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Abstract: In varying coefficient models, three types of variable selection problems

are of practical interests: separation of varying and constant effects, selection of

variables with nonzero varying effects, and selection of variables with nonzero con-

stant effects. Existing variable selection methods in the literature often focus on

only one of the three types. In this paper, we develop a unified variable selection

approach for both least squares regression and quantile regression models with pos-

sibly varying coefficients. The developed method is carried out by using a two-step

iterative procedure based on basis expansion and a double adaptive-LASSO-type

penalty. Under some regularity conditions, we show that the proposed procedure

is consistent in both variable selection and the separation of varying and constant

coefficients. In addition, the estimated varying coefficients possess the optimal con-

vergence rate under the same smoothness assumption, and the estimated constant

coefficients have the same asymptotic distribution as their counterparts obtained

when the true model is known. Finally, we investigate the finite sample perfor-

mance of the proposed method through a simulation study and the analysis of the

Childhood Malnutrition Data in India.

Key words and phrases: Adaptive LASSO, B-spline, least squares regression, quan-

tile regression, separation of varying and constant effects.

1. Introduction

Suppose (Yi,Xi, Ui), i = 1, . . . , n, is an independent and identically dis-

tributed (i.i.d.) sample. We consider the following varying coefficient (VC) model

Yi = XT
i α(Ui) + ei, (1.1)

where α(u) = {α0(u), . . . , αp(u)}T is a (p + 1)-vector of unknown smooth func-

tions, Xi is the (p+1)-dimensional design vector with the first element X
(0)
i ≡ 1,

Ui ∈ R1 is the univariate index variable such as the measurement time, and ei is

the random error.

The varying coefficient model (1.1), first proposed by Hastie and Tibshirani

(1993), provides more flexibility than the parametric linear models by allowing
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the regression coefficients to depend on some covariate U . In the last decade,

many estimation and hypothesis testing methods have been developed for VC

models; see for example Wu and Chiang (2000), Huang, Wu, and Zhou (2002)

and Kim (2007). Similar to parametric models, variable selection in VC models

is equally important and even more complex, since ignoring important predic-

tors can lead to biased results, while including irrelevant predictors or modeling

constant coefficients as nonparametric can over-fit the data and lead to efficiency

loss. In this paper, we aim to develop a unified variable selection method for VC

models.

To summarize, three types of variable selection problems are of practical in-

terests in VC models: (i) separation of varying and constant coefficients (Huang,

Wu, and Zhou (2002)); Wang, Zhu, and Zhou (2009)); (ii) selection of vari-

ables with nonzero varying coefficients (Cai, Fan, and Li (2000), Qu and Li

(2006)); (iii) selection of variables with nonzero constant coefficients (Fan and

Huang (2005), Wang, Zhu, and Zhou (2009)). The existing variable selection

methods for VC models often focus on only one of the above problems, and

are confined to least squares regression. For selecting between constant and

varying coefficients, Xia, Zhang, and Tong (2004) proposed a stepwise cross-

validation-based procedure; Leng (2009) developed a penalization method in the

framework of smoothing spline ANOVA models; Hu and Xia (2010) proposed

a penalized procedure via the LASSO (least absolute shrinkage and selection

operator, Tibshirani (1996)) penalty, where the varying coefficients were approx-

imated by kernel smoothing and the penalty was applied to the L2 norm of

{αk(U2)− αk(U1), . . . , αk(Un)− αk(Un−1)}, k = 1, . . . , p. For selecting variables

with nonzero varying coefficients, Wang, Li, and Huang (2008) and Wang and Xia

(2009) developed penalization methods via the SCAD (smoothly clipped abso-

lute deviation, Fan and Li (2001)) penalty and the LASSO penalty, respectively.

Assuming a partially linear varying coefficient model where the varying and con-

stant coefficients are separated a priori, Zhao and Xue (2009) proposed methods

for selecting variables in the parametric components and in the nonparametric

components separately.

In this paper, we propose a unified approach that solves all the three types of

variable selection problems for varying coefficient models, in both least squares

and quantile regressions. To our best knowledge, this is a first attempt to do so.

We estimate the varying coefficients in the VC models using the method of basis

expansion because of its computational simplicity and stability; see illustrations

in Huang, Wu, and Zhou (2002) and Wang, Zhu, and Zhou (2009). To conduct

variable selection, we adopt the adaptive LASSO penalty (Zou (2006)) for both

least squares and quantile regressions. The variable selection method is carried
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out by using a two-step iterative procedure. We show that, under some regularity

conditions, the penalized estimators are consistent in both variable selection and

the separation of varying and constant coefficients. In addition, the resulting

varying coefficient estimates possess the optimal convergence rate under the same

smoothness assumption, and the constant coefficient estimates have the same

asymptotic distribution as their counterparts obtained when the true model is

known.

The rest of the paper is organized as follows. In Section 2, we describe the

proposed variable selection method, and give the computational algorithms for

both least squares regression and quantile regression. In Section 3, we present

the theoretical results, including consistency in variable selection, the convergence

rate of the nonzero varying coefficient estimates, and the asymptotic normality

of the nonzero constant coefficient estimates. We assess the finite sample perfor-

mance of the proposed method through an extensive simulation study in Section

4, and in the analysis of the Childhood Malnutrition Data in India in Section 5.

All proofs are deferred to the Appendix.

2. The Proposed Variable Selection Method

2.1. The penalized estimation via adaptive LASSO

Throughout the paper we use superscript T to denote matrix transpose.

Without loss of generality, we assume that the index variable U ∈ [0, 1].

Let kn be the number of uniform internal knots, and ~ be the degree of the

polynomial, ~ = 1 corresponds to linear splines, ~ = 2 corresponds to quadratic

splines and so on. Let k̃n = kn + 1, ~′ = ~ − 1, and Inj = [(j − 1)/k̃n, j/k̃n) for

1 ≤ j < k̃n, Ink̃n = [(k̃n − 1)/k̃n, 1]. Let Fn denote the collection of functions

f on [0, 1] such that (i) the restriction of f to Inj is a polynomial of degree ~
(or less) for 1 ≤ j ≤ k̃n; (ii) f is ~′-times continuous differentiable on [0, 1].

Let π̃(·) = (B1(·), . . . , Bkn+~+1(·))T be a set of normalized B-spline basis for Fn;

see Schumaker (1981, Chap. 4) for details on the construction of B-spline basis

functions. From now on, we write qn = kn + ~+ 1.

Recall that our interest lies in selecting variables with nonzero varying and

constant effects. By Schumaker (1981, Chap. 4), there exists a transformation

matrix G such that Gπ̃(u) =
(
1, π̄(u)T

)T .
= π(u), where each component of

π̄(u) depends on u. Therefore, we can approximate each αk(u) by αk(u) ≈
π(u)Tγk

.
= γk,1 + π̄(u)Tγk∗. Here γk

.
= (γk,1,γ

T
k∗)

T is the kth spline coefficient

vector, where γk,1 corresponds to the constant part of the coefficient functional,

and γk∗ = (γk,2, . . . , γk,qn)
T corresponds to the varying part. To fix notation, we

take γ = (γT
0 , . . . ,γ

T
p )

T , Π(u,X) =
(
X(0)π(u)T , . . . , X(p)π(u)T

)T
, πi = π(Ui),
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and Πi = Π(Ui,Xi), i = 1, . . . , n. With the B-spline approximation, (1.1) can

be rewritten as

Yi ≈ ΠT
i γ + ei. (2.1)

If ∥γk∗∥L1 =
∑qn

l=2 |γk,l| = 0, it means that the kth covariate has only a constant

effect and, if in addition γk,1 = 0, then the kth covariate has no effect at all.

Therefore, γk∗ can be treated as a group.

Let the loss function be g(t) = t2 for least squares regression, and g(t) = {τ−
I(t < 0)}t for quantile regression at a given quantile level 0 < τ < 1. While mean

regression is confined to estimating the mean function of the response, quantile

regression offers a systematic strategy for examining how covariates influence the

location, scale, and shape of the entire response distribution. Fitting data at a

set of quantiles provides a more complete description of the response distribution

than does the mean.

