Var (În)]1/2.
Two reference lines are also given, one is n−1/2, corresponding to the simple
Monte Carlo rate for the integrand (5.1), and the other is n−3/2, corresponding
to the asymptotic rate for (5.1) when s = 1 and n = λbm with 1 ≤ λ < b and
m ≥ 0. The dots in each plot correspond to the square root of variance along
n = λbm.
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Figure 1. The square root of the variance along simultaneously scrambled
unions of two nets for the integrand (5.1).

Suppose that n0 = λ0b
m0 , the number of points in Pn0 , is fixed. We con-

sider how adding n1 = λ1b
m1 points to Pn0 affects the estimate. We define the

efficiency of the sample of n = n0 + n1 points with respect to the sample of n0

points as follows

En0,n =
Var (În0)
Var (În)

. (5.2)

Then En0,n ≥ 1 implies that combining two scrambled nets increases the accuracy
of the estimate; in contrast, En0,n < 1 implies that combining two scrambled
nets causes some loss of the accuracy. The values of En0,n for various cases
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are calculated. Figure 2 shows En0,n for n0 = bm0 and n = n0 + λ1b
m1 where

1 ≤ λ1 < b, 0 ≤ m1 < m0, and λ1b
m1 < bm0 .
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Figure 2. Values of En0,n along simultaneously scrambled unions of two nets
for the integrand (5.1), where n0 = bm0 , n1 = λ1b

m1 with 1 ≤ λ1 < b,
0 ≤ m1 < m0, and n1 < n0.

These results show that among sequences with sample sizes ranging from
λ0b

m0 to (λ0 +1)bm0 , the one with (λ0 +1)bm0 points, that is a (λ0 +1, 0,m0, s)-
net in base b, has the smallest variance. In general, if m0 < s, then increasing
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sample size n = λ0b
m0 +λ1b

m1 for fixed λ0 and m0 may improve the accuracy of
the estimate. In contrast, if m0 ≥ s, then adding additional n1 = λ1b

m1 points
with n1 < bm0 may cause an increase in variance. This is different from the case
of simple Monte Carlo methods.
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Figure 3. Values of R(n0, n1) defined by (5.3) for the integrand (5.1), where
n0 = λ0b

m0 and n1 = λ1b
m1 with 1 ≤ λ1 < b, 0 ≤ m1 ≤ m0, and n1 ≤ bm0 ,

while m0 = s− 1 (•), s ( �) and s+ 1 (�), respectively.
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Concluding this section, we give a numerical comparison of the variances
of the integration for a union of simultaneously scrambled nets and a union
of independently scrambled nets. The nets used here are a (λ0, 0,m0, s)-net
and a (λ1, 0,m1, s)-net in base b, where 0 ≤ m1 ≤ m0, 1 ≤ λ0, λ1 < b, and
λ1b

m1 ≤ bm0 . Here, we denote the estimate based on simultaneously scrambled
nets by Îsim

n0+n1
, whose variance is calculated from (3.15), and denote the estimate

based on independently scrambled nets by Î ind
n0+n1

, whose variance is calculated
from (3.15) ignoring the third term on the right side. Define

R(n0, n1) =
Var (Î ind

n0+n1
) − Var (Îsim

n0+n1
)

Var (Î ind
n0+n1

)
. (5.3)

Clearly, the sign of such an R(n0, n1) indicates Var (Îsim
n0+n1

) being larger or
smaller than Var (Î ind

n0+n1
). The closer R is to 1, the more accurate is Îsim

n0+n1
.

Figure 3 shows the values of R(n0, n1) for (s, b)=(3,3), (4,5) and (5,5), and
m0 = s − 1, s, s + 1, respectively. The results show that Îsim

n0+n1
is much more

accurate than Î ind
n0+n1

for large λ0 and large n1.

6. Discussion

This paper has considered the variance of the sample mean of a deterministic
response function over a randomized sequence with n = λ0b

m0 + λ1b
m1 points.

This sequence may be obtained by scrambling the union of a (λ0, 0,m0, s)-net and
a (λ1, 0,m1, s)-net in base b. Without loss of generality, we assume m1 ≤ m0. It
turns out that if m0 −m1 is bounded as m0 → ∞ the variance is of order o(n−1)
for any square integrable integrand, O(n−3) for a univariate Lipschitz integrand
and O(n−3(log n)s−1) for a smooth multivariate integrand, which is the same as
the variance of a randomized (λ, 0,m, s)-net in base b with n = λbm. However,
if m1 is bounded then the variance is O(n−2). In general, if there is a constant
α ∈ [0, 1] such that (1 − α)m0 −m1 is bounded as m0 → ∞, then the variance
is O(n−3+α(log n)(s−1)1α<1). It seems that the rate of decay of the error |În − I|
for the case m1 = m0, that is, for randomized (λ0 + λ1, 0,m0, s)-nets, has a big
improvement over nonrandomized nets and simple Monte Carlo.

Our numerical results show that for any fixed n0 = λ0b
m0 , increasing sample

size n through n = n0 + λ1b
m1 does not guarantee the reduction of the variance.

This is different from the case of simple Monte Carlo. However, the variance
over a randomized union of two nets is never more than a constant multiple of
the simple Monte Carlo variance. It is interesting to compare the rate of decay
of the error |În − I| for randomized nets or sequences and for nonrandomized
ones. The rate considered in Owen (1995), (1997a,b) and in this paper is an
average case result for a fixed function f , taken over random permutations of



472 RONG-XIAN YUE

nets or sequences with low discrepancy. The rate for nonrandomized nets or
sequences (Niederreiter (1992)) applies to the worst case over functions, for a
fixed set of points. On the other hand, Hickernell (1996) and (1998) has studied
the behaviour of randomized nets for the worst case over functions. It is found
that the root mean square discrepancy is n−1(log n)(s−1)/2 for large n for the
L2-star, centered symmetric and other similar discrepancies. Thus in an analysis
where the function f is chosen pessimistically after the random permutations
have been drawn, no real improvement is obtained by scrambling.

This paper considers (λ, t,m, s)-nets in base b with t = 0. It would be
desirable to deal with the case with t > 0. Much less is known about randomized
versions of the nets with t > 0. Recently, Owen (1998) has studied the variance
in this case. Another direction is to study the variance of quadrature under a
scrambled net or a union of scrambled nets for a multivariate integrand satisfying
some weaker smoothness condition, for instance, a Lipschitz condition on [0, 1)s.
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