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ASYMPTOTIC SECOND MOMENT PROPERTIES OF

OUT-OF-SAMPLE FORECAST ERRORS OF MISSPECIFIED

REGARIMA MODELS AND THE OPTIMALITY OF GLS

David F. Findley
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Abstract: Under minimal assumptions, it is established that the sample second

moments of the errors of out-of-sample (real time) forecasts of possibly incorrect

regARIMA models have asymptotic limits with useful frequency domain formulas.

Both OLS and GLS estimates of the mean function are considered. With misspec-

ified regressors, under additional assumptions that do not appear to exclude any

regressors of interest, the asymptotic formulas are used to show that GLS has min-

imal asymptotic mean square error for one-step-ahead forecasting relative to OLS

and other alternatives.
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1. Introduction

For modeling and forecasting most economic indicators and many other time

series, it is appropriate to model a time-varying mean function as well as the

autocovariance structure. Suppose that, after any needed data transformations,

one has observations Yt, 1 ≤ t ≤ T of a time series of the form

Yt = AXt + yt, (1)

where Xt is a sequence of column vectors and yt is a process with convergent

sample second moments that is asymptotically orthogonal to the sequence Xt in

the double sense of (31) and (32) below. With monthly or quarterly economic

data for example, components of the regressor sequence Xt might describe holiday

effects (Bell and Hillmer (1983)) and trading day effects (Findley, Monsell, Bell,

Otto and Chen (1998)). Or Xt could include economic variables helpful for

forecasting Yt. Such series Yt are candidates for regARMA modeling: the modeler

considers a regressor XM
t that is a subvector of Xt which need not coincide with

Xt, and proceeds as though, for some AM to be estimated, the residual process

yM
t = Yt − AMXM

t has the autocovariance structure of an ARMA (r, s) model,

which need not be the case.
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For model selection in this situation, Findley (1990, 1991) suggests graphical

and other diagnostics that can show whether one of the model choices provides

persistently better h-step-ahead forecasts Y M
t+h|t of data Yt+h, t0 ≤ t ≤ T −h, for

some h ≥ 1 and some t0 < T − h. Dawid (1984), Rissanen (1986), Hjorth (1994)

and Section 4.3 of Findley Monsell, Bell, Otto and Chen (1998) emphasize com-

parisons of “out-of-sample” (real time) forecasts, meaning those obtained when

the model coefficients used to calculate Y M
t+h|t are estimated from Ys, 1 ≤ s ≤ t

for t0 ≤ t ≤ T − h, because the object of interest for forecasting is generally

the future course of the observed series, not the future course of some statis-

tical replicate. The diagnostics for such comparisons that are implemented in

the X-12-ARIMA time series modeling and seasonal adjustment program dis-

cussed in the last reference often suggest that the accumulating squared errors∑τ
t=t0(Yt+h−Y M

t+h|t)
2 increase roughly linearly in τ , or, more concretely, that the

averages of the squared out-of-sample forecast errors converge as τ increases, to

a finite, positive limit, even for models that are far from correct.

In this article, under minimal assumptions on yt, and under practically gen-

eral assumptions on Xt given in Section 3, we show that, for a realization on

which appropriately weighted sample second moment sequences of the series Xt

and yt converge, if XM
t is a subvector of Xt that includes all unbounded regressors

of Xt (e.g., polynomials), then

lim
T→∞

1

T − h − t0 + 1

T−h∑

t=t0

(
Yt+h − Y M

t+h|t

)2
(2)

exists and, moreover, has a frequency domain formula that describes large-sample

effects of any misspecification, either of the regressor or of the model for the

asymptotic second moments of yt; see (58) below. In these and in all other

limiting formulas of the paper, only a single realization is considered, so the

limits are ordinary limits, not probabilistic limits. For simplicity, we use t0 = 1

in sums and T in place of T − h in denominators hereafter.

The analysis required to obtain convergence in (2) is made somewhat del-

icate by the fact that each Y M
t+h|t, and therefore each term of the sum (2), is

determined by a different estimate of the model parameters: the estimate that

determines Y M
t+h|t is a function of the information set Y1, . . . Yt, which increases

with increasing t. (When the coefficients of XM
t are estimated with Generalized

Least Squares (GLS), there can be situations in which each term in (2) depends

on two model parameter estimates, as we shall explain.) The earliest conver-

gence result for an out-of-sample forecast error second moment like (2) is that

of Rissanen (1986) for one-step-ahead (i.e., h = 1) forecasts of a zero mean au-

toregressive process Yt for whose order a finite upper bound is known. Rissanen
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uses the convergence with probability one in (2) to justify the choice of the au-

toregressive model order for which the average on the left in (2) with t0 = 1

is minimized. Our focus on out-of-sample forecast errors was partly stimulated

by Rissanen’s article. We later became aware of the article Dawid (1984) which

promotes out-of-sample forecast error criteria for model selection in a context

without model correctness assumptions.