Since quantile regression involves a non-differentiable and asymmetric L1

loss function, computation is challenging when penalizing the L2 norm of γk∗,

though it is more commonly used in the literature for group selection (Yuan and

Lin (2006), Wang, Li, and Huang (2008)). This motivated us to consider the

penalization based on group L1 norm, for which standard linear programming

can be employed to solve the optimization problem. To conduct unified variable

selection, we minimize the penalized objective function

l(γ) =
n∑

i=1

g(Yi −ΠT
i γ) + nλ1,n

p∑
k=1

ω̃k∗∥γk∗∥L1

+nλ2,n

p∑
k=1

ω̃k,1|γk,1|I (∥γk∗∥L1 = 0) , (2.2)

where λ1,n and λ2,n are the penalization parameters, ω̃k∗ and ω̃k,1 are the adap-

tive weights, ∥γk∗∥L1 =
∑qn

j=2 |γk,j | is the L1-norm of γk∗. The second term of

l(γ) aims to separate varying and constant effects by penalizing the L1 norm of

the varying parts of each varying coefficient. To select variables with nonzero

constant coefficients, we include the indicator function in the third term of l(γ)

to penalize only those variables that tend to have constant effects. Therefore, if

the variable X(k) has a constant effect, then all components of γk∗ are shrunk

exactly to zero. On the other hand, if the variable X(k) has no effect at all,

both γk∗ and γk,1 are shrunk to zero. In practice, with the indicator function

involved, it is very difficult to minimize the penalized objective function l(γ).

Motivated by (2.2), we propose an alternative two-step iterative procedure that

is computationally convenient. Following arguments used for proving Theorems
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1 and 2 in the Appendix, it can be shown that the minimizer of (2.2) and the

estimator from our iterative two-step procedure are asymptotically equivalent.

However, in finite samples, the iterative procedure does not necessarily converge

to the minimizer of (2.2).

We use notations V , C and Z to denote the subsets of covariates with vary-

ing effects, nonzero constant effects and zero effects, respectively. The full model

assigns all the covariates to V . In the following, for ease of representation, we

do not distinguish the estimators from quantile regression and least squares re-

gression wherever this is clear from the context. The proposed procedure is as

follows.

Step 1. Obtain the penalized estimator γ̂V C by minimizing

l1(γ) =
n∑

i=1

g(Yi −ΠT
i γ) + nλ1,n

p∑
k=1

ω̃k∗∥γk∗∥L1 (2.3)

with respect to γ, where ω̃k∗ are the adaptive weights. In (2.3), we penalize

each varying coefficient in a group manner by assigning the same penalty to

each component of γk∗ for k = 1, . . . , p. Note that our proposed method dif-

fers from the group LASSO of Yuan and Lin (2006), in which the penalty is

applied to the L2 norm of each coefficient group. We use ω̃k∗ = ∥γ̃k∗∥−1
L1

, where

γ̃k = (γ̃k,1, γ̃
T
k∗)

T = (γ̃k,1, . . . , γ̃k,qn)
T as the unpenalized estimator obtained by

minimizing l1(γ) with λ1,n = 0. With this penalization, the γk∗ are shrunk

toward zero if the kth covariate has a constant effect, leading to an automatic

separation of the varying and constant effects. We move the kth covariate from

V to C if ∥γ̂V C
k∗ ∥L1 = 0, otherwise retain it in V . After Step 1, the full model is

reduced to a partially linear varying coefficient model.

Step 2. For each k = 1, . . . , p, we take γ1
k = (γk,1, 0

T
qn−1)

T if X(k) ∈ C, and

γ1
k = γk if X(k) ∈ V , where C and V are the covariate subsets obtained after the

previous step, and γ1 = (γ1T
0 ,γ1T

1 , . . . ,γ1T
p )T . We obtain the estimator γ̂CZ by

minimizing

l2(γ
1) =

n∑
i=1

g(Yi −ΠT
i γ

1) + nλ2,n

p∑
k=1

ω̂k,1|γ1k,1|I
(
∥γ̂V C

k∗ ∥L1 = 0
)

(2.4)

with respective to the unknown parameters in γ1, where the adaptive weights

are set as ω̂k,1 = |γ̂V C
k,1 |−1. Since γ̂V C

k∗ is obtained in the previous step, the second

term in (2.4) corresponds to an adaptive L1 penalty. In this step, we aim to

exclude the irrelevant variables by assigning the adaptive LASSO penalty only

to the terms that have been determined to be constant. We move any X(k) that

is assigned to C in the previous step to Z if the corresponding |γ̂CZ
k,1 | = 0.
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Step 3. Iterate Steps 1 and 2 to convergence. We take the estimator at con-

vergence as γ̂final. Throughout the iteration, the covariates assigned to C have

only constant effects, and those assigned to Z are excluded from the model. In

the end, for each k = 0, 1, . . . , p, αk(u) can be estimated by α̂k(u) = π(u)T γ̂final
k

if it is chosen as a varying coefficient, and by γ̂finalk,1 if it is chosen as a nonzero

constant.

Remark 1. With the current iteration procedure, if the varying parts γk∗ are

not shrunk to zero in Step 1, no penalty is applied to the constant parts γk,1
in Step 2. Consequently, after Step 2, a redundant variable may be selected to

have a constant effect, and a constant coefficient may be selected as varying.

However, such over-fitting affects only the efficiency of the subsequent steps, and

a non-varying coefficient still may be shrunk to a constant or zero as the iteration

continues. On the other hand, if one varying coefficient is incorrectly shrunk as

a constant in Step 1, due to over-shrinkage, the coefficient is selected as either

a constant or zero at convergence. As a result, when the procedure under-fits

the model at convergence, it is more likely to select a varying coefficient to be

constant. As suggested by one referee, we investigated the estimator obtained

by flipping the orders of Steps 1 and 2. The resulting estimator has the same

asymptotic properties as the proposed estimator. However, numerical results

for finite samples suggested that flipping the orders of Steps 1 and 2 introduces

unnecessary bias to the varying coefficient estimates.

2.2. Computational algorithms

In this subsection, we describe the variable selection algorithms for least

squares and quantile regression VC models, respectively.

For least squares regression, the minimization of (2.3) involves quadratic

loss and a LASSO-type penalty. We propose an iterative algorithm based on the

local quadratic approximation of Fan and Li (2001), which performs well and is

computationally simple.

Suppose we have an initial value γ(0) that is close to the minimizer of (2.3).

For example, we can choose γ(0) as the unpenalized estimator

γ(0) =
( n∑

i=1

ΠiΠ
T
i

)−1
n∑

i=1

ΠiYi.

By the local quadratic approximation, for k = 1, . . . , p, l = 2, . . . , qn,

|γk,l| ≈ |γ(0)k,l |+ sign
(
γ
(0)
k,l

)(
γk,l − γ

(0)
k,l

)
≈ |γ(0)k,l |+

1

2|γ(0)k,l |

(
γ2k,l − γ

(0)
k,l

2)
,
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where sign(·) is the sign function. Except for a constant term, (2.3) can be

approximated by

n∑
i=1

(Yi −ΠT
i γ)

2 + nλ1,n

p∑
k=1

ω̃k∗

qn∑
l=2

γ2k,l

2|γ(0)k,l |
.

Then, we can obtain γ̂V C by iteratively conducting the following ridge regression

to convergence

γ(j) =
( n∑

i=1

ΠiΠ
T
i + nλ1,nΩ

(j−1)
)−1

n∑
i=1

ΠiYi,

where

Ω(j−1) = diag
{
0Tqn ,Ω

T
1,(j−1), . . . ,Ω

T
p,(j−1)

}
,

with Ωk,(j−1) = ω̃k∗

{
0,
(
2|γ(j−1)

k,2 |
)−1

, . . . ,
(
2|γ(j−1)

k,qn
|
)−1 }T

for k = 1, . . . , p, and

γ
(j−1)
k,l is the estimate of γk,l at the (j-1)th iteration with j ≥ 1. During the

iteration, once ∥γ(j)
k∗ ∥L1 < ϵ, we set γ̂V C

k∗ = 0, where ϵ > 0 is a small positive

value. In our implementation, we use ϵ = 10−4.

The algorithm for minimizing (2.4) is similar and thus is omitted.

For quantile regression, with the aid of slack variables, the minimization of

(2.3) and (2.4) can be easily cast as a linear programming problem, then solved

by using existing linear programming packages such as the R package quantreg.

2.3. Selection of tuning parameters

To implement the proposed method, we have to choose the tuning parame-

ters, the degree of B-splines ~, the number of interior knots kn, and the penal-

ization parameters λj,n, j = 1, 2.

For varying coefficient models, since the effect of splines is multiplicative,

higher degree splines induce complicated interactions of the form xu, xu2, xu3,

xu4, · · · , and collinearity between variables in the model. Therefore, we suggest

using lower degree splines such as linear, quadratic, or cubic splines. In our

numerical studies, we use ~ = 3 corresponding to cubic splines, but lower orders

can also be used if we believe the functional coefficients are less smooth.

