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Abstract: This paper develops diagnostics for data thought to be generated in accor-
dance with the general univariate linear model. A first set of diagnostics is developed
by considering posterior probabilities of models that dictate which of k observations
from a sample of n observations (k < n/2) are spuriously generated, giving rise to
the possible outlyingness of the k observations considered. This is turn gives rise to
diagnostics to help assess (estimate) the value of k. A second set of diagnostics is
found by using the Kullback-Leibler symmetric divergence, which is found to generate
measures of outlyingness and influence. Both sets of diagnostics are compared and
related to each other and to other diagnostic statistics suggested in the literature. An
example to illustrate to the use of these diagnostic procedures is included.

Key words and phrases: Spurious and outlying observations, posteriors of models,
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1. Introduction

According to Webster’s dictionary, diagnosis is the art of inferring from symp-
toms or manifestations the nature of an illness or the cause of a situation. One
of the most serious “illnesses” that can occur in linear statistical model situa-
tions is the presence of outliers, and this fact has motivated the creation of the
whole area of robust estimation and outlier testing. From the Bayesian point of
view the study of outliers in linear models has already induced a long tradition.
In a seminal paper, Box and Tiao (1968) showed that, assuming a normal con-
taminated distribution for the generation of observations of a linear model, the
estimation of the parameters involve a weighted average of estimators from 2"
distributions, where n is the number of observations in the contaminating distri-
bution. Although they were more concerned with estimation than with outlier
identification, their approach leads to diagnostics for model heterogeneity, further
investigated by Péna and Tiao (1992). Abraham and Box (1978) introduced het-
erogenety in the mean instead of in the variance. This mean-shift model was also
suggested by Guttman, Dutter and Freeman (1978). These models have been
compared by Eddy (1980), Freeman (1980), and Pettit and Smith (1985). In
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Section 3 of this paper it is shown that one of the diagnostic measures we suggest
can be justified if sampling is from either one of the aforementioned models.

Zellner (1975), Zellner and Moulton (1985) and Chaloner and Brant (1988)
define outliers as extreme observations arising from the model under consideration
and do not view these as being generated from a mean-shift or variance-shift
model. Outliers are then detected by examining the posterior distribution of the
random errors.

Since the work of Cook (1977), Cook and Weisberg (1982) and Belsley, Kuh
and Welsch (1980), the study of influential observations in a linear model has been
an area of very active research. Johnson and Geisser {1983, 1985) built measures
of influence in univariate and multivariate linear models by using the Kullback-
Leibler divergence between certain predictive or posterior distributions. Related
work is found in Pettit and Smith (1985). Guttman and Pefa (1988) showed,
using the same approach, that a global influence measure built from a certain
joint posterior distribution can be decomposed into a measure of outlyingness
‘and a measure of influence, and that this Bayesian diagnostic emcompasses the
frequentist diagnostics for outliers and influence. Related work can be found
in Ali (1990). Kempthorne (1986) used a formal decision-theoretic set up to
justify influence measures in a Bayesian framework. In a similar spirit, Carlin
and Polson (1991) have justified taking the Kullback-Leibler divergence as the
utility function, and have shown how to compute diagnostics using the Gibbs
sampling method.

The objective of this paper is (i) to present diagnostics for heterogeneity
based on mean shift or variance-shift models, and (ii) to present diagnostics
based on measures of influence derived from Kullback-Leibler divergences. Doing
this requires different approaches and assumptions, so that a further objective is
to show the relationship of the diagnostics found from (i) and (ii).

In Section 2, we describe two variants of the usual linear model which al-
low for the generation of spurious observations, namely the so-called ‘mean-shift’
and ‘variance-inflation’ models. In Section 3, we derive our first diagnostic cy,
the conditional posterior probability that for given k, a certain set of k out of
n observations are generated by the mean-shift model, and show the connection
of ¢; with the leverage of these k observations. We also demonstrate that cy
is, approximately for large n, the conditional (on k) posterior probability that
the k observations have been generated according to the variance-inflation model.
Section 4 allows for diagnostics concerning the determination of k. The Kullback-
Leibler divergence is used in Section 5 to measure the disparity between various
posteriors based on the full sample with those based on a set of n—k observations.
With the measures obtained in Section 5, we turn to comparing the behaviour
of ¢; and the Kullback-Leibler induced diagnostics in Section 6. We then indi-
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cate in Section 7, how a procedure using all these diagnostics would proceed, by
illustrating with a real set of data.

2. The General Setting

We focus on the analysis of data thought to be generated in accordance with
the general univariate linear model, universally denoted as

y=XB+e (2.1)
where

X is (nxp), rn(X)=p<n,

B is (px1), (2.1a)
e is N(O,0%L,).

We envisage that, although (2.1) is the intended situation, the experimenter fears
(because of experience) that some observations, say y;,, t =1,..., k, with k fixed
and such that k << n/2, are spuriously generated, with mean-shift spuriosity
parameter a;, that is

E(yi,) = xi,B + a,

t=1,...,k. (2.2)
V(y‘it =02’

Denote the set {i1,...,%x} by I, that is, I is the set of k distinct integers chosen
from the set {1,...,n}. The use of the term “Spurious” above implies that the
observations indexed by the set I were generated not in the manner intended
(as described by (2.1)), but specifically by the generation process (2.2), called
the mean-shift spuriosity model. If for a given set of observations indexed by
{i1,...,ix} = I, (2.2) holds, then, after permutation, write

Y(1) X(r) o
= .. B+ - | +e (2.3a)

yI X1 a
where notationally, we mean:

(I) = exclude or omit objects connected with the elements of I = {i1,...,%;}
(2.3b)

so that, for example, :
Yy = (yj17 s ’yjn—k), (2'3C)
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where the complement of I is {j1,...,Jn-&} C (1,...,n). Further, X(;y is the
[(n — k) x p] matrix formed by omitting rows (41,...,1x) from the matrix X of

(2.1); we use the notation I to denote:
I = use the data indexed by I only. (2.3d)

Denote the model described by (2.3a) by My = M;, i, and note that it
says that k observations yr = (¥, --,¥i) , are generated spuriously, while the
rest, that is, n — k observations (¥, ... ,Yj._r) = Y1) have been generated as
intended. We make one additional assumption, which is:

r(X(I)> =p<n-k. (2.4)

Note that in the ensuing sections, the special case k = 1 will be delineated
and discussed and for this situation we will use the notation I =1, etc.

Also note that if we knew one of the (}) models M holds, and if we knew
exactly which one of these holds, say My, then it would be natural to regress yj)
on X1y, forming

" -1
Bun = (XEnX(f)) X(nym (2.5)

St =Y [In—k - X(I)(X(II)X(J))_IX&)]y(z) (2.5a)

etc. S(ry is the sum of squares of residuals based on what is thought to be the
“good” data, (y (1), X(1)), so that S(r) is a measure of scatter.

There are of course other models than (2.3a) for describing the generation of
spurious observations; for example, we might have

Y1) X(1) €(1)
yr | X €]

with €; ~ N(O, 6%0%1}), but, as usual, €y ~ N(O,0%I,_;) and where §% > 1.
The model (2.6) is referred to as the variance-inflation model in the literature
(see for example, Box and Tiao (1968)).

We turn now to our first diagnostic, and its use in a first part of a diagnosis
of a set of data, namely, a diagnostic to detect spurious observations.

3. Diagnosis — Part 1
Faced with the possibility that one of the mean-shift models { M} as specified

n

by (2.3a) holds, where I ranges over the (}) sets of form I = {i1,... %k}, @
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Bayesian might want to calculate the posterior probability, say cr, that M; holds,
that is, that (vi,,...,%,) = ¥y} is spuriously generated, and use the (}) c;'s as
a set of diagnostics. It turns out that this probability, as derived by Guttman,
Dutter and Freeman (1978), is given by

‘-—1/2

— —(n-k-p)/2
Cc] = KS(I) P ‘X(II)X(])

with (3.1)

- —(n~k— -1/2
K-l = Z'S(I() k P)/2|X('I)X(1), )

where 3’ denotes sum over all the (}) possible sets I. (An alternative approach
that leads to (3.1) is given in Draper and Guttman (1987).)

To help interpret the role of c;’s as diagnostics, suppose we consider first the
simplest case, where p = 1, and it is thought that the generating process of the
y’s is such that

E(y) = p (3.2)

but it is feared that in a sample of n, model M holds, which is to say,
E(y,)=p+ay, t=1,...,k

while | (3.3)
E(yj,)=n, u=1,...,n—k

Suppose indeed that the experimenter fears M may hold for k = 2, and that
a sample of n yielded data which when plotted exhibits an extreme case such as
depicted in Figure 3.1.

Figure 3.1. A sample of n = 10 observations

Now for this problem X = 1;9, a (10 x 1) vector of ones, so that X(;) = 13 as
i ranges over the 45 different sets of 2 integers chosen from {1,...,10}. Hence
X(,é)X(I) = n—k = 8 for all I. Further, for this example, I = (¢1,42) C (1,...,10),
an

1
Suy = Y [Is - glslé}yu)
= > (yi-¥n)’* (3.4)

J#i1,12
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withi = X wln-k= ¥ wls
JFi1,02 J#i,02
Hence (nmk—p)/2
- —~(n—k-p - _
1 = K(S(I)) = K(S(I)) 7/2 (3'.5)

with ) ,
K1t=>" (S~ "2,

since |X£1)X(I)‘ — 8 for all I. For this example, 3’ denotes the sum over all 45
sets I = (i1,12) of 2 integers chosen from (1,...,10). Now, as we cycle through
the 45 different sets I = {i1,i2}, we will eventually come to the set that excludes
the minimum and maximum of the observations shown in Figure 3.1, so that the
S that we will then be concerned with, will be minimum amongst all the S(1);
and since ¢y is proportional to S&g"—k—p )2 S(—I;/ 2 the c; for the case we are
discussing -will be largest, and in this extreme case, near 1.

