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Abstract: We develop a version of the Corrected Akaike Information Criterion

(AICC) suitable for selection of an h-step-ahead linear predictor for a weakly sta-

tionary time series in discrete time. A motivation for this criterion is provided

in terms of a generalized Kullback-Leibler information which is minimized at the

optimal h-step predictor, and which is equivalent to the ordinary Kullback-Leibler

information when h = 1. In a simulation study, we find that if the sample size is

small and the predictor coefficients are estimated by Burg’s method, then AICC

typically outperforms both the ordinary Akaike Information Criterion (AIC) and

the Final Prediction Error (FPE) for h-step prediction, and we present evidence

to indicate that Burg estimation can produce much better selected predictors than

Yule-Walker estimation.
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1. Introduction

Given data x1, . . . , xn from a weakly stationary time series {xt}∞t=−∞ with
zero mean, suppose we wish to predict xn+h where h > 0 is the lead time. We
restrict attention to the case where the true autocovariance sequence {rj} is
unknown and the predictor is a linear combination of the k present and past
values xn−k+1, . . . , xn, with coefficients estimated from the entire available data
set using either the least squares, Burg’s method, or the Yule-Walker method.
Although in practice estimation and prediction will be done on the same time
series {xt}, we, as well as many other authors, find it convenient to follow the
lead of Akaike (1970) and measure forecasting error by Ey[yn+h − ŷn+h]2, the
mean squared error incurred in applying the predictor with coefficients obtained
from {xt} to an independent realization {yt} which has the same probabilistic
structure as {xt}, where Ey denotes the expectation with respect to {yt}.

An important question is how to choose k on the basis of the available data
in such a way as to keep the mean squared error of the resulting fitted predictor
as small as possible. For the case of one-step prediction (h = 1), Shibata (1980)
proved, under certain conditions, that if k is selected to minimize Akaike’s Infor-
mation Criterion (AIC; Akaike (1973)) then the resulting predictor is asymptot-
ically efficient in the sense of minimizing the one-step mean squared prediction
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error as defined above, within a class of candidate one-step predictors estimated
by least squares, assuming that the true model is not a finite order autoregression.

For the case of multistep prediction (h > 1), Shibata (1980) asserted that
if the one-step residual sum of squares in AIC is replaced by the h-step residual
sum of squares, then the resulting selection criterion is asymptotically efficient in
terms of h-step mean squared prediction error, within a class of h-step predictors
fitted by least squares. This claim was subsequently proved by Bhansali (1996).
Consequently, if the true generating mechanism is not a finite order autoregres-
sion, then the asymptotically optimal selection criterion depends on h, and no
single choice of k is necessarily good for all values of h simultaneously. Therefore,
it may be appropriate to consider using a different value of k, and in effect to fit
a different model, for forecasting at each lead time h. This notion has previously
been advocated by Findley (1983) and by Hurvich (1987). In a related idea which
does not involve model selection, Tiao and Xu (1993) and Tiao and Tsay (1994)
considered using different parameter values for different values of h.

In this paper, we will focus on the small-sample performance of methods of
selecting k for an h-step predictor. It has been demonstrated in Hurvich and
Tsai (1991) that the Corrected Akaike Information Criterion AICC can produce
better one-step predictors than AIC in small samples. Here we introduce a
multistep generalization of AICC and compare it in a simulation study with the
multistep versions of AIC and the Final Prediction Error (FPE; Akaike (1970)).
In the multistep version of AICC, the estimated one-step innovation variance
in AICC is replaced by the estimated h-step innovation variance. We provide
a motivation for the new criterion by introducing a generalized version of the
Kullback-Leibler information which is minimized at the optimal h-step predictor,
and which is equivalent to the ordinary Kullback-Leibler information when h = 1.
In a simulation study, we find that if the Burg estimate is used, AICC typically
outperforms the other criteria for h-step prediction, and we present evidence to
indicate that Burg estimation can produce much better selected predictors than
Yule-Walker estimation.