A basic theme of our paper is the inheritance of the asymptotic stationarity

property assumed for yt by the out-of-sample forecast error sequences that arise

from regARMA and regARIMA modeling with regressors that have more general

asymptotic second moment properties than yt, as described in Section 3. Inher-

itance is first obtained for ARMA models in Theorem 4 through an adaptation

of a recursive estimation result of Lai and Ying (1991), presented as Proposition

3, and by using some general inheritance results that are, in essence, special

cases of results of Findley, Pötscher and Wei (2001, 2004) (hereafter FPW 2001,

2004) for within-sample forecast errors. The extensions to regARMA models and

regARIMA models, in Sections 5 and 7 respectively, cover GLS estimation pro-

cedures of X-12-ARIMA and other contemporary regARIMA modeling software.

Theorem 5 describes the asymptotic bias of these GLS estimates, generalizing

the simple Ordinary Least Squares (OLS) result (42) of Subsection 4.1.

The formula for the value of (2) is provided by Theorem 6 using the general

formula of Theorem 4. In conjunction with a GLS optimality result for within-

sample forecasting taken from Findley (2003), this leads to Theorem 8 which

describes an asymptotic optimality property of GLS estimates relative to OLS

estimates for out-of-sample one-step-ahead forecasting when XM
t omits regressors

that are asymptotically correlated with it. Results for nonstationary regARIMA

models are given in Section 7. Proofs that are not immediate consequences of

the discussion preceding the asserted result are given in the Appendix. Some

extensions of the results of this article are described in Section 8.

2. ARMA Modeling and Forecasting

2.1. Mode of convergence

As indicated above, our results are presented for a single realization of the

time series mainly because forecasts of an observed realization are the focus. Re-

stricting the discussion to a single realization makes it possible to ensure more

often that a sequence of ARMA model parameter estimates has a unique asymp-

totic limit, a requirement of our foundational result Proposition 3. In incorrect

model situations, it can happen that several parameter values minimize asymp-

totic average squared forecast error. Then the parameter estimates converge to

the set of such values, not necessarily to a single value. However, for some es-

timation methods it can be shown that, although on different realizations the
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parameter estimates can have different limit values, on a given realization the

sequence of estimates cannot have multiple cluster points and therefore has a

unique limit value, in which case our results apply, see Theorem 2.2.2. and

Corollary 2.2.1 of Chen (2002) and Findley (2002). The latter reference and

Pötscher (1991) cite the main references on non-unique minimizers.

Because only one realization is considered, our convergence assumptions and

results are stated in terms of simple, non-stochastic limits, as in the functional

approach to time series analysis of Wiener described in Brillinger (1975, pp.41-

43), except that our limits refer only to the infinitely distant future, not to both

the infinitely distant past and future. A conventional statistical interpretation

of our results can be obtained by assuming that all limits assumed to exist do

so with probability one over the probability space of all realizations of the time

series, a property known to hold broadly for sample second moments of stochastic

data, see Theorem IV.3.6 of Hannan (1970) and Subsection 3.1.1 of FPW (2001).

As in Pötscher (1987), a vector sequence Vt, t ≥ 1, is said to be asymptotically

stationary (A.S.) if the limiting lagged second moments ΓV
k = limT→∞ T−1∑T−k

t=1

Vt+kV
′
t exist (finitely) for all k ≥ 0. In this case, negatively lagged scaled sample

second moments also converge: for k > 0, ΓV
−k = limT→∞ T−1∑T

t=k+1 Vt−kV
′
t =

(ΓV
k )′. The matrix sequence ΓV

k , k = 0,±1, . . . , called the asymptotic second

moment sequence of Vt, t ≥ 1, is positive semidefinite. Due to this property, there

is a nondecreasing, positive semidefinite matrix valued function GV (λ) such that

ΓV
k =

∫ π
−π e−ikλdGV (λ), holds for all k, see Grenander (1954) or Chapter II of

Hannan (1970). GV (λ) is called the asymptotic spectral distribution matrix of

Vt, t ≥ 1.

2.2. Autoregressive parameterization of ARMA models

We start by describing the model parameterization that will be used to ob-

tain forecasts of an A.S. sequence, beginning with univariate sequences. After

presenting two types of ARMA forecast functions, we obtain formulas for the

asymptotic second moments of the out-of-sample forecast errors.