At each iteration of the two-step procedure, we choose kn and λ1,n, λ2,n
by minimizing the Schwarz-type Information Criterion (SIC, Schwarz (1978)) as

described below. The locations of the interior knots are taken equally spaced on

[0, 1].
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Suppose that after the mth iteration, we have reduced the full varying coef-

ficient model to a partially linear varying coefficient model. We use Vm, Cm, and

Zm to denote the subsets of covariates with varying effects, nonzero constant ef-

fects, and zero effects, and use vm, cm, and zm to denote the number of covariates

in these subsets, respectively. Let γm
k = γk if X(k) ∈ Vm, γm

k = (γk,1,0
T
qn−1)

T if

X(k) ∈ Cm, and γm
k = 0qn if X(k) ∈ Zm.

In Step 1, we first choose kn as the minimizer of

SIC0(k) = log

n∑
i=1

g
(
Yi −ΠT

i γ̂m,k

)
+

log n

ϱ n
{vm(k + ~+ 1) + cm},

where ϱ = 1 and 2 for least squares regression and quantile regression, respec-

tively, and γ̂m,k is the minimizer of

l1(γ
m) =

n∑
i=1

g
(
Yi −ΠT

i γ
m
)
+ nλ1,n

p∑
k=1

ω̃m,k∗∥γm
k∗∥L1 (2.5)

with respect to the unknown components of γm with kn = k and λ1,n = 0;

see Wang, Zhu, and Zhou (2009). for a similar criterion for knots selection.

Conditional on the selected kn, we take λ1,n as the minimizer of

SIC1(λ1) = log
n∑

i=1

g
(
Yi −ΠT

i γ̂m,λ1

)
+

log n

ϱ n
edf1,

where γ̂m,λ1 is the minimizer of (2.5) with respect to the unknown components of

γm with λ1,n = λ1, ω̃m,k∗ = ∥γ̃m
k∗∥

−1
L1

, with γ̃m being the unpenalized estimator

obtained by minimizing l1(γ
m) with λ1,n = 0. For least squares regression, edf1

is defined as the total number of varying and nonzero constant coefficients (Wang

and Xia (2009)). For quantile regression, edf1 is the number of interpolated Yi’s,

i.e., the number of zero residuals (Koenker, Ng, and Portnoy (1994)), which

provides a measure of the effective dimensionality of the fitted model.

In Step 2, we first replace γm
k∗ with 0qn−1 in γm if γ̂m,λ1,n;k∗ = 0, and take

the new coefficient vector to be γm,2. Conditional on γ̂m,λ1,n , a function of λ1,n,

obtained in Step 1, we select λ2,n as the minimizer of

SIC2(λ2) = log

n∑
i=1

g
(
Yi −ΠT

i γ̂m,λ2

)
+

log n

ϱ n
edf2,

where γ̂m,λ2 is the minimizer of

l2(γ
m,2) =

n∑
i=1

g
(
Yi −ΠT

i γ
m,2

)
+ nλ2,n

p∑
k=1

ω̂m,k,1|γm,2
k,1 |I

(
∥γ̂m,λ1,n;k∗∥L1 = 0

)
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with respect to the unknown components of γm,2, where ω̂m,k,1 = |γ̂m,λ1,n;k,1|−1,

and edf2 is defined similarly as edf1 in SIC1.

Even though the implementation seems complicated, the computational cost

is not great as the algorithm often converges within two iterations. For Example

3 with n = 500 and p = 50 variables, we generated 100 replicates and searched

kn, λ1,n, λ2,n on a 3-point, 40-point, 40-point grid. The simulation was carried

out using R on a computer with 2.40GHz CPU and 4.00GB RAM. The average

computing time (and standard error) are 61.85 (4.69) and 129.00 (0.33) seconds

for median regression and least squares regression, respectively.

3. Asymptotic Properties

Throughout this paper, we use an ∼ bn to mean that an and bn have the

same order as n→ ∞. Suppose that there are s true relevant covariates in model

(1.1), in which ν of them have varying effects on the response, and s−ν covariates

have constant effects. Without loss of generality, assume {αk(u), k = 1, . . . , ν} are
the varying coefficients, {αk(u) = αk, k = ν + 1, . . . , s} are the nonzero constant

coefficients, and αk(u) ≡ 0, k = s + 1, . . . , p. Let α(c) = (αν+1, . . . , αs)
T be the

true constant coefficient vector. To establish the asymptotic results in this paper,

we make the following assumptions.

A1. αk(u) ∈ Hr, k = 0, 1, . . . , ν, for some r > 3/2, where Hr is the collection

of all functions on [0, 1] whose dth order derivative is Hölder of order υ,

r ≡ d+ υ.

A2. The random design vectors {Xi, i = 1, . . . , n} are uniformly bounded in

probability. The eigenvalues of the matrix n−1XTX are bounded away

from zero and infinity in probability, where X = (X1, . . . ,Xn)
T .

A3. The density function of Ui, fU (u), is continuous and bounded away from

zero and infinity on [0,1].

A4. The penalization parameters satisfy n1/2k
1/2
n max{λ1,n, λ2,n} → 0 and

nk
−3/2
n min{λ1,n, λ2,n} → ∞.

Theorems 1 and 2 state the asymptotic properties of the penalized least

squares estimator α̂(u)LS and the penalized quantile regression estimator α̂(u)QR,

respectively, both obtained by the two-step iterative procedure.

Theorem 1. Suppose A1−A4 hold and kn ∼ n1/(2r+1). Assume that ei are

independent with zero conditional mean given (Xi, Ui), and there exists positive

constants M and δ such that maxni=1E(e2+δ
i ) ≤M . Then we have

(a) with probability approaching 1, α̂k(u)
LS are nonzero constants for k = ν +

1, . . . , s, and α̂k(u)
LS = 0 for k = s+ 1, . . . , p;
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(b) n−1
∑n

i=1

{
α̂k(Ui)

LS − αk(Ui)
}2

= Op

(
n−2r/(2r+1)

)
, k = 0, 1, . . . , ν;

(c) Λ̃
−1/2
n∗ K̃n∗

{
α̂LS

(c) −α(c)

}
→ N(0, Is−ν), where α̂

LS
(c) is the penalized least squares

estimator of α(c), and K̃n∗ and Λ̃n∗ are defined as in (A.15) in the Appendix.

Theorem 2. Suppose A1−A4 hold and kn ∼ n1/(2r+1). For a given quantile level

0 < τ < 1, assume that ei are independently distributed with zero conditional τ -th

quantile given (Xi, Ui), and the conditional density function of ei given (Xi, Ui),

fi(·), is uniformly bounded from infinity, and continuous and bounded away from

zero in a neighborhood of zero. Then we have

(a) with probability approaching 1, α̂k(u)
QR are nonzero constants for k = ν +

1, . . . , s, and α̂k(u)
QR = 0 for k = s+ 1, . . . , p;

(b) n−1
∑n

i=1

{
α̂k(Ui)

QR − αk(Ui)
}2

= Op

(
n−2r/(2r+1)

)
, k = 0, 1, . . . , ν;

(c) Λ
−1/2
n∗ Kn∗

{
α̂QR

(c) −α(c)

}
→ N(0, Is−ν), where α̂QR

(c) is the penalized quantile

regression estimator of α(c), and Λn∗ and Kn∗ are defined as in (A.11) in the

Appendix.

The theorems establish the asymptotic properties of the proposed estima-

tors. Part (a) suggests that the proposed penalized procedure provides consistent

variable selection and automatic separation of different types of effects. Part (b)

states that the estimated varying coefficients achieve the optimal nonparametric

convergence rate under the smoothness assumption A1 (Stone (1982)). Part (c)

shows that the estimated constant coefficients have the same asymptotic distri-

bution as their counterparts obtained when the true model is known.

Remark 2. Asymptotically, even without iteration, the estimator γ̂CZ at the

second step already possesses the same asymptotic properties as γ̂final. However,

our experience suggests that iteration provides finite-sample improvement when

some covariates either have no effects or have constant effects. One explanation

is that, for sparse models, the first two steps lead to more efficient penalized

estimators than the γ̃ obtained under the full model. Therefore, the adaptive

weights based on the penalized estimators shrink the effects of irrelevant covari-

ates more effectively toward zero. In our work, convergence is often achieved

within two iterations.

4. Simulation Study

In this section, we assess the finite sample performance of the proposed

method through three simulation examples.

Example 1. We compare the performance of the proposed method for least

squares regression (referred to as LSR) to two existing methods, the modified
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cross-validation-based method (mCV) of Xia, Zhang, and Tong (2004) and the

component selection and smoothing operator (COSSO) of Leng (2009). The

COSSO was first studied by Lin and Zhang (2006) for additive models, and it was

extended by Leng (2009) to varying coefficient models. Both mCV and COSSO

were designed to determine which coefficients are varying, but neither is able to

select variables with nonzero constant effects. Therefore, for fair comparison, we

focus on the separation of variables with varying and constant effects.

As in Xia, Zhang, and Tong (2004) and Leng (2009), 100 replicates were

randomly generated from

Yi = α0(Ui) + α1(Ui)X
(1)
i + aα2(Ui)X

(2)
i +

6∑
k=3

αk(Ui)X
(k)
i + σ0ei, i = 1, . . . , n,

where Ui ∼ Uniform(0, 1), and X
(1)
i , . . . , X

(6)
i and ei are independent N(0, 1)

variables. The coefficient functions αk(u) were α0(u) = exp{−32(u − 0.5)2},
α1(u) = sin(2πu), α2(u) = cos(2πu), α3 = 1, α4 = −1, α5 = 1, and α6 =

0. The parameter a determines the extent to which α2(u) varies with u. The

parameter σ0 controls the signal-to-noise level. For fair comparison, we make

a slight modification to our algorithm, so that the intercept term α0(u) is also

penalized, as in the other two competing methods.

Table 1 summarizes the automatic separation results. The results of mCV

and COSSO are from Xia, Zhang, and Tong (2004) and Leng (2009). When the

variability of the varying coefficient α2(u) is small (a = 0.3) and the noise is large

(σ0 = 0.5), COSSO seems to perform the best, while our method is comparable

to it. However, for data sets with larger variability of α2(u) or smaller noise, our

method performs similarly to mCV, and both are clearly better than COSSO

in terms of separating the constant and varying coefficients. Note that, in this

example, X
(6)
i has no effect on Yi and thus is redundant. Our method is able to

select the exact true model with high proportion; see the last column of Table 1.

However, neither mCV nor COSSO can eliminate X
(6)
i in the final model.

Example 2. In this example, we investigate the performance of the proposed

method for least squares regression (LSR) and median regression (MR). We gen-

erated 1,000 replicates, each consisting of n = 500 observations obtained as

Yi = α0(Ui) +
10∑
k=1

αk(Ui)X
(k)
i + ei,

where Ui ∼ Uniform(0, 1), and X
(k)
i , k = 1, . . . , 10, are independent N(0, 1)

variables. Here X
(k)
i , k = 1, 2, have varying effects, X

(k)
i , k = 3, 4, have nonzero
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Table 1. Frequencies that αk(u), k = 0, 1, . . . , 6 are selected to be constant
in 100 replicates.

a σ0 n Method α0 α1 α2 α3 α4 α5 α6 Md. Oracle
0.3 0.5 100 LSR 1 0 25 88 93 90 90 52 52

mCV 0 0 66 99 99 100 100 34 /
COSSO 2 0 18 91 93 87 91 57 /

200 LSR 0 0 2 95 96 97 95 84 82
mCV 0 0 33 100 100 100 100 67 /

COSSO 0 0 0 96 96 93 98 87 /
0.2 100 LSR 0 0 7 97 98 98 98 86 86

mCV 0 0 2 99 99 100 100 97 /
COSSO 0 0 0 98 100 95 97 90 /

200 LSR 0 0 1 100 100 100 100 99 99
mCV 0 0 0 100 100 100 100 100 /

COSSO 0 0 0 96 94 95 98 86 /

5n−1/2 0.5 100 LSR 2 0 3 95 97 94 94 81 78
mCV 0 0 14 99 100 100 100 85 /

COSSO 2 0 0 95 94 88 90 68 /
200 LSR 0 0 2 98 100 100 100 96 94

mCV 0 0 10 100 100 100 100 90 /
COSSO 0 0 0 95 95 93 98 86 /

0.2 100 LSR 0 0 0 100 100 99 100 99 99
mCV 0 0 0 99 99 100 100 99 /

COSSO 0 0 0 95 96 90 93 74 /
200 LSR 0 0 0 100 100 100 100 100 100

mCV 0 0 3 100 100 100 100 97 /
COSSO 0 0 0 94 93 94 99 83 /

Md.: frequency that the varying and constant coefficients are separated correctly; Oracle:

frequency that the true model is selected.

constant effects, and the others are redundant variables. We took two distri-

butions for generating the random error ei: standard normal and t(3), the t-

distribution with 3 degrees of freedom. We set α0(u) = 15+20 sin(πu/2), α1(u) =

2 − 3 cos{(6u − 5)π/3}, α2(u) = 6 − 6u, α3(u) ≡ 1.5, α4(u) ≡ 2, and αk(u) ≡ 0

for k = 5, . . . , 10.

Table 2 summarizes the results for the normal error and the t(3) error. For

comparison, we also include the results of median regression and least squares

regression obtained under the true model, referred to as Oracle.M and Oracle.LS,

respectively. Parts (I) and (I’) show the variable selection results, including the

percentage of correctly selecting the true model (Oracle Perc.), the average num-

ber of effects (excluding the intercept) that are selected as varying (Aver.v), and

the average number of redundant variables that are incorrectly selected (Aver.r).

The ideal values of Aver.v and Aver.r are 2 and 0, respectively. Parts (II) and
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(II’) summarize the estimation results, including the mean squared error (MSE)

of α̂k conditional on the models where αk is selected as constant, k = 3, 4, and

the integrated mean squared error (IMSE) of α̂k(u), k = 0, 1, 2, defined as

IMSE {α̂k(u)} =
1

1, 000

1,000∑
i=1

1

100

100∑
a=1

{α̂k,i(ua)− αk(ua)}2 ,

where {ua, a = 1, . . . , 100} is a grid equally spaced on [0.02, 0.98], α̂k,i(ua) =

γ̂T
k,iπ(ua), and γ̂k,i are the estimates of αk(ua) and γk in the ith replicate, re-

spectively. The values in parentheses are the Monte Carlo standard errors of the

MSE and IMSE estimates.

Simulation results have the estimates of MR and LSR close to those of their

oracle counterparts. For normal errors, MR and LSR perform similarly in terms

of variable selection, but LSR is slightly more efficient for estimating the nonzero

constant and varying coefficients. However, when the error distribution has heavy

tails, MR produces not only more accurate variable selection, but also much more

efficient estimation than LSR.

Example 3. In this example, we considered the performance of the proposed

method with high dimensional covariates. We generated 1,000 replicates, each

consisting of n = 500 observations obtained as

Yi = α0(Ui) +
50∑
k=1

αk(Ui)X
(k)
i + ei,

where the index variable Ui ∼ Uniform(0, 1), and X
(k)
i , k = 1, . . . , 50, are in-

dependent N(0, 1) variables. Here X
(k)
i , k = 1, 2, have varying effects on the

response, X
(k)
i , k = 3, . . . , 6, have nonzero constant effects, and the others are re-

dundant variables. As in Example 2, we considered two distributions for generat-

ing the random error ei: standard normal and t(3). We set αk(u), k = 0, 1, . . . , 4,

as in Example 2, α5(u) ≡ −1, α6(u) ≡ 1, and αk(u) ≡ 0 for k = 7, . . . , 50. We

used cubic splines, therefore the dimension of spline coefficients to estimate was

50(kn + 4) with kn selected as 2 or 3, comparable to the sample size, n = 500.

Table 3 summarizes the results for the normal error and the t(3) error. Over-

all, we can see that the proposed MR and LSR methods perform quite well even

when the dimension of spline coefficients is comparable to the sample size, and

the results are similar to Example 2. It is surprising that the estimated varying

coefficients of LSR have smaller IMSE’s than the oracle estimators obtained un-

der the true model. Further investigation shows that the smaller IMSE of LSR is

mainly due to the smaller bias, which is possibly caused by the under-shrinkage
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Table 2. Variable selection and estimation results in Example 2.

Methods MR Oracle.M LSR Oracle.LS
(I): variable selection results for N(0, 1) error

Oracle Perc. 86.8 100 83.1 100
Aver.v 2.07 2 2.18 2
Aver.r 0.14 0 0.14 0

(II): estimation results for N(0, 1) error
102× IMSE
α0(u) 20.29 (0.38) 20.31 (0.38) 19.64 (0.35) 19.86 (0.35)
α1(u) 7.71 (0.12) 7.70 (0.12) 7.06 (0.10) 7.08 (0.10)
α2(u) 3.11 (0.06) 3.12 (0.06) 2.33 (0.04) 2.35 (0.04)
103× MSE
α3 3.43 (0.16) 3.39 (0.15) 2.24 (0.10) 2.11 (0.10)
α4 3.26 (0.15) 3.25 (0.15) 2.40 (0.11) 2.31 (0.11)

Methods MR Oracle.M LSR Oracle.LS
(I’): variable selection results for t(3) error

Oracle Perc. 85.3 100 59.9 100
Aver.v 2.11 2 2.60 2
Aver.r 0.13 0 0.47 0

(II’): estimation results for t(3) error
102× IMSE
α0(u) 21.00 (0.40) 21.00 (0.41) 21.95 (0.44) 22.05 (0.44)
α1(u) 8.47 (0.14) 8.45 (0.14) 9.50 (0.17) 9.50 (0.18)
α2(u) 3.68 (0.07) 3.67 (0.07) 5.01 (0.14) 4.91 (0.13)
103× MSE
α3 4.29 (0.19) 4.14 (0.19) 5.98 (0.28) 5.67 (0.29)
α4 4.04 (0.18) 3.90 (0.17) 6.09 (0.30) 5.98 (0.28)

Oracle.M: median estimation obtained under the true model; Oracle.LS: least

squares estimation obtained under the true model; Oracle Perc.: the percentage

of replications that the exact true model is selected; Aver.v: average number

of varying effects selected (excluding the intercept); Aver.r: average number of

redundant variables that are incorrectly selected; IMSE: integrated mean squared

error; MSE: mean squared error. The values in parentheses are the Monte Carlo

standard error of the IMSE and MSE estimates.

of the varying coefficients but over-shrinkage of the constant coefficients. Conse-

quently, the MSE’s of LSR for constant coefficients are much larger than those

of Oracle.

5. Application to the Childhood Malnutrition Data in India

We apply the proposed method to a subset of the Childhood Malnutri-

tion Data in India, to study risk factors for early childhood malnutrition. The

data is based on the Demographic and Health Surveys data from 2005–2006,
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Table 3. Variable selection and estimation results in Example 3.

Methods MR Oracle.M LSR Oracle.LS
(I): variable selection results for N(0, 1) error

Oracle Perc. 78.9 100 77.3 100
Aver.v 2.10 2 2.30 2
Aver.r 0.28 0 0.28 0

(II): estimation results for N(0, 1) error
102× IMSE
α0(u) 20.34 (0.38) 20.33 (0.38) 17.82 (0.35) 19.63 (0.36)
α1(u) 7.97 (0.13) 8.00 (0.13) 6.75 (0.10) 6.96 (0.11)
α2(u) 3.26 (0.06) 3.24 (0.06) 2.23 (0.04) 2.40 (0.04)
103× MSE
α3 3.14 (0.16) 2.83 (0.13) 2.50 (0.12) 2.09 (0.10)
α4 3.35 (0.15) 3.26 (0.15) 2.13 (0.10) 1.87 (0.08)
α5 3.78 (0.16) 3.32 (0.14) 3.04 (0.14) 2.15 (0.10)
α6 3.65 (0.17) 3.18 (0.14) 3.12 (0.14) 2.18 (0.11)

(I’): variable selection results for t(3) error
Oracle Perc. 79.1 100 47.4 100
Aver.v 2.17 2 3.23 2
Aver.r 0.26 0 1.25 0

(II’): estimation results for t(3) error
102× IMSE
α0(u) 21.02 (0.38) 21.02 (0.38) 20.70 (0.46) 22.22 (0.43)
α1(u) 8.62 (0.14) 8.63 (0.14) 9.61 (0.20) 9.74 (0.21)
α2(u) 3.76 (0.07) 3.74 (0.07) 5.12 (0.17) 5.15 (0.15)
103× MSE
α3 4.19 (0.19) 3.94 (0.18) 8.56 (0.44) 6.19 (0.33)
α4 4.36 (0.21) 3.99 (0.18) 7.05 (0.37) 6.23 (0.41)
α5 4.85 (0.22) 3.93 (0.16) 11.29 (0.50) 6.52 (0.32)
α6 4.88 (0.23) 4.20 (0.16) 10.75 (0.47) 5.73 (0.27)

Oracle.M: median estimation obtained under the true model; Oracle.LS: least

squares estimation obtained under the true model; Oracle Perc.: the percentage

of replications that the exact true model is selected; Aver.v: average number

of varying effects selected (excluding the intercept); Aver.r: average number of

redundant variables that are incorrectly selected; IMSE: integrated mean squared

error; MSE: mean squared error. The values in parentheses are the Monte Carlo

standard error of the corresponding estimates.

available free of charge for research purposes at http://www.measuredhs.com/

countries/start.cfm. Fenske, Kneib, and Hothorn (2009), and Koenker (2010)

analyzed the whole data set by fitting nonparametric additive models. The two

papers focused on nonparametric estimation instead of variable selection. Here

we analyze a subset of the data including 606 children from New Delhi City be-

tween the ages of 0 and 5. Similar to Koenker (2010), we used child height as

http://www.measuredhs.com/countries/start.cfm
http://www.measuredhs.com/countries/start.cfm
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the response variable, child age as the index variable, with 16 covariates. A brief

description of the variables is as follows; more detailed information can be found

in Koenker (2010).

Y : Child’s height (cm); U : Child’s age (months);

X1: Breastfeeding (months); X2: Mother’s Body Mass Index(BMI);

X3: Mother’s age (years); X4: Mother’s education (years);

X5: Father’s education (years); X6: Child’s sex, 1=Female, 0=Male;

X7: 1=First child in the family, 0=not; X8: 1=Mothe is employed, 0=not;

X9: 1=Religion not Hindu, 0=Hindu; X10: 1=Rich family, 0=not;

X11: 1=Has radio, 0=not; X12: 1=Has television, 0=not;

X13: 1=Has refrigerator, 0=not; X14: 1=Has bicycle, 0=not;

X15: 1=Has motorcycle, 0=not; X16: 1=Has car, 0=not.

We applied least squares regression and quantile regression to the data at

two quantile levels τ = 0.1 and 0.5, since we are not only interested in the typical

nutrition in terms of the mean and median, but also in severe malnutrition. In

median regression, our approach selects the model

Y = α0(u) +
∑

k∈{1,15}

αk(u)Xk +
∑

k∈{3,4,5,6,7,14}

αkXk + ϵ.

The quantile regression approach at τ = 0.1 selects the model

Y = α0(u) +
∑

k∈{1,11,15}

αk(u)Xk +
∑

k∈{3,4,8,14}

αkXk + ϵ.

The least squares regression selects the model

Y = α0(u) +
∑

k∈{1,2,4,15}

αk(u)Xk +
∑

k∈{3,5,7,10,14}

αkXk + ϵ.

Of those selected, we see something in common: X1 and X15 have varying effects,

and X3 and X14 have nonzero constant effects.

Table 4 summarizes the estimates of the nonzero constant coefficients, where

the standard error in parenthese is obtained by using the bootstrap method with

200 bootstrap estimates obtained under the selected model. Figure 1 shows the

estimated varying coefficients in the median regression, the 0.1th quantile regres-

sion, and the least squares regression. The shaded areas are the 90% pointwise

confidence bands for the least squares estimates, obtained by using the bootstrap

method based on 200 bootstrap samples with the bias being ignored.

From Table 4, we see that mother’s age and education have positive effects on

the child’s height at both the lower quantile and the center. In contrast, father’s
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Table 4. Nonzero constant estimates and their standard errors (values in the
parenthese) for the Childhood Malnutrition Data in India.

Variable αLSR αMR α0.1

X1 V V V
X2 V 0 (–) 0 (–)
X3 0.158 (0.060) 0.231 (0.064) 0.227 (0.091)
X4 V 0.139 (0.051) 0.349 (0.074)
X5 0.104 (0.055) 0.142 (0.061) 0 (–)
X6 0 (–) –0.856 (0.509) 0 (–)
X7 –0.943 (0.471) –1.302(0.553) 0 (–)
X8 0 (–) 0 (–) –2.306 (1.027)
X9 0 (–) 0 (–) 0 (–)
X10 0.876 (0.582) 0 (–) 0 (–)
X11 0 (–) 0 (–) V
X12 0 (–) 0 (–) 0 (–)
X13 0 (–) 0 (–) 0 (–)
X14 1.326(0.463) 1.377(0.531) 1.630(0.853)
X15 V V V
X16 0 (–) 0 (–) 0 (–)

Notation: αLSR: estimates from least squares regression; αMR: estimates from

median regression; α0.1: estimates from the 0.1th quantile regression; V : varying

effect.

education has positive effect only on the mean and the median of child’s height.

Girls are shorter than boys at the median and, on average, the first born child

is taller than younger siblings. For the child with severe malnutrition, working

mother has a negative effect on the response. The mean height is larger in

families with higher household economic status. Bicycle ownership is associated

with better health.

From Figure 1, we see that breastfeeding has a positive effect for new born

children, and the effect decreases quickly as the children grow, reaching zero

at around 10 months. However, this positive effect lasts longer for children

with severe malnutrition; breastfeeding is the most important, maybe the only,

nutrition for these children. The mother’s BMI has positive effect as the child

grows. The effect of radio is positive on the children with severe malnutrition

only when they are young enough, but is negative later on. If we ignore the

boundary region, the effect of the motorcycle is negative for children aged 2 to

20 months, but positive for children aged 25 to 45 months.
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Appendix

A.1. Some useful lemmas

We first provide some useful lemmas that facilitate the proofs of Theorems

1 and 2. The method used in the proof of Lemma A.1 is similar to that used

in Theorem 4 and Proposition 4 of Chen (1991). Lemma A.2 follows directly

from Corollary 6.21 of Schumaker (1981, Chap. 6). Lemma A.3 is a special case
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of Lemma A.3 in Wang, Li, and Huang (2008). Lemma A.4 is a special case of

Lemma A.7 in Huang, Wu, and Zhou (2004). Lemma A.5 follows from Theorem

2 of He and Shi (1994) and Theorem 2 of Huang, Wu, and Zhou (2002). We omit

the proofs of these lemmas.

Lemma A.1. Suppose A1-A3 hold and kn ∼ n1/(2r+1), the eigenvalues of n−1knVn

are uniformly bounded away from zero and infinity in probability, where

Vn = (π1, . . . ,πn)(π1, . . . ,πn)
T .

Lemma A.2. Suppose A1−A3 hold, then there exists a spline coefficient vector

γ0 = (γ0T
0 ,γ0T

1 , . . . ,γ0T
p )T , and some positive constants a1, a2, and ϵ1, such that

(i) ∥γ0
k∗∥L1>ϵ1 if k ∈ {1, . . . , ν}, γ0k,1=αk,γ

0
k∗=0kn+~ if k∈{ν + 1, . . . , s},

and γ0
k = 0qn if k ∈ {s+ 1, . . . , p}; (A.1)

(ii) sup
(u,X)∈[0,1]×Rp+1

|Π(u,X)Tγ0 − xTα(u)| ≤ a1k
−r
n ;

(iii) sup
u∈[0,1]

∣∣αk(u)− π(u)Tγ0
k

∣∣ ≤ a2k
−r
n , k = 0, 1, . . . , ν,

where γ0
k = (γ0k,1,γ

0T
k∗ )

T , k = 0, 1, . . . , p.

For simplicity, we adopt the notation

Y = (Y1, . . . , Yn)
T , Π̃ = (Π1, . . . ,Πn)

T , e = (e1, . . . , en)
T ,

Π(1)i =
(
X

(0)
i πT

i , . . . , X
(ν)
i πT

i

)T
, Π(2)i =

(
X

(ν+1)
i , . . . , X

(p)
i

)T
,

Π(c)i =
(
X

(ν+1)
i , . . . , X

(s)
i

)T
,

γ(1) = (γT
0 , . . . ,γ

T
ν )

T , γ(2) = (γν+1,1, . . . , γp,1)
T , γ(c) = (γν+1,1, . . . , γs,1)

T ,

γ0
(1) = (γ0T

0 , . . . ,γ0T
ν )T , γ0

(2) = (γ0ν+1,1, . . . , γ
0
p,1)

T = (αT
c , 0

T
s−ν)

T ,

γ0
(c) = αc = (αν+1, . . . , αs)

T ,

Dni =ΠT
i γ

0 −XT
i α(Ui), Dn = (Dn1, . . . , Dnn)

T , dnik = πTi γ
0
k − αk(Ui).

By (ii) and (iii) of Lemma A.2, it is easy to see that maxi |Dni| ≤ a1k
−r
n ,

∥Dn∥L2 = Op(n
1/2k−r

n ), maxi,k |dnik| ≤ a2k
−r
n , and dnik = 0 for k > ν. By

Lemma A.5 of Kim (2007), maxni=1

∥∥Π(1)i

∥∥
L2

= Op(1).

Lemma A.3. Suppose A1−A3 hold and kn ∼ n1/(2r+1), then we have

n−1/2 sup
v∈R(p+1)qn

∣∣∣vT Π̃Te
∣∣∣

∥v∥L2

= Op(1).
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Lemma A.4. Suppose A1−A3 hold and kn ∼ n1/(2r+1). Let Ȳi = E(Yi|Xi, Ui),

Ȳ = (Ȳ1, . . . , Ȳn)
T , and γ̄ = (Π̃T Π̃)−1Π̃T Ȳ . Then ∥γ̄ − γ0∥L2 = Op(n

−1/2kn).

Lemma A.5. Let γ̃ be the minimizer of (2.3) with λ1,n = 0. Then if A1−A3

hold and kn ∼ n1/(2r+1), we have, for both quantile and least squares regressions,

∥γ̃ − γ0∥L2 = Op(n
−1/2kn).

Let γ = (γT
0 , . . . ,γ

T
p )

T be any given (p+ 1)qn-vector, with γk = (γk,1,γ
T
k∗)

T

and γk∗ = (γk,2, . . . , γk,qn)
T .

Lemma A.6. Under the conditions of Theorems 1 and 2 we have, for both

quantile and least squares regressions, ∥γ̂V C −γ0∥L2 = Op(n
−1/2kn), where γ̂

V C

is the minimizer of (2.3).

Proof. Combining (A.1) and Lemma A.5, there exist some positive constants bk
such that ∥γ̃k∗∥L1 > bk, and therefore ω̃k∗ = ∥γ̃k∗∥−1

L1
< b−1

k , hold in probability

for k = 1, . . . , ν. By routine calculation, ∥γk∗−γ0
k∗∥L1 ≤ q

1/2
n ∥γ−γ0∥L2 . Assume

that ∥γ − γ0∥L2 = C1n
−1/2kn and C1 is large enough. Then combining (A.1)

and A4,

nλ1,n

p∑
k=1

ω̃k∗
(
∥γk∗∥L1 − ∥γ0

k∗∥L1

)
≥ −nλ1,n

ν∑
k=1

ω̃k∗
(
∥γk∗ − γ0

k∗∥L1

)
= Op

(
nλ1,n

ν∑
k=1

b−1
k q1/2n C1n

−1/2kn

)
= op(kn). (A.2)

Let Bn(γ)
.
=

∑n
i=1

[
g(Yi −ΠT

i γ)− g(Yi −ΠT
i γ

0)
]
=

∑n
i=1

[
g(ei −ΠT

i (γ −

γ0)−Dni)− g(ei −Dni)
]
. For quantile regression, by Lemma 3.2 and the argu-

ments used for proving Lemma 3.3 in He and Shi (1994),

P
(

inf
∥γ−γ0∥L2

=C1n−1/2kn
Bn(γ) > kn

)
−→ 1. (A.3)

For least squares regression, by decomposing γ as (γ − γ0) + (γ0 − γ̄) + γ̄, and

facilitated by Lemmas A.1, A.3, and A.4, we can prove that there exists a positive

constant C2 such that

P
(

inf
∥γ−γ0∥L2

=C1n−1/2kn
Bn(γ) > C2C

2
1kn

)
−→ 1. (A.4)
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By the definition of Bn(·),

l1(γ)− l1(γ
0) = Bn(γ) + nλ1,n

p∑
k=1

ω̃k∗
(
∥γk∗∥L1 − ∥γ0

k∗∥L1

)
. (A.5)

Equations (A.2), (A.3), (A.4), and (A.5) together suggest that l1(γ)− l1(γ0) > 0
in probability for both quantile and least squares regressions. By the convexity
of l1(γ) and the fact that l1(γ̂

V C) − l1(γ
0) ≤ 0, there exists some Cς1 , for any

ς1 > 0, such that as n→ ∞,

P
(
∥γ̂V C − γ0∥L2 ≤ Cς1n

−1/2kn

)
> 1− ς1.

Therefore, Lemma A.6 is proved.

In the following, we prove Theorem 1 and Theorem 2 with α̂(u) estimated
from γ̂CZ , the estimator obtained after Step 2 of the first iteration, as γ̂CZ and
the estimator at convergence γ̂final have the same asymptotic properties. For
ease of representation, we omit the statement “with probability approaching one”
whenever it is clear. For example, the statement γ̂k,l = 0 means that γ̂k,l = 0
with probability approaching one. We give the proof for Theorem 2. The proof
of Theorem 1 is similar and thus is not given in detail.

A.2. The Proof of Theorem 2 in four steps

(I) Proof of the first part of Theorem 2(a): as n → ∞, with probability
approaching 1, γ̂V C

k∗ = 0, k = ν + 1, . . . , p, therefore α̂k(u) is constant. We prove
this using the Karush-Kuhn-Tucker conditions (Yuan and Lin (2006), Huang,
Horowitz, and Wei (2010)).

If M(γ) is the derivative of l1(γ) with respect to γ,

M(γ) =
∂l1(γ)

∂γ
=

n∑
i=1

−ψτ (Yi −ΠT
i γ)Πi + nλ1,n(K

T
γ0
,KT

γ1
, . . . ,KT

γp
)T ,

where ψτ (t) = τ − I(t < 0), Kγ0 = 0qn , and

Kγk
= ω̃k∗

∂∥γk∗∥L1

∂γk
= ω̃k∗ (0, sign(γk,2), . . . , sign(γk,qn))

T , k = 1, . . . , p.

According to the Karush-Kuhn-Tucker conditions, a necessary and sufficient
condition for (γ̂V CT

0 , γ̂V CT

1 , . . . , γ̂V CT

p )T to be the minimizer of l1(γ) is that

−
n∑

i=1

ψτ (Yi −ΠT
i γ̂

V C)X
(k)
i πi + nλ1,nKγ̂V C

k
= 0 for any ∥γ̂V C

k∗ ∥L2 ̸= 0, k ≥ 0,∥∥∥∥∥
n∑

i=1

ψτ (Yi −ΠT
i γ̂

V C)X
(k)
i πi

∥∥∥∥∥
L2

≤ nλ1,nω̃k∗ for any ∥γ̂V C
k∗ ∥L2 = 0, k ≥ 1.



622 YANLIN TANG, HUIXIA JUDY WANG, ZHONGYI ZHU AND XINYUAN SONG

To prove the first part of Theorem 2(a), we only need prove that for k =

ν + 1, . . . , p,
∥∥∥∑n

i=1 ψτ (Yi −ΠT
i γ̂

V C)X
(k)
i πi

∥∥∥
L2

≤ nλ1,nω̃k∗.

Let S0
n =

∑n
i=1 ψτ (ei)Πi and Sn(γ) =

∑n
i=1 ψτ (Yi − ΠT

i γ)Πi. By Lemma

1, we can easily establish that ∥S0
n∥L2 = Op(n

1/2k
−1/2
n ). Since γ̂V C − γ0 =

Op(n
−1/2kn), similar to the lines used in the proof of Lemmas 8.4, 8.5, and

Theorem 4.1 in Wei and He (2006), with Lemma A.1 we can show that ∥Sn(γ̂V C)

−Sn(γ0)∥L2 = op(n
1/2).

Note that Sn(γ
0) =

∑n
i=1 ψτ (ei−Dni)Πi and maxi |Dni| ≤ a1k

−r
n . We want

to point out that∥∥Sn(γ0)− S0
n

∥∥
L2

= Op

(∥∥E [
Sn(γ

0)− S0
n

]∥∥
L2

+
{
E
[
Sn(γ

0)− S0
n

]T [
Sn(γ

0)− S0
n

]}1/2
)
.

Let Hn =
∑n

i=1ΠiΠ
T
i , then by Lemma A.1, the maximum eigenvalue of Hn,

λmax(Hn) = Op(n/kn). By the Cauchy-Schwarz inequality,

∥∥E [
Sn(γ

0)− S0
n

]∥∥
L2

=
∥∥∥ n∑

i=1

ΠiE [ψτ (ei −Dni)− ψτ (ei)]
∥∥∥
L2

= Op

(∥∥∥ n∑
i=1

Πifi(0)Dni

∥∥∥
L2

)
≤ Op

(
λ1/2max(Hn)(nk

−2r
n )1/2

)
= Op(n

1/2). (A.6)

By the independence of ei and Lemma A.1, there exists a large enough

positive constant C3 such that

E
[
Sn(γ

0)− S0
n

]T [
Sn(γ

0)− S0
n

]
≤

n∑
i=1

ΠT
i ΠiE [ψτ (ei)− ψτ (ei −Dni)]

2

+

n∑
i1=1

∑
i2 ̸=i1

ΠT
i1Πi2E [ψτ (ei1)− ψτ (ei1 −Dni1)]E [ψτ (ei2)− ψτ (ei2 −Dni2)]

≤ C2

[
(n/kn)a1k

−r
n + nλmax(Hn)k

−2r
n

]
= Op(n). (A.7)

Combining (A.6) and (A.7), we have
∥∥Sn(γ0)− S0

n

∥∥
L2

= Op(n
1/2). There-

fore,

∥Sn(γ̂V C)∥L2 ≤ ∥Sn(γ̂V C)−Sn(γ0)∥L2+∥Sn(γ0)−S0
n∥L2+∥S0

n∥L2 =Op(n
1/2).
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For k = v + 1, . . . , p, it follows by Lemma A.5 that ∥γ̃k∥L1 = Op(k
1/2
n n−1/2kn),

which indicates that ω̃k∗ = ∥γ̃k∥−1
L1

≥ C4n
1/2k

−3/2
n for some positive constant C4.

By assumption A4,

nλ1,nω̃k∗ ≥ (C4nλ1,nk
−3/2
n )n1/2 ≥ ∥Sn(γ̂V C)∥L2

≥
∥∥∥ n∑

i=1

ψτ (Yi −ΠT
i γ̂

V C)X
(k)
i πi

∥∥∥
L2

. (A.8)

(II) Proof of Theorem 2(b): the optimal convergence rate of the varying

coefficient estimates.

In Lemma A.6 and (I), we have proved that, when n→ ∞, with probability

approaching 1, ∥γ̂V C
k∗ ∥L1 > 0, k ≤ ν and ∥γ̂V C

k∗ ∥L1 = 0, k > ν. Recall the

definitions of γ(1) and γ(2), and γ1 in the iteration estimation procedure. For the

quantile regression, with probability approaching 1, we have

l2(γ
1)=

n∑
i=1

ρτ

(
Yi−ΠT

(1)iγ(1)−ΠT
(2)iγ(2)

)
+nλ2,n

p∑
k=ν+1

ω̂k,1|γk,1|
.
= l2

(
γ(1),γ(2)

)
.

For k = ν + 1, . . . , s, by (A.1) and Lemma A.6, there exists some positive

constant b̃ such that |γ̂V C
k,1 | > b̃; therefore ω̂k,1 = |γ̂V C

k,1 |−1 < b̃−1 holds in proba-

bility. Similar to the proof of Lemma A.6, there exists some Cς2 , for any ς2 > 0,

such that as n→ ∞,

P

(∥∥∥γ̂(1) − γ0
(1)

∥∥∥
L2

≤ Cς2n
−1/2kn,

∥∥∥γ̂(2) − γ0
(2)

∥∥∥
L2

≤ Cς2n
−1/2k1/2n

)
> 1− ς2,

(A.9)

where
(
γ̂T
(1), γ̂

T
(2)

)T
is the minimizer of l2

(
γ(1),γ(2)

)
. By the definition of γ1,

(A.9) indicates that

P

(∥∥∥γ̂CZ
(1) − γ0

(1)

∥∥∥
L2

≤ Cς2n
−1/2kn

)
> 1− ς2, (A.10)

where γ̂CZ
(1) is the corresponding sub-vector of γ̂CZ . It is easy to see that, for

k = 0, 1, . . . , ν,

1

n

n∑
i=1

[α̂k(Ui)− αk(Ui)]
2 ≤ 2

n

n∑
i=1

[
πT
i (γ̂

CZ
k − γ0

k)
]2

+
2

n

n∑
i=1

d2nik

≤ 2

n
(γ̂CZ

k − γ0
k)

TVn(γ̂
CZ
k − γ0

k) + 2a22k
−2r
n .

As kn ∼ n1/(2r+1), by Lemma A.1 and (A.10) we have proved Theorem 2(b).
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(III) Proof of the second part of Theorem 2(a): the sparsity of the penal-

ized estimator.

In (I), we proved the constancy of α̂k(u) for k = ν + 1, . . . , p. To prove

α̂k(u) ≡ 0, k = s + 1, . . . , p, we only need to prove that γ̂CZ
k,1 = 0. Similar to

(I), by the Karush-Kuhn-Tucker conditions, it suffices to prove that nλ2,nω̂k,1 ≥∥∥∥∑n
i=1X

(k)
i ψτ

(
Yi −ΠT

(1)iγ̂(1) −ΠT
(2)iγ̂(2)

)∥∥∥
L2

.

Following similar lines as in (I), we obtain that∥∥∥ n∑
i=1

X
(k)
i ψτ

(
Yi −ΠT

(1)iγ̂(1) −ΠT
(2)iγ̂(2)

)∥∥∥
L2

= Op(n
1/2k1/2n ).

Combining (A.1) and Lemma A.6, γ̂V C
k,1 = Op(n

−1/2k
1/2
n ), and then there exists

some positive constant C5 such that ω̂k,1 ≥ C5n
1/2k

−1/2
n . The result follows from

assumption A4.

(IV) Proof of Theorem 2(c): the asymptotic normality of the constant coef-

ficient estimates. For simplicity, we omit CZ from γ̂CZ and its sub-vector.

Let

Π̆(1) =
(
Π(1)1, . . . ,Π(1)n

)T
, Π̆(c) =

(
Π(c)1, . . . ,Π(c)n

)T
,

B̆ = diag
(
f1(0), . . . , fn(0)

)
,

P̆ = Π̆(1)

(
Π̆T

(1)B̆Π̆(1)

)−1
Π̆T

(1)B̆, Π̆(c)∗ = (I − P̆ )Π̆(c),

Kn∗ = Π̆T
(c)∗B̆Π̆(c)∗, Λn∗ = τ(1− τ)Π̆T

(c)∗Π̆(c)∗. (A.11)

By (I) and (III), as n → ∞, with probability approaching 1, γ̂k∗ = 0, k =

ν+1, . . . , s and γ̂k = 0, k = s+1, . . . , p. Therefore, with probability approaching

1, we have

l2
(
γ(1),γ(2)

)
=

n∑
i=1

ρτ

(
Yi −ΠT

(1)iγ(1) −ΠT
(c)iγ(c)

)
+nλ2,n

s∑
k=ν+1

ω̂k,1|γk,1|
.
= l2

(
γ(1),γ(c)

)
.

Let

ζ
(
γ(1),γ(c)

)
=

(
ζ1
ζ2

)

=

 Λ
−1/2
n∗ Kn∗

(
γ(c) − γ0

(c)

)
k
−1/2
n H̆n

(
γ(1) − γ0

(1)

)
+ k

1/2
n H̆−1

n Π̆T
(1)B̆Π̆(c)

(
γ(c) − γ0

(c)

)  ,
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ζ̂ = ζ
(
γ̂(1), γ̂(c)

)
= (ζ̂T1 , ζ̂

T
2 )

T , where H̆2
n = knΠ̆

T
(1)B̆Π̆(1), and

(
γ̂T
(1), γ̂

T
(c)

)T

is the minimizer of l2
(
γ(1),γ(c)

)
. From (A.9), ∥γ̂(1) − γ0

(1)∥L2 = Op(n
−1/2kn),

∥γ̂(c) − γ0
(c)∥L2 = Op(n

−1/2k
1/2
n ); therefore ∥ζ̂∥L2 = Op(k

1/2
n ).

Let ζ̂∗1 = Λ
−1/2
n∗ Π̆T

(c)∗ψτ (e), where ψτ (ei) = τ − I(ei < 0) and ψτ (e) =

{ψτ (e1), . . . , ψτ (en)}T . By Lemmas 1 and 2 in Wang, Zhu, and Zhou (2009),

ζ̂∗1 is asymptotically normal distributed with variance-covariance matrix Is−ν .

Therefore, to prove part (c) of Theorem 2, we only need to prove ∥ζ̂1 − ζ̂∗1∥L2 =

op(1).

By the definition of ζ̂1 and ζ̂∗1 , there exist two positive constants C6 and C7

such that P
(
∥ζ̂∗1∥L2 < C6

)
→ 1 and P

(
∥ζ̂1∥L2 < C7k

1/2
n

)
→ 1. Let

Ui(ζ1, ζ̂
∗
1) = ρτ

(
ei − ζT1 Π̃(c)i − ζ̂T2 Π̃(1)i −Dni

)
−ρτ

(
ei − ζ̂∗T1 Π̃(c)i − ζ̂T2 Π̃(1)i −Dni

)
,

where Π̃(1)i = k
1/2
n H−1

n Π(1)i, Π̃(c)i = Λ
1/2
n∗ K

−1
n∗ Π̆(c)∗i. By Lemmas 8.1 and 8.3 of

Wei and He (2006) and the orthogonality of Π̆(1) and Π̆(c)∗, for any given η > 0,

sup
∥ζ1−ζ̂∗

1∥L2
<η

∣∣∣∣∣
n∑

i=1

[
Ui(ζ1, ζ̂

∗
1) + (ζ1 − ζ̂∗1)

T Π̃(c)iψτ (ei)− EUi(ζ1, ζ̂
∗
1)
]∣∣∣∣∣=op(1),

sup
∥ζ1−ζ̂∗

1∥L2
<η

∣∣∣∣∣
n∑

i=1

EUi(ζ1, ζ̂
∗
1)−

1

2

(
ζT1 Λ

1/2
n∗ K

−1
n∗ Λ

1/2
n∗ ζ1−ζ̂∗T1 Λ

1/2
n∗ K

−1
n∗ Λ

1/2
n∗ ζ̂∗1

)∣∣∣∣∣=op(1).
By the definition of ζ̂∗1 and Π̃(c)i,

(ζ1 − ζ̂∗1)
T Π̃T

(c)ψτ (e) = (ζ1 − ζ̂∗1)
TΛ

1/2
n∗ K

−1
n∗ Λ

1/2
n∗ ζ̂∗1 ,

where Π̃(c) =
(
Π̃(c)1, . . . , Π̃(c)n

)T
. Therefore,

sup
∥ζ1−ζ̂∗

1∥L2
<η

∣∣∣∣∣
n∑

i=1

Ui(ζ1, ζ̂
∗
1) + (ζ1 − ζ̂∗1)

T Π̃(c)ψτ (e)

−1

2

(
ζT1 Λ

1/2
n∗ K

−1
n∗ Λ

1/2
n∗ ζ1 − ζ̂∗T1 Λ

1/2
n∗ K

−1
n∗ Λ

1/2
n∗ ζ̂∗1

)∣∣∣∣
= sup

∥ζ1−ζ̂∗
1∥L2

<η

∣∣∣ n∑
i=1

Ui(ζ1, ζ̂
∗
1)− 1/2(ζ1 − ζ̂∗1)

TΛ
1/2
n∗ K

−1
n∗ Λ

1/2
n∗ (ζ1 − ζ̂∗1)

∣∣∣
= op(1). (A.12)
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Let γ̂∗
(c)

.
= (γ̂∗ν+1,1, . . . , γ̂

∗
s,1)

T = K−1
n∗ Λ

1/2
n∗ ζ̂∗1 + γ0

(c). Then by A4, the definition of

ω̂k,1, and the fact that max
{
∥ζ̂∗1∥L2 , ∥ζ̂1∥L2

}
= Op(k

1/2
n ),

nλ2,n

s∑
k=ν+1

ω̂k,1(|γ̂k,1| − |γ̂∗k,1|) ≥ −nλ2,n
s∑

k=ν+1

ω̂k,1(|γ̂k,1 − γ̂∗k,1|)

= Op

(
nλ2,n

∥∥∥K−1
n∗ Λ

1/2
n∗ (ζ̂1 − ζ̂∗1)

∥∥∥
L1

)
= Op

(
n1/2k1/2n λ2,n

)
= op(1). (A.13)

When ∥ζ1 − ζ̂∗1∥L2 > η, (ζ1 − ζ̂∗1)
T (ζ1 − ζ̂∗1) > 0. Combining (A.12) and

(A.13),

lim
n→∞

P

(
inf

∥ζ1−ζ̂∗
1∥L2

≥η

n∑
i=1

ρτ

(
ei−ζT1 Π̃(c)i−ζ̂T2 Π̃(1)i−Dni

)
+nλ2,n

s∑
k=ν+1

ω̂k,1|γ̂(c)|

>

n∑
i=1

ρτ

(
ei − ζ̂∗T1 Π̃(c)i − ζ̂T2 Π̃(1)i −Dni

)
+ nλ2,n

s∑
k=ν+1

ω̂k,1|γ̂∗
(c)|

)
= 1. (A.14)

By the convexity of l2(·), the definition of ζ̂∗1 and the fact that l2
(
γ(1),γ(c)

)
is

minimized at (γ̂T
(1), γ̂

T
(c))

T, (A.14) implies that for any η>0, P (∥ζ̂1−ζ̂∗1∥L2>η)→0,

that is, ∥ζ̂1 − ζ̂∗1∥L2 = op(1). This completes the proof of part (c) of Theorem 2.

A.3. The Proof of Theorem 1

Let

Φn = n−1
n∑

i=1

Π(1)iΠ
T
(1)i, Ψn = n−1

n∑
i=1

Π(1)iΠ
T
(c)i,

Π(c)∗i =Π(c)i −ΨT
nΦ

−1
n Π(1)i,

K̃n∗ =

n∑
i=1

Π(c)∗iΠ
T
(c)∗i, Λ̃n∗ =

n∑
i=1

σ2iΠ(c)∗iΠ
T
(c)∗i, (A.15)

where σ2i is the conditional variance of ei given (Xi, Ui).
The proof of Theorem 1 can be obtained in four similar steps as in the proof

of Theorem 2. Lemmas A.4, A.5, and A.6 are needed in the first step, Lemmas
A.1 and A.6 are needed in the second and the third steps, and the fourth step
follows similar arguments as used in the proof of Theorem 3 in Zhao and Xue
(2009). We omit the details.
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