We remark that ¢; as defined in (3.1) can be expressed as a function of

leverage. We first note that since X = (X : X 3
X'X = X{n X + Xi X1 (3.6)
so that
XinXm| = 1X'X]- 1, — (X' X)X X
= |X'X| lIk ~ XH(X'X)TI XS

: (3.7)
Absorbing |X'X| into the constant of proportionality K of (3.1), we thus have

er = KSG" P 1 - Hy 7 (3.8)

with K defined in the obvious way (see (3.1)), and where

H;=X;(X'X)'X; (3.9)
is that block of the so called “hat matrix” H,

H=XX'Xx)'Xx' (3.10)

that is found by using columns and rows of H indexed by I = (i1,...,ik). We
note that for k = 1 we have

¢ = KSm P02 (1 - b)) (3.11)

where h; is the ith diagonal element of H. Now, the element h; is said to be the
“leverage” of the observation y;, and we note that if this is large (i.e., close to 1),
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then ¢; of (3.11), which takes the leverage of y; into account, tends to be large,
since c; is increasing in h;. For general k, |1 — H;|~! is a general function of the
Jeverages of (vi,,..., ¥, ) = ¥7 etc.

There may be a concern that the diagnostics ¢; are only useful for the mean-
shift model (2.3a), and not at all useful for diagnostics concerning the variance-
inflation model (2.6). Péna and Tiao (1992) address the question of diagnostics
for the variance-inflation model (2.6), and it turns out that their diagnostics
have an important and surprising connection with c;. In fact, conditional on
y containing k spuriously generated observations, the posterior probability, say
or(I), that the set y; is spuriously generated according to the variance-inflation
model (2.6) is given by (see Péna and Tiao (1992))

3 |X/X| }1/2{ 32 }n—;—e
with _
p=1-62% (n—p)s’=S=y'(I-H)y. (3.12a)

As to 3%1)7 a precise definition is given in Pefa and Tiao (1992), and it turns out
that

a2 2

lim S(I) = S(I)

§2—00

where (3.12b)
(n—k—p)siry =S =Y [In—k - X(I)(X}X(I))—lx('z)JY(z)-

Hence, if 6 is large, so that ¢ ~ 1, we have, on referring to (3.6), that

. —1/2
pr(l) = Kls(j) . ‘X(I)X(I)i (3.13)

which, for moderate or large n, is essentially c;.

A word here about k, the “order” of the model M is appropriate. In practice,
this is not known, but a realistic range of values for k may often be stated by the
experimenter, based on his/her experience in the subject field, say 0 < k < k.
(Interesting comments on the “choice” of ko have been made by Daniel (1959)
and Box and Tiao (1968). For o = Probability that an observation is spuri-
ously generated, these authors choose kg = an, with a = .10, with supporting
arguments.) Hence, a second part of the diagnosis involves “estimating” k. This
generates other diagnostic procedures, explained in Section 4 and illustrated in
Section 6.



374 ' IRWIN GUTTMAN AND DANIEL PENA

4. Towards Completing the Diagnosis — Part 2

Diagnostics for k are readily available, but to describe this aspect of the di-
agnostic procedure we now present some results, interesting in themselves, which
turn out to be useful in making diagnoses about k.

First assume that we are interested in making inference about 3, the regres-
sion coefficients involved in our linear model. It is well known (see for example,
Box and Tiao (1973)), that if all the data were generated in the manner intended,
the posterior of 3 when non-informative priors are appropriate is such that

o(Bly; X) = hy (B3 20X (41)
where )
B=(X'X)'Xy, S=@-9)-9) =yl -Hy (4.1a)
and
v=mn-—p. (4.1b)

In (4.1), the density function h is that of a general multivariate-t density, of order
p, where, in general, letting x and xq be p order vectors and B a (p x p) positive
definite matrix, h is defined as

I‘(E%li) |B|!/? [1 + (x — x0)'B(x — Xq) —(p+v)/2
(m/)P/zI‘(-‘zi)

with v > 0. It is well known that the following properties of (4.2) hold, viz

hp(x|x0; B;v) = (4.2)

v

E(x) =xp; V(x)=B"!

2 .
— v> 2, (4.3)

and further, that
(x = x0)' B(x = x0) ~ pFp . (4.4)

Using the properties (4.3)—(4.4), it follows that (4.1) implies

E(Blyi X) = B; Var(Bly; X) = ——(X'%)"? (45
and that a (1 — «) posterior region for 8 is
c={p|B-ByXX)B-B) <p;> pr,n-,,;a} (4.6)

where Fpn_p.o is the point exceeded with probability & when using the Fp,_p
distribution. It turns out that (4.6) is the H.P.D. posterior region for 3 (see Box
and Tiao (1973)).
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We now explore the situation when one of the models M/ holds for a given
value of k. Then, as derived in Guttman, Dutter and Freeman (1978), it turns
out that the posterior of 3 takes the form

~k-p

p(Bldata; k) = Z’cfhp <ﬁ'é(1); *n——g(‘;—

(X(/I)X(I));n—-k—p) (4.7)
where ,B(I) and S(;) have been defined in (2.5) and (2.5a) respectively. That
is, the posterior of B is now a weighted combination of p-order multivariate t-
densities, and a typical term says: omit k y’s indexed by the set I and compute
the posterior based on the remaining data whose effective sample size is n — k
(see (4.1) and (4.7)), and weight that density with ¢;, the posterior probability
that the k observations now ignored, are spuriously generated or, put another
way, the density based on the (n — k) observations indexed by the complement
of the set I is weighted with the probability that the k observations indexed by
the set I itself should indeed be dropped.

Now, using properties of the p-order t-distribution given in (4.2), we find that

E(B|data; k) = S 1By = by, say (4.8)
and
, / S S -1
E(Bp'|data;k) = 3 er| — >3 X))+ BB
= Dy, say (4.9)
so that
V(B|data; k) = Dy, — bib},. (4.10)

With these results in mind, we may now turn to the question of diagnostics
for the likely value of k. To begin with, suppose the values z;,, u = 1,...,n of
the jth independent variable (7 = 1,...,p) used to generate the y, are coded i.e.,
dimensionaless variables. This would mean that each of the diagonal elements V,,
of the variance-covariance matrix given in (4.10) are in the same units, namely,
“y2” units. Now, a measure of dispersion of the densities (4.1) and (4.7) is the
trace (tr) of their variance-covariance matrices, and from (4.5) and (4.10) these
are given by

———S—tr(X’X)'l if k=0,
trV(Bldata; k) ={ =P =2 (4.11)
trDy — b;cbk if £k>0.
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Of course, (4.11) is in units of “y?”. We now compare these traces for values
k =0,1,...,ko. If a data set contains spurious observations which give rise to
k (extreme) outlying observations, then (4.11) tends to have a minimum as a
function of k, about some value, say k> 0, and we would use k as our estimator
of k. This in turn means that we would use p(B|data; k) — see (4.7) — to
make inferences about 3. Of course, the T;,’s could be in original units — for
example, pressure in units of lbs./sq.in., time allowed for the process to run in
minutes, temperature in °C, etc. Hence V;; is in units of “y?/z2”, so that values
of trV (B|data; k) cannot be used.

But in this case, we can easily examine separately the diagonal elements
Vit(k), and do this for each ¢, = 1,...,p. Their minima will usually be attained
for each t at the same value of k. (Of course, we can also do this for the previous
case where z;,’s are in coded units, u =1,...,n;j=1,...,p.)

Another source of a possible diagnosis for k is the c;’s themselves. For each
k we may compute the (}) c;’s and note the maximum, say c}, that is,

= maxc. (4.12)

We now do this for each £k =1,...,ky and find

*

= max cr- (4.13)

The pattern of the individual c;’s for given k and the value of k for which (4.13)
is attained, together with the analysis of the variance-covariance matrices as
described above, gives much information about the likely value of k. This is
illustrated in the example of Section 7.

Before turning to an example, we discuss the use of the Kullback-Leibler
information to generate other diagnostics for spuriosity, and, it turns out, of
influence.

5. Diagnosis: Part 3; The Use of Kullback-Leibler Divergence

The motivation for the approach of this section is as follows: Suppose (2.1)
holds, so that, in particular, all observations, have been generated as intended.
Now consider the posterior p of any or all the parameters of model (2.1), based on
all observations, and contrast this with the posterior (1), the posterior based on
the n — k observations, y(ry = (¥j;s - -, Yj.)" With k << n/2. The pair (p, p(1))
should not differ too markedly, reflecting, basically, the same information about
the parameters, except for the fact that ;) is based on fewer observations than .
So as we let I range over the possible (}) available sets I = (3,...,4) C (1,...,n),
the pairs (g, (1)) should differ in much the same fashion as each other.
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Now suppose the k observations (¥;,,...,¥; ) have been generated spuri-
ously (models (2.3) and (2.6) are examples) and we based our posterior on
(Yjys---+Yj._,)- Then we would expect much divergence between p and p(;),
since g is based on data that contains spuriously generated observations, while
(1) does not. Of course, we do not know which set (yiys - -, ¥i, ) is the spurious
set, so that we would like to examine the (}) possible cases, noting the pairs
(g, (1)) that seem to diverge markedly, thus indicating that (Yiys---,¥i,) has
been generated spuriously.

The question, then, at this point is how to measure divergence between two
densities. In this paper, we utilize the Kullback-Leilber symmetric divergence,
defined as follows.

Definition 5.1. If f; and f- are densities that are absolutely continuous with re-
spect to measures uj and usg, respectively, then the Kullback-Leibler information
measure, often called the symmetric divergence, is

J(flafZ)=I(f17f2)+I(f2)f1) (51)

where, for example, the directed divergence of f2 from fi, I(f1, f2) is defined as

I(f1,f2) = Ej[log(fi/f2)]
= [log(r/ 1) fu()dus (o). (5.2)

For an interpretation of the measure of divergence J and its properties, see Kull-
back (1959) and Kullback and Leibler (1951).

We use (5.1)-(5.2) as follows. First assume that all observations are generated
as intended, and set f; = p and fy = ), letting I range over the (}) sets
i = (i1,...,4x) C (1,...,n). Here, o and gp(r) would then be reflecting essentially
the same information about the parameters, expect for the fact that p is based
on n observations, while () is based on only n — k observations, so that we
would expect the set of values

‘](fl’f2) = J(P, P(I)) = JI) say, (53)

to have, more or less, the same (low) values as I ranges over the (}) sets {i1,...,
ir }. This, of course, is in contrast to the case where there is a set of observations,
say yr = (¥i,,---,¥i,), which have been generated spuriously. This approach
has been used by Johnston and Geisser (1985) and Guttman and Pefia (1988).
Both papers derive results for (5.3) when f; = p and f2 = () are (i) the joint
posterior distributions of 8 and o2, (ii) the marginal distributions for 3, and (iii)
the marginal distributions for ¢?. The latter authors showed that, whereas all
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Interesting observation points are picked up by the change in the posterior for
B and o2, the change in the marginal for 3 is linked to influential observations,
whereas the change in the marginal for o2 is linked to outliers. These measures
have the forms given in the next three theorems of this section. We first state
the following lemma:

Lemma 5.1. Suppose x is a (p x 1) random vector variable whose density is one

of

11 1/2
fi= '—(Zzﬂ—)lj/—g-exp{ - %(x 1) T (x - /‘Lj)}

( = 1,2). Then the Kullback-Leibler divergence between f1 and fo is

T ) = o = ) ( T+ 25 s = o) + ot 2 T4 T, 750 - p.

(5.4)

The proof of this lemma is a straightforward application of (5.1)-(5.2) and

- is left to the reader. We need Lemma 5.1 for the following situation. Suppose we
assume that data is generated in accordance with

y=XB+e €~ N(O,dI) (5.5)

and in (2.1), and that use of non-informative priors for 8 and o2 is made, so that,
in particular the posterior of 3 is as stated in (4.1). This, of course, means that
for moderate to large n,

Bly ~ N(B; s*(X'X)™). (5.6)
Here, s> = S/(n — p), where S has been defined in (4.1a). (The symbol “<”

means “approximately distributed as”.) Denote the density involved in (5.6) as

.
Now suppose our posterior is based on the data (¥(ry; X(1)), where Y1), X1y
,B( r)» and 51y have been defined in Section 2. Then, for moderate to large n,

Bly ~ N(By, stn(X(nX)™) (5.7)

with s?;, = S;;y/(n — k —p). Denote the density involved in (5.7) as p(7). Setting
() () 09

fi = p of (5.6) and fo = gp(s) of (5.7), we may now use Lemma 5.1 to state the

following theorem.

Theorem 5.1. Using the above notation, and assuming (5.5) holds with n mod-
erate to large, then

2
S
Jo(p,01)) = p(Df +D{y)/2+ ——(p ~ trH) /2
)
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§2
(){p+t7‘H1[Ik —H) Y20, (5.8)
and
s _ (n—p-k) (1+e’I(I—H1)‘leI) (5.9)
sty (n—p)  (n-p-k)sf
1T rra-1 -l
D} = ey — Hy) }ifz(f Hip)er (5.92)
(I - H)'H
py, = A HD) e (5.9b)

2
Ps()
where, with y = (yéI),yI) and X = (X(’I),X})’, the (k x 1) vector ey is given by

e=(e(rpen) =T - Hy. (5.9¢)

The proof of Theorem 5.1 is obtained by straightforward algebra using the
results of Guttman and Pefa (1988).

The quantity D? has long been advocated by Dennis Cook and fellow workers
as a measure of influence — see for example Cook (1977,1979), and Cook and
Weisberg (1982) and the references therein. Of course, D(zI), then, is also a
measure of influence, albeit in a slightly different metric then D?. We remark
that, because of this, Js of Theorem 5.1 is essentially a measure of influence, due
to the presence of the terms pD? and prI).

A Corollary to Theorem 5.1 for the special case of interest when k = 1 is the
following: We have denoted (5.8) by Jg(g, po(1)lk) in the following Corollary, and
we note that when k = 1, then I = {i;} which we may denote by 7, ¢+ varying
over (1,...,n). '

Corollary 5.1.1. Setting Js(p, pu)lk = 1) = Mi(B), we have

M;(8) = p(D} + Dfy) /2 + 5 ’)(p+1i“h1> 2;)(17 hi)—p  (5.10)

where h; is the ith diagonal element of H.

The proof of this Corollary is a straightforward application of Theorem 5.1
for the case k = 1. (Since k = 1, the sets I are singletons ¢;, etc.) We shall
use M;(B) for all n sets i = {iy}, u = 1,...,n as diagnostics in our example of
Section 7.
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We may also want to inquire about the divergence between posteriors of o2,
as we withdraw observations (yi;,...,vi ). As is well known (for the case of
non-informative priors), we have

a?ly ~ (n —p)s? /X2 _x_,» (5.11)
and
o*lyy ~ (n =k = p)st /Xi—k—p- (5.12)

Identifying the posterior density of o2 in (5.11) as p and that of (5.12) as ©(1)5
we have the following Theorem.