Let vt denote an A.S. scalar time series with asymptotic second moments

γv
k and asymptotic spectral distribution Gv (λ). Suppose vt is modeled as an

invertible ARMA(r, s) model for some r, s ≥ 0, with autoregressive polynomial

a (z) = 1 + a1z + · · · + arz
r and moving average polynomial c (z) = 1 + c1z +

· · · + csz
s satisfying

a(z) 6= 0 6= c(z), |z| ≤ 1. (3)

We do not require ar 6= 0 or cs 6= 0: r and s are upper bounds on the AR

and MA orders. Define θ (z) = a (z) /c (z) and θ̃ (z) = c (z) /a (z) = θ (z)−1.

The coefficients of the power series expansions θ (z) =
∑∞

j=0 θjz
j and θ̃ (z) =
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∑∞
j=0 θ̃jz

j in {|z| < 1} are the model’s autoregressive representation coefficients

and moving average representation coefficients, respectively. These coefficients

are uniquely defined, even when a(z) and c (z) have common zeros. They are

related to one another by a simple recursion formula,

θ̃0 = θ0 = 1, θ̃j = −
j−1∑

i=0

θ̃iθj−i, (j = 1, 2, . . . ) , (4)

and its inverse. Because of (3), θj and θ̃j decay exponentially to zero and so are

absolutely summable. In fact,
∑∞

j=0 (1 + ε)j |θj| < ∞ and
∑∞

j=0 (1 + ε)j |θ̃j| < ∞

hold for some ε > 0.

Let Θr,s denote the set of all such autoregressive representation coefficient

sequences θ = (1, θ1, . . . ). These will be shown to determine the models’ forecast

functions. For θ ∈ Θr,s, in order that the pair of polynomials a (z) = 1+a1z+· · ·+

arz
r and c (z) = 1+c1z+ · · ·+csz

s with the properties (3) and a (z) /c (z) = θ (z)

be unique, it is necessary and sufficient that θ /∈ Θr−1,s−1, in which case a (z)

and c (z) have no zeros in common and ar 6= 0 or cs 6= 0. Thus, the difference

set Θr,s
max = Θr,s \Θr−1,s−1 describes the set of uniquely identified models in Θr,s.

Note that Θr,s
max = Θr,s if r = 0 or s = 0.

Appendix A of Pötscher (1991) summarizes why θ̃ = (1, θ̃1, . . .) is a conve-

nient model parameter for ARMA model estimation theory to circumvent prob-

lems from pairs a(z), c(z) with a common zero. Convergence of AR and MA

coefficient sequences leads to coordinatewise convergence of the associated θ̃ (and

θ). The converse holds when θ ∈ Θr,s
max; see Lemma 2, For invertible models, the

θ can play the same role as the θ̃ because of the coordinatewise continuity of

the transformations θ 7→ θ̃ and θ̃ 7→ θ, properties that follows from (4) and its

inverse; see also Section 3 of Findley, Pötscher and Wei (2004). We say that a

θ-model (an ARMA model with θ (z) = a (z) /c (z)) is the correct model for the

limiting second moment ratios γv
k/γv

0 of the A.S. time series vt if Gv (λ) is dif-

ferentiable with derivative proportional to |θ(eiλ)|−2. We never need to assume

that any θ-model is correct.

2.3. Basic forecast formulas

For any h ≥ 1 and θ ∈ Θr,s, define θ̃h−1 (z) =
∑h−1

j=0 θ̃jz
j . Let B denote

the backshift operator, Bvt = vt−1. If vt is a stationary Gaussian ARMA(r, s)

process with AR and MA polynomials a (z) and c(z), respectively, such that

θ (z) = a (z) /c (z), then vopt
t+h|t = E {vt+h|vu,−∞ < u ≤ t}, the mean square

optimal forecast of vt+h from vu,−∞ < u ≤ t, is produced by the filter

π (h, θ) (B) = B−h
(
θ̃ (B) − θ̃h−1 (B)

)
θ (B) , (5)
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(see Hannan (1970, p.147)). That is, vopt
t+h|t coincides with the θ-model’s forecast

v∞t+h|t (θ) = π (h, θ) (B) vt =
∞∑

j=0

πj (h, θ) vt−j . (6)

The associated forecast error filter is

η (h, θ) (B) = θ̃h−1 (B) θ (B) , (7)

i.e., vt+h − v∞t+h|t (θ) = η (h, θ) (B) vt+h. Of course, η (1, θ) (B) = θ (B).