2. Optimal and Estimated Multistep Predictors

Suppose {xt} is weakly stationary with mean zero and autocovariance se-
quence {rj}. The linear predictor of xt+h based on {xt−k+1, . . . , xt} which is
best in the sense of minimizing the h-step mean squared error is given by

x̂t+h = −
h+k−1∑

j=h

aj(h, k)xt+h−j ,

where the predictor coefficients {−aj(h, k)}h+k−1
j=h are determined by Equation (1)

below. This optimal predictor cannot be constructed in practice, since {rj} will



SELECTION OF A MULTISTEP LINEAR PREDICTOR 397

be unknown. Define the h+k dimensional vector a(h, k) = [a0(h, k), a1(h, k), . . .,
ah+k−1(h, k)]′, where a0(h, k) = 1 for all (h, k), and a1(h, k) = · · · = ah−1(h, k) =
0 if h > 1. We refer to a(h, k) as the optimal prediction error filter since the
h-step prediction error is given by

xt+h − x̂t+h =
h+k−1∑

j=0

aj(h, k)xt+h−j = a(h, k)′(xt+h, . . . , xt−k+1)′.

The h-step mean squared prediction error for this predictor is σ2(h, k) = E[xt+h

−x̂t+h]2 = a(h, k)′Rh+ka(h, k), where Rm is the m × m covariance matrix of
(x1, . . . , xm)′. We assume that σ2(h, k) > 0.

From the optimality of x̂t+h it follows that xt+h− x̂t+h must be uncorrelated
with each of xt−k+1, . . . , xt, and hence the predictor coefficients must satisfy the
equations E[(xt+h − x̂t+h)xt+h−i] = 0 for i = h, . . . , h + k − 1, or equivalently

h+k−1∑
j=h

r|i−j|aj(h, k) = −ri, (i = h, . . . , h + k − 1). (1)

Given observations x1, . . . , xn with n≥h+k, we can construct estimates {r̂j}h+k−1
j=0

of {rj}h+k−1
j=0 and use these to form estimates {âj(h, k)}h+k−1

j=h of the parameters
{aj(h, k)}h+k−1

j=h by solving the sample analog of Equation (1),

h+k−1∑
j=h

r̂|i−j|âj(h, k) = −r̂i (i = h, . . . , h + k − 1). (2)

The corresponding estimated h-step innovation variance is σ̂2(h, k) =
∑h+k−1

j=0

âj(h, k)r̂j .
Here, we will focus on two methods of estimating the {rj}h+k−1

j=0 . They are:
(1) the Burg Method Burg (1978) (see also Hainz (1995), Haykin (1983), Chapter
2), yielding the Burg estimates of the predictor coefficients; (2) the averaged
lagged products r̂j = 1

n

∑n
t=j+1 xt−jxt, yielding the Yule-Walker estimates of the

predictor coefficients.
For completeness, we note that for one step ahead prediction Shibata (1980)

estimates the (l,m) entry of Rk by r̂lm = 1
n−K

∑n
t=K+1 xt−lxt−m where K is the

largest value of k under consideration. This yields the least squares estimates
of the predictor coefficients as the solution of the system R̂(k)â(1, k) = −r̂(k)
where R̂(k) = (r̂lm 1 ≤ l,m ≤ k) and r̂(k) = (r̂10, . . . , r̂k0)′. It can be shown
that the least squares estimates â(1, k) are the value a1, . . . , ak which minimize
the residual sum of squares

∑n
t=K+1(xt − a1xt−1 · · · − akxt−k)2.
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Of the three estimators mentioned above, we prefer Burg’s method for a
variety of reasons. To simplify the discussion here, suppose we have n obser-
vations from a k’th order autoregression. The Burg and least squares autore-
gressive parameter estimates have identical biases, to terms of order 1/n. (See
Hainz (1995)). This bias, in turn, is less than that of the Yule-Walker esti-
mate. (See Tjoestheim and Paulsen (1983), Shaman and Stine (1988).) On the
other hand, the Burg estimate of the innovation variance σ2 has an asymptotic
bias of −kσ2/n, compared to −2kσ2/n for 1/n times the least squares residual
sum of squares, assuming K = k (Shaman (1983)). Unlike the least squares
estimates, the Burg parameter estimates are guaranteed to correspond to a sta-
tionary model, can be computed recursively as the candidate autoregressive order
is increased, and do not suffer from the reduction of effective sample size which
is inherent in least squares, where the response variable is the n−K dimensional
vector (xn, . . . , xK+1)′. Finally, the Burg estimates are not sensitive to the choice
of the largest candidate autoregressive order, K.

3. Generalized Kullback-Leibler Information

Consider a candidate linear predictor x̃t+h of xt+h based on xt−k+1, . . . , xt,

x̃t+h = −
h+k−1∑

j=h

bj(h, k)xt+h−j ,

where the coefficients {bj(h, k)}h+k−1
j=h are arbitrary real constants. Define the

h + k-dimensional vector b(h, k) = [b0(h, k), b1(h, k), . . . , bh+k−1(h, k)]′, where
b0(h, k) = 1 for all (h, k), and b1(h, k) = · · · = bh−1(h, k) = 0 if h > 1. Then
the prediction error of x̃t+h is xt+h − x̃t+h = b(h, k)′(xt+h, . . . , xt−k+1)′, so that
b(h, k) is the candidate prediction error filter. The mean squared error of x̃n+h

is given by

b(h, k)′Rh+kb(h, k) = σ2(h, k) + [b(h, k) − a(h, k)]′Rh+k[b(h, k) − a(h, k)]. (3)

From the point of view of linear prediction of xt+h based on xt−k+1, . . . , xt,
a characterization of the process {xt} is provided by the optimal prediction er-
ror filter a(h, k), together with the optimal prediction error variance σ2(h, k).
We consider a(h, k) and σ2(h, k) as unknown parameters. Let τ2(h, k) > 0 be
an arbitrary candidate for the prediction error variance E[xt+h − x̃t+h]2, not
necessarily equal to the value given in Equation (3).

Our proposed generalization of the Kullback-Leibler information provides a
discrepancy measure between the candidate parameters b(h, k), τ2(h, k) and the
true parameters a(h, k), σ2(h, k). It is defined by

dh,k,a,σ2(b, τ2) = log τ2(h, k) + b(h, k)′Rh+kb(h, k)/τ2(h, k), (4)
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where for ease of readability we have partially suppressed the (h, k) notation.
From Equation (3), if τ2 is held fixed, it is seen that dh,k,a,σ2(b, τ2) is minimized
over the set of all candidate prediction error filters by b = a(h, k), resulting in
the discrepancy

dh,k,a,σ2(a, τ2) = log τ2(h, k) + σ2(h, k)/τ2(h, k). (5)

Treated as a function of τ2, the quantity dh,k,a,σ2(a, τ2) is minimized by taking
τ2 = σ2(h, k). Thus, we have shown that dh,k,a,σ2(·, ·) is indeed a discrepancy
function in the sense of Linhart and Zucchini (1986), since it is minimized over the
set of all candidate parameters b, τ2 by the true parameters a(h, k) and σ2(h, k).
In the case h = 1, if Whittle’s approximation to the log likelihood is used, then
it is easily shown that our proposed d reduces to the ordinary Kullback-Leibler
discrepancy.

4. The Proposed Selection Criterion

A reasonable criterion for judging the adequacy of the candidate h-step pre-
dictor (â(h, k), σ̂2(h, k)) in the light of the observed data is obtained by replacing
(b, τ2) in Equation (4) by (â, σ̂2), multiplying by n and taking expectations, yield-
ing ∆h(k) = E[ndh,k,a,σ2(â, σ̂2)]. Therefore, for selection of a linear predictor for
h-step prediction, we propose to choose k to minimize an approximately unbiased
estimate of

∆h(k) = E[n log σ̂2(h, k) + nâ(h, k)′Rh+kâ(h, k)/σ̂2(h, k)].

As pointed out by Shibata (1980), â(h, k) may be thought of as an estimate
of the parameter α = (1, 0, . . . , 0, αh, . . . , αh+k−1)′ when an autoregressive model

xt+h + αhxt + · · · + αh+k−1xt−k+1 = εt+h (6)

is fitted to observations x1, . . . , xn. Note that in the model (6), the true co-
efficients of xt+h−1, . . . , xt+1 are all zero, so that the best linear predictor of
xt+h is x̂t+h = −∑h+k−1

j=h αjxt+h−j . If follows that if model (6) is correct, then
α = a(h, k), and Var [εt] = σ2(h, k). Furthermore, it is shown in the Appendix
for a multistep version of the linear regression estimators given in Brockwell and
Davis (1991), Eq. (8.10.3) (chosen here for the sake of mathematical tractabil-
ity, even though we will use the Burg estimators in our simulation study) that
if model (6) holds and {εt} is Gaussian white noise, then the final k entries
of

√
n(â(h, k) − a(h, k)) are asymptotically distributed as N(0, σ2(h, k)R−1

k ),
and nσ̂2(h, k)/σ2(h, k) is asymptotically distributed as χ2

n−k, independently of
â(h, k). In order to facilitate the derivation of a reasonably simple selection cri-
terion, we will, for the remainder of this section, make the strong assumption
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that this asymptotic distribution theory holds exactly for the given sample size.
The resulting criterion will later be evaluated for its practical usefulness.

Equation (3) with b = â yields

nâ(h, k)′Rh+kâ(h, k) = nσ2(h, k) + n[â(h, k) − a(h, k)]′Rh+k[â(h, k) − a(h, k)].

Since the initial h entries of â(h, k) − a(h, k) are zero, we conclude under
the above assumptions that nâ(h, k)′Rh+kâ(h, k)/σ̂2(h, k) is distributed as
n2/χ2

n−k + nχ2
k/χ

2
n−k, where χ2

k and χ2
n−k are independent, so that E[∆h(k)] =

E[n log σ̂2(h, k)]+n(n+k)/(n−k−2). It follows that AICC(h, k) = n log σ̂2(h, k)+
n(n + k)/(n − k − 2) is an approximately unbiased estimator of ∆h(k). An
equivalent expression which is more readily compared with the h-step version of
AIC is

AICC(h, k) = n[log σ̂2(h, k) + 1] + 2(k + 1)
[ n

n − k − 2

]
. (7)

If we define
AIC(h, k) = n[log σ̂2(h, k) + 1] + 2(k + 1), (8)

then

AICC(h, k) = AIC(h, k) +
2(k + 1)(k + 2)

n − k − 2
,

so that AICC(h, k) is asymptotically efficient for selection of an h-step linear
predictor.

5. Monte Carlo Results

For each of three sample sizes, n = 30, 50, 75, we generated one hundred real-
izations from each of three time series models. The models were a noninvertible
second order moving average (MA(2)) xt = εt − 2εt−1 + εt−2, a fourth order au-
toregression (AR(4)) xt = 2.7607xt−1 −3.8106xt−2 +2.6535xt−3 − .9238xt−4 +εt,
and a second order autoregression (AR(2)) xt = .99xt−1 − .8xt−2 + εt, where in
each case the εt are independent identically distributed standard normal. For
the AR(2) model with n = 30 we also used errors with a long-tailed distribu-
tion, (1/

√
3)t3. The AR(4) model was used in the simulation study of Beamish

and Priestley (1981) and the AR(2) model was used in the simulation study of
Hurvich and Tsai (1989).

For each realization from each process and sample size, we computed h-
step predictors with k = 0, . . . , 20 and h = 1, 2, 5 by solving Equation (2)
using the Burg estimates of the autocovariances {r̂j}h+k−1

j=0 , and we evaluated
the corresponding mean squared errors â(h, k)′Rh+kâ(h, k), as well as the se-
lection criteria AICC(h, k) (Eq. (7)), AIC(h, k) (Eq. (8)), and FPE(h, k) =
σ̂2(h, k)(n + k)/(n− k). Note that the predictor with k = 0 is the process mean,
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zero. For each process, sample size and lead time, we also estimated the expected
mean squared error, MSE (h, k) = Ex[â(h, k)′Rh+kâ(h, k)] for k = 0, . . . , 20, by
averaging â(h, k)′Rh+kâ(h, k) over the one hundred realizations.

As a measure of the performance of a selection criterion for a given simu-
lated realization and lead time, we used MSE (h, k̂), where k̂ is the value of k

chosen by the criterion from the candidates k = 0, . . . , 20. Averages (over the one
hundred realizations) of MSE (h, k̂) for AIC, AICC and FPE are given in Tables
1-3. We denote these averages by Ave{MSE(h, k̂AIC)}, Ave{MSE(h, k̂AICC

)},
and Ave{MSE(h, k̂FPE)}, respectively. To provide some context for these aver-
age mean squared errors, Tables 1-3 also provide values of Ave{MSE (h, k∗)},
where k∗ is the minimizer of Ave{MSE(h, ·)}. In all cases studied except for the
MA(2) process with n = 75 and h = 1, Ave{MSE(h, k̂AICC

} was less than both
Ave{MSE(h, k̂AIC)} and Ave{MSE(h, k̂FPE)}. In all cases, Ave{MSE(h, k̂AICC

)}
exceeded Ave{MSE(h, k∗)} by less than 9%. By contrast, for n = 30, with only
two exceptions, the excesses for AIC and FPE were all greater than 50%. For
n = 50 and n = 75, the excesses for AIC and FPE were smaller, but the excess
for AIC was greater that 9% in 6 of the 9 cases with n = 50.

Table 1. Average MSE of the selected h-step predictors for MA(2) process.

n = 30 n = 50 n = 75
h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5

Ave{MSE(h, k̂AICC
)} 2.14 6.22 6.34 1.83 6.11 6.23 1.63 6.06 6.26

Ave{MSE(h, k̂AIC)} 3.06 11.00 11.26 1.89 6.63 6.62 1.63 6.25 6.47
Ave{MSE(h, k̂FPE)} 2.72 9.71 9.57 1.86 6.50 6.58 1.63 6.23 6.46
Ave{MSE(h, k∗)} 1.99 6.00 6.00 1.75 6.00 6.00 1.58 5.93 6.00

Note: k∗ is the minimizer of Ave{MSE(h, ·)}. Averages based on one hundred
simulated realizations.

Table 2. Average MSE of the selected h-step predictors for AR(4) process.

n = 30 n = 50 n = 75
h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5

Ave{MSE(h, k̂AICC
)} 1.63 15.72 61.73 1.20 11.00 42.78 1.13 10.20 39.64

Ave{MSE(h, k̂AIC)} 3.39 33.95 146.84 1.29 11.90 47.13 1.14 10.39 40.17
Ave{MSE(h, k̂FPE)} 2.52 26.22 124.27 1.27 11.80 45.81 1.14 10.36 40.00
Ave{MSE(h, k∗)} 1.62 15.46 59.27 1.18 10.76 41.43 1.13 10.14 38.30

Note: k∗ is the minimizer of Ave{MSE(h, ·)}. Averages based on one hundred
simulated realizations.
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Table 3. Average MSE of the selected h-step predictors for AR(2) process.

n = 30 n = 30, (1/
√

3)t3 Errors
h=1 h=2 h=5 h=1 h=2 h=5

Ave{MSE(h, k̂AICC
)} 1.14 2.36 3.77 1.15 2.40 3.73

Ave{MSE(h, k̂AIC)} 2.34 4.80 7.10 1.87 4.14 6.40
Ave{MSE(h, k̂FPE)} 1.75 4.08 6.07 1.62 3.52 5.60
Ave{MSE(h, k∗)} 1.10 2.23 3.47 1.10 2.22 3.47

n = 50 n = 75
h=1 h=2 h=5 h=1 h=2 h=5

Ave{MSE(h, k̂AICC
)} 1.07 2.17 3.37 1.04 2.09 3.20

Ave{MSE(h, k̂AIC)} 1.12 2.32 3.68 1.05 2.14 3.27
Ave{MSE(h, k̂FPE)} 1.11 2.29 3.58 1.05 2.12 3.27
Ave{MSE(h, k∗)} 1.05 2.12 3.25 1.03 2.07 3.14

Boxplots of MSE(h, k̂)(h = 1, 5) for AIC, AICC and FPE are given in Figure 1
for the AR(2) process with normal errors. The plots indicate that AICC typically
performs better than the other two criteria. (Boxplots for the other two processes
yielded similar findings, and are omitted to save space.) To provide a more
formal assessment, for each process and lead time, we performed a one-sample
Wilcoxon test on the set of values of MSE(h, k̂AIC)−MSE (h, k̂AICC

) for the null
hypothesis that the true median of the differences is zero against the alternative
hypothesis that the median is positive, and we performed a similar Wilcoxon
test on the values of MSE(h, k̂FPE) − MSE(h, k̂AICC

). A significant result is
taken as an indication that AICC performed better than the other criterion under
consideration, for the given process, sample size and lead time. Of the 60 tests
performed, 54 were significant at level .005. Of the remaining 6 cases, only two
failed to be significant at level .05. They occurred for the MA(2) process with n =
75, and h = 1, in the comparisons with both FPE and AIC. These coincide with
the only two cases where Ave{MSE(h, k̂AICC

)} exceeds either Ave{MSE(h, k̂AIC)}
or Ave{MSE(h, k̂FPE)}.

A crude description of the values of k selected by the various criteria is
provided in Table 4 and 5, for the MA(2) and AR(4) processes, respectively.
The tables present the average values of k̂AICC

, k̂AIC and k̂FPE together with k∗

for lead times h = 1, 2, 5. In all cases, the average of k̂AICC
is closer than the

averages of k̂AIC or k̂FPE to the optimal value, k∗. It is notable that for the MA(2)
process, k∗ decreases quickly with h, suggesting the potential benefit of allowing
the selection of k to depend on h. Correspondingly, the average values of k̂AICC

are typically much less for h > 1 than for h = 1. Similar patterns hold for the
average values of k̂AIC and k̂FPE, although these are often much farther than the
average value of k̂AICC

from k∗. For the AR(4) process, k∗ is, not surprisingly,
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almost always equal to 4, and once again the average values of k̂AICC
are often

substantially closer to k∗ than the averages of k̂AIC or k̂FPE.
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Figure 1. h-step prediction MSE for AR(2) process, normal errors.

Table 4. Averages of the selected values of k and the optimal value k∗, for
MA(2) process.

n = 30 n = 50 n = 75
h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5

Ave(k̂AICC
) 5.37 1.38 1.19 8.07 2.15 1.39 11.16 4.24 2.17

Ave(k̂AIC) 15.72 12.04 11.56 13.58 6.30 3.58 14.52 7.24 4.14
Ave(k̂FPE) 13.29 9.56 8.62 12.37 5.42 3.34 14.36 7.10 4.02

k∗ 8 0 0 8 0 0 11 3 0

Note: k∗ is the minimizer of Ave{MSE(h, ·)}.

Finally, we discuss the potential merits of Burg estimation over Yule-Walker
estimation for selection of a linear predictor. Chen, Davis, Brockwell, and Bai
(1993) have presented simulation evidence that for a finite-order autoregressive
process, the Burg estimator can perform very poorly in small samples if the
model order used in the estimator greatly exceeds the true order. They found



404 CLIFFORD M. HURVICH AND CHIH-LING TSAI

that the Yule-Walker estimator performed much better at these high orders, and
therefore suggested that it may be better to use Yule-Walker estimators than
Burg estimators when the goal is model selection.

Table 5. Averages of the selected values of k and the optimal value k∗, for
AR(4) process.

n = 30 n = 50 n = 75
h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5

Ave(k̂AICC
) 4.24 4.34 3.92 4.48 4.84 4.57 4.44 4.42 4.88

Ave(k̂AIC) 10.25 10.99 13.14 6.85 7.34 8.05 4.91 5.51 5.96
Ave(k̂FPE) 7.80 8.77 10.82 6.52 7.13 7.11 4.81 5.35 5.74

k∗ 4 4 3 4 4 4 4 4 4

Note: k∗ is the minimizer of Ave{MSE(h, ·)}.

If the AICC criterion is used, however, then it will be rare that a model order
which is much too large will be selected. So given an autoregressive process for
which, at the true order, the Burg estimators perform much better than the Yule-
Walker estimators (an example is provided by our AR(4) model; See Tjφstheim
and Paulsen (1983) for a more complete discussion), we would expect that the
predictors selected by AICC using the Burg method will perform well compared
to predictors selected by AICC using the Yule-Walker method.

Using the same one hundred simulated realizations of the AR(4) model
as above, and using Yule-Walker estimators, we obtained the following values
for Ave{MSE(h, k̂AICC

)} (h = 1, 2, 5): 26.7, 104.7, 247.1 (with n = 30), and
20.3, 80.0, 184.7 (with n = 50). Comparison with the corresponding values
of Ave{MSE(h, k̂AICC

)} in Table 2, which are based on Burg estimates, reveals
that for the AR(4) model studied here, if AICC is used for selection of a multi-
step linear predictor, Burg estimates produce vastly superior selected predictors
than Yule-Walker estimates. This is made possible by the well-known superior-
ity of Burg over Yule-Walker estimators for correctly-identified AR models with
characteristic roots close to the unit cricle. For the given AR(4) model, the char-
acteristic polynomial P (z) = 1 +

∑4
j=1 αjz

j has roots at z = 0.7862 ± 0.65i, and
z = 0.65 ± 0.7859i, where i =

√−1.
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Appendix

Suppose that model (6) holds with Gaussian innovations, i.e.,

xt+h + ah(h, k)xt + · · · + ah+k−1(h, k)xt−k+1 = εt+h, (A.1)

where εt
i.i.d.∼ N(0, σ2(h, k)). We show here that if â(h, k) and σ̂2(h, k) are

the multistep linear regression estimators defined below, then the final k en-
tries of

√
n(â(h, k)−a(h, k)) are asymptotically distributed as N(0, σ2(h, k)R−1

k ),
and nσ̂2(h, k)/σ2(h, k) is asymptotically distributed as χ2

n−k, independently of
â(h, k).

The multistep linear regression estimators are defined as follows. Denote the
final k entries of a(h, k) by φ. Define Y = (x1, . . . , xn)′, ε = (ε1, . . . , εn)′, and

X =




x1−h x−h · · · x2−h−k

x2−h x1−h · · · x3−h−k
...

... · · · ...
xn−h xn−h−1 · · · xn−h−k+1




.

Then, the model (A.1) for the data Y can be expressed as

Y = −Xφ + ε, (A.2)

where ε ∼ N(0, σ2(h, k)In×n), and In×n is the n × n identity matrix. Based on
Equation (A.2), the multistep linear regression estimators of φ and of the scale
parameter σ2(h, k) are given by φ̂ = −(X ′X)−1X ′Y , and σ̂2 = S(φ̂)/n, where
S(φ̂) = (Y + Xφ̂)′(Y + Xφ̂). The multistep linear regression estimators are a
specific version of multistep least squares estimators, since they minimize the h-
step residual sum of squares. By a straightforward modification of Brockwell and
Davis (1991), p. 262 Proposition 8.10.1, we have

√
n(φ̂−φ) → N(0, σ2(h, k)R−1

k ).
From Wei (1990), p. 354 and Priestley (1981), p. 366, it follows that nσ̂2 is
asymptotically distributed as σ2(h, k)χ2

n−k, independently of φ̂.
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