Theorem 5.2. Suppose (5.5) holds and non-informative priors are used, so that
(5.11) and (5.12) apply. Then the posteriors of o of (5.11) and (5.12) have
Kullback-Leibler symmetric divergence J,2(p, p(1)|k), which, to order of n=? is

koSt 17, a1 1
Jo2 (0, (1) |k) = 3 1n—sT + 5[31(1’6 — Hy) 6]] s_%; -l (5.13)

The proof of this theorem is given in Guttman and Pefa (1988).
The case k£ = 1 will be of special interest, and we have

Corollary 5.2.1. If J,2(p, p(n)|k = 1) = Mi(c?), then to terms of order n=2,

2y _ 1 s?i) 1 2
Mi(O' ) = -2- In 3—2 + §(ti - Ti) (514)
where , )
£2 & 2 il (5.15)

Ho sty (1= hq)’ TR
with e; = e;, where we have set i; = 1.

The statistic r; defined by (5.15) has been extensively used in the literature
as a test for spuriosity, and, of course, ¢; is a similar statistic, using a slightly
different estimator of Var(e;) = o?(1 — h;) in its denominator. It can be shown
that M;(o?) is an increasing function of ¢?, and, hence is essentially a measure of
outlyingness of y; (we have set i; = 7, since £ = 1 in the above).

Finally, we may ask about the divergences of the posterior of (3, ¢2), based
on y and y(;) respectively. We have

Theorem 5.3. Suppose (5.5) holds, and non-informative priors are used. Then
the Kullback-Leibler divergence between gp(ry = p(B,azly(I)) and p = p(B,c?|y)
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is, to terms of order n”2,

2

Js.o2 (0, (k) = [eb)(] ZHI) eJH 1 1}

P[5 12 s 5] 1 -1 ks
+= 'S—QD(])+;—?—DI}+'2‘tT{HI[Ik—HI] H]}'F“ll’l?. (5.16)
I)

2
sty S
2 2

The proof of this Theorem is given in Guttman and Pena (1988). This proof
uses a key relation about conditional-unconditional divergences used for a more
general model by Johnston and Geisser (1985). For the special case k = 1, we
have:

Corollary 5.3.1. Letting Jﬁ’az(p, Pk =1) = M;(B,0?), then

2 1. s?
L SWC IR

1 1

()

With the above Theorems and Corollaries in mind, we now turn, in the next
Section, to a description of their behaviour, which will help map a strategy on
how to use these results in a diagnostic procedure.

6. Comparison of the Various Diagnostic Measures

We have presented various statistics to identify spurious observations. These
are the probability c;, and the distance Ji(83, 0 2). We have also shown that this
latter portmanteau measure is related to the specific measures Jr(B) and J;(c?),
which, of course, can be used to identify influential and outlymg observations.

To illustrate the relationship between ¢; and Ji(B,0 ) let us consider the
case k = 1. Then, (5.17) can be written, after some algebra, as

2

'r-2 s? 1 h? 1, s
= — (1= h)| 45 — S ln o .
Mi(B, %) = 5%y (1= hi) ( )}4—2(1—’%') 2n5?i) (1)
and using the fact that, for n large,
2 t2 t2
In - =In <1+—’—) =t (6.2)
8% n n
(%)
and since, when n is large, t; ~ r;, we have, asymptotically,
1t t2 1 h? 12
M; ,2—;—— c —(1—=h))++ = t - =1 .
B = sy ~ M T TRy T2, (6:3)
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so that, for n large,

M’L(/Ba 02) = 1 hi

2(1 - hy) [(2 —hi)ti + hi]- (6.4)

The above shows that M;(8,0?) is a linear increasing function of ¢2. The slope
depends on h;, and the scale factor is a standard measure of leverage.

In order to discuss the relationship between M;(B,c?) and ¢;, put both in
the same scale by comparing M;(3, o%) with logc;. Then

2

_ n, 5@ 1 ,
loge;, = K 5 log 2 T3 log(1 — h;), (6.5)
and using (6.2),
2 1
loge; = K + 273 log(1 — h;), (6.6)

which shows that logc; is also a linear increasing function of t?. The main dif-
ference between (6.4) and (6.6) is the way each of them deals with the leverage.
M;(B, 0?) is concerned with both outliers and influential points and the leverage
factor h;/(1 — h;) is the one that appears naturally in the standard influence
measures such as Cook’s statistics. On the other hand, logec; is a measure of
spuriosity and does not include a product term between the outlier measure ¢?
and the leverage measure (1 — h;).

It is interesting to relate these measures to other statistics suggested in the
literature to achive the same objective. Andrews and Pregibon (1978) proposed
the ratio

(RPN, 6.7
E‘(W)S_g(_’t) (6.7)

and they identify outliers with the association of small values of this statistic.
Belsley, Kuh and Welsch (1980) suggested a similar statistic based on the vol-
ume of confidence ellipsoids. See Cook and Weisberg (1982) and Chatterjee and
Hadi (1986) for a comparison of these measures. Now to compare (6.7) with the
previous statistics in the same scale we take minus the logarithm of R; to obtain,

for large n, ,

s.
—log R, = —log —s(—;—) — log(1 — h;) (6.8)

and if we compare the above with (6.5) it is obvious that ¢; is taking into account
the sample size in the evaluation of the observation point whereas, the Andrews
and Pregibon statistic does not, for large n.

In summary, M;(8,0?) and ¢; provide us with complementary information
about interesting points in the data set. The points identified as interesting by
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all the above measures could be further analyzed using M;(8) and M;(c?) to
differentiate between influential observations and outliers.

7. An Illustrative Example — The Mickey Dunn Clark Data

For this example, we refer to the famous “MDC data set” due to Mickey,
Dunn and Clark (1967), and reported on in Cook and Weisberg (1982), Draper
and Smith (1981), amongst others. We list the data in Table 7.1, and a plot is
given in Figure 7.1.

This data gives (X,Y) values for n = 21 students, where X = age at first
word (months) and Y = score of Gessell aptitude test. It is assumed that the
linear relation E(Y|z) = Bp + fiz is appropriate, so that, in our notation, p = 2.

Table 1. The Mickey Dunn Clark data (n = 21)

ioT Y| ot T Y b T Y
1 15 95 8§ 11 100 |15 11 102
2 26 71 9 8 104 |16 10 100
3 10 83|10 20 94 | 17 12 105
4 9 91 | 11 7 11318 42 57
5 15 102 | 12 9 9 [ 19 17 121
6 20 87 { 13 10 83120 11 86
7 18 93114 11 84 |21 10 100
130 T T T T
120 |- 1% *+— 19 —
nol -
° *
100 |- o ° -
* 20, o ®
[ ]
00 p— .J o —
..
80 |— 7 N\ 2 -
3,13 14 l
0+ . —
[ o} o 18 —_— o —
&0 | | | |
0 10 20 0 40 &0

Figure 7.1. A plot of the MDC data (n = 21)

In the language of Sections 3 and 4, we first set k and compute the resulting

(%) c1’s, given by (3.1). For the MDC data, we let k = 1,2,3. (That is, bearing
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in mind that .1n = 2.1 for this set of data, we have set ko = 3.) The largest 6
cr’s are given in Table 7.2.

Table 7.2. The 6 largest ¢;’s for the MDC data*

k=1 k=2 k=3
.8153(19) .1096(13,19) .0459( 3,13,19)
.0180(13)  .1096( 3,19) .0246(13,14,19)
.0180( 3) .0709(11,19) .0246( 3,14,19)
.0143(18) .0685(14,19) .0163(11,13,19)
.0134(14) .0517( 5,19) .0163( 3,11,19)
.0107(20) .0490(19,20) .0160( 3,19,20)

*The numbers in brackets are the (i1,12,...,%;) that
correspond to the accompanying c; value.

From Table 7.2 it is evident that the maximum of the maximum ¢;’s occurs
at k = 1 with c19 = Prob(y;9 is spurious |k = 1) = .8153. Note too, that for
k =1, the second largest c is c3 or ¢33 with value .0180, or put more dramatically,
c19/c13 = c19/c3 = 45.3. Also note the consistency with which observations y;, for
J = 19,3,13, get into the act — for k = 2, maxc¢;, 5, = c13,19 = ¢3,19 = .1096 and
for k = 3, max¢;, 4,4, = €3.13,19 = .0459. Note too, that for k = 2, c13,19/¢11,19 =
cs,9/c11,19 = 1.55, and for k = 3, c19,313/c19,13,14 = €19,3,13/C19,3,14 = 1.87, and
these ratios are pedestrian when compared with cyg/c13 = 45.3 = ¢19/c3(k = 1).
Thus, even at this stage of the diagnosis, evidence is building that k = 1, and
indeed that y;9 is the spurious observation.

Using (4.5) and (4.11), we obtain the numerical results of Table 7.3. (Com-
plete listings of values of c;’s B’s and Dy ’s are available from the authors.)

Table 7.3. The diagonal elements, V4, of the matrices V(B|data; k)

| k=0 | k=1 | k=2 | k=3
28.70410 | 20.90559 | 22.67359 | 26.20836
0.10753 | 0.08073 | 0.08954 | 0.10699

Vi1(Blk)
Va2 (Bk)

Note that the diagonal elements V;; and V59 attains their minimums in both
cases at k = 1, providing yet more evidence that there seems to be one spurious
observation, the observation y;g, in this data set. Tentatively, then, we consider
the use of p(B|data; k = 1) to do inference re B (and/or p(o?|data; k = 1) and/or
p(B, 0%|data; k = 1), depending on objectives). Indeed, for p(Bldata; k = 1) it
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turns out that

.

bl

109.40284 )

E(B|data;k=1) =
(8] ) < —1.17759

(7.1)

20.90559 —1.12645
—~1.12645 0.08073 |

V(B|data,k = 1) = (

Now, we have calculated M;(3, %) of (5.17), and have tabulated the results
in Table 7.4. Examination of the values of M;(8,0?) yields the fact that for
this measure, nineteen of the n = 21 have value less than or equal to .1853, but
Mig(B,0?) and M19(B, c?) have values of 1.5157 and 2.8919, respectively, which
are 8.18 and 15.61 times larger, respectively than .1853.

Table 7.4. Values of the diagnostics c;, M;(83,0?), M;(c?), M:i(B), h; and t?
for the Mickey Dunn Clark data

Observation
number Ci M;(B,0?) | M;i(c?) | M;(B) h; t2
1 0.0062 0.0281 0.0252 | 0.0082 | 0.0479 0.0338
2 0.0099 0.1644 0.0003 | 0.1652 | 0.1545 0.8866
3 0.0180 0.1853 0.0395 | 0.1455 | 0.0628 2.2826
4 0.0085 0.0546 0.0030 | 0.0533 | 0.0705 0.6630
5 0.0085 0.0380 0.0024 | 0.0366 | 0.0479 0.6937
6 0.0062 0.0299 0.0270 | 0.0099 | 0.0726 0.0009
7 0.0064 0.0296 0.0219 | 0.0130 | 0.0580 0.0969
8 0.0063 0.0290 0.0242 | 0.0105 | 0.0567 0.0528
9 0.0065 0.0332 0.0226 | 0.0172 | 0.0799 0.0840
10 0.0074 0.0422 0.0101 | 0.0357 | 0.0726 0.3815
11 0.0106 0.1098 0.0003 | 0.1090 | 0.0908 1.1043
12 0.0065 0.0324 0.0209 | 0.0172 | 0.0705 0.1175
13 0.0180 0.1853 0.0395 | 0.1455 | 0.0628 2.2826
14 0.0134 0.1059 0.0101 | 0.0949 | 0.0567 1.6378
15 0.0067 0.0303 0.0184 | 0.0165 | 0.0567 0.1707
16 0.0062 0.0293 0.0261 | 0.0095 | 0.0628 0.0162
17 0.0083 0.0393 0.0034 | 0.0373 | 0.0521 0.6373
18 0.0143 1.5157 0.0021 | 1.5396 | 0.6516 0.7142
19 0.8153 2.8519 2.2745 | 0.7871 | 0.0531 | 13.0103
20 0.0107 0.0697 0.0006 | 0.0686 | 0.0567 1.1588
21 0.0062 0.0293 0.0261 | 0.0095 | 0.0628 0.0162
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We have plotted M;(3, %) versus log c; in Figure 7.2. The graph shows that
the M;(8,0?%)’s have the same behaviour in all points except for observation 18.
The probability ¢; says that this observation is not likely to be spurious, whereas
M;(B, c?) says that the 18th point is either outlying, influential or both.

T
1

6 I 4 3 2 1 0
Figure 7.2. A plot of M;(8,0?) against logc; (Mickey Dunn Clark data, n = 21)

To help differenciate between outlying and influential points, we look at the
statistics M;(0?) and M;(B). These values are also shown in Table 7.4. M;(o?)
shows clearly that the only outlying point is observation 19, with value 2.2745
which is 57.58 times greater than the next largest value, 0.0395 attained for
observations 3 and 13. Going to M;(3), we see that the most influential point
is observation 18, with a value of 1.5396 that is twice as large as the one for the
spuriously generated observation 19, and 9.32 times the next largest.

Table 7.4 also shows values of h; and t? for the MDC data. It can be seen
that all observations have approximately the same leverage (between .05 and .15)
except for observation eighteen that has a leverage of .65. Then, from the results
of Section 6, we would expect a linear relationship between t? and log ¢;, except
for observation 18. Figure 7.3 shows this graphically. The values of h; and t? are
given for completeness in Table 7.4.
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19
12 4

10+ 4

-6 -5 -4 -3 -2 -ll O
Figure 7.3. A plot of t? against logc; (Mickey Dunn Clark data, n = 21)

Now from the joint distribution of (8o, 81) = B’, given in (4.7) with k =
k=1 n =21, p =2, we may find the posterior marginals of either By or f
using properties of the bivariate t-distribution. We now illustrate the case where
interest is in B;. We need additional notation - let the (2 x 2) matrix

n—k-p -1
and denote the 2 — 2 element of G(;) by gé?, and set
i i)\ 1
wi) = (7). (7.3)

Then, from properties of the multivariate ¢-distribution, and consulting (4.7) with
p =2, k=1, we have

p(Brldata; k = 1) = 'ciha (b1|Bey, whdin —k—p=18).  (74)

Here, 3’ denotes the sum over all possible sets : = {i1} C (1,...,n), etc. Recall
from (7.1) that

E(B|data; k = 1) = —1.17759; V(B:1|data, k = 1) = 0.08073. (7.5)
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We have tabulated (7.4) and graphed this posterior density in Figure 7.4. The
relative smooth (slightly asymmetric) curve is no doubt due to the fact the C19
is so much larger than all the other ¢;’s, so that the curve is dominated by ¢19 x
0(B1]y19; k = 1). Using our tabulations, we have incorporated these computations
into some numerical integration routines and have found posterior HPD intervals
for B, at level 1 — a = .90, .95, .99, and tabulated these in Table 7.5.

P
0.008

0 | " 3 — £
-3 -2 -1 0 1

Figure 7.4. The posterior of the slope 3, given in (7.4) based on the MDC data set.

Table 7.5. The 100(1 — )% posterior HPD limits for 8; based on (7.4)

lower upper

l-a limit limit
.90 -1.637991 —0.726035
.95 ~1.737931 —0.617099
.99 —1.963012 —0.347673
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