More generally, for any series vt, ARMA or not, that has stationary second

moments Evt+kvt = γv
k , and for every θ ∈ Θr,s, it is easy to check that the infinite

sum in (6) converges in mean square and so defines an infinite-past forecast, with

(generally nonminimal) mean square error given by

E
(
vt+h − v∞t+h|t (θ)

)2
=

∫ π

−π

∣∣∣η (h, θ)
(
eiλ
)∣∣∣

2
dGv (λ) , (8)

where Gv (λ) denotes the spectral distribution function of vt.

In the situation with which this paper is concerned, instead of assuming that

vt has second moments, it is assumed that vt is A.S. with asymptotic spectral

distribution Gv (λ). Then Theorem 4 below shows that the r.h.s. of (8) arises as

the limit of the sample mean squared errors of forecasts based on finitely many

observations v1, . . . , vt as t → ∞. Thus it is the asymptotic average squared

forecast error. Because we do not assume that any θ-model is correct, the models

most of interest for forecasting are those that minimize this asymptotic quantity

for some h ≥ 1 over the set Θ of models being considered.

2.4. Truncated and exact finite-past forecast functions

Our interest is in forecasts of univariate data of the form (1) using a θ-model

for yt. Usually the estimates of the coefficients of the chosen regression vector

(generally a subvector of Xt) are the θ-model’s GLS estimates. This will be seen

to give rise to forecasts of A.S. vector series Vt, t ≥ 1, whose coordinates are yt

and rescaled entries of Xt, in which the same θ-model is used to forecast every

coordinate series vt, t ≥ 1. Two varieties of forecast functions are in common

use. We start with the simpler one, which uses zero for all unavailable values in

the infinite-past forecast function. For any θ ∈ Θr,s, this truncation of the vector

analogue of (6) produces the truncated forecast functions,

Vt+h|t (θ) =
t−1∑

j=0

πj (h, θ)Vt−j . (9)
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Results for these predictors will serve as stepping stones to results for the

more commonly used (exact) finite-past forecast functions defined for any h ≥ 1

by

V̂t+h|t (θ) =
t−1∑

j=0

πt,j (h, θ)Vt−j , (10)

where the coefficient vector [πt,j (h, θ)]0≤j≤t−1 is the solution of the linear system

[πt,j (h, θ)]0≤j≤t−1 [ρj−k (θ)]0≤j,k≤t−1 = [ρk+h (θ)]1≤k≤t , (11)

with ρk (θ) =
∑∞

j=0 θ̃j+kθ̃j/
∑∞

j=0 θ̃2
j , k ≥ 0; see, for example, Newton and Pagano

(1983). We set Vt+h|t (θ) = V̂t+h|t (θ) = 0 for 1 − h ≤ t ≤ 0. The finite-

past forecast error coefficients ηt,j (h, θ) , 0 ≤ j ≤ t − 1, are defined so that

Vt − V̂t|t−h (θ) =
∑t−1

j=0 ηt,j (h, θ)Vt−j for 1 ≤ t ≤ T .

If a coordinate series vt of Vt is stationary and Gaussian, and if its first

t + h autocorrelations are ρk (θ) , 1 ≤ j ≤ t + h, then E {vt+h|vu, 1 ≤ u ≤ t} =∑t−1
j=0 πt,j (h, θ) vt−j. However, we do not require the autocorrelations ρk (θ) spec-

ified by a θ in Θr,s to have any relation to the ratios γv
k/γv

0 of a coordinate series

vt being forecasted. No optimality properties are assumed of the predictors (9)

and (10), or of analogously defined predictors, as in (43) and (44) below.

Remark 1. For GLS estimation defined as in Amemiya (1973), and for maximum

Gaussian likelihood estimation, the finite-past one-step-ahead forecast errors,

or equivalently their coefficients, are usually normalized by dividing the coeffi-

cients by the square root of the mean square forecast error quantity wt|t−1(θ) =

(2π)−1
∫ π
−π |

∑t−1
j=0 ηt,j(1, θ)e−ijλ|2|θ(eiλ)|−2dλ. For the kinds of convergent se-

quences θt → θ we consider below, it follows from the proof of (5.17) of FPW

(2004), that wt|t−1(θ
t) → 1. As a consequence, this normalization has no effect

on the asymptotic formulas obtained below, see (b) of Lemma 11. Therefore, for

simplicity, we omit the normalization.

2.5. Åström’s Recursion Formula for Vt+h|t(θ)

For ARMA(r, s) processes, Åström (1970) established a useful recursion for

the h-step-ahead infinite-past forecasts (6) that follows from the polynomial divi-

sion algorithm applied to the ratio θ̃ (z) = c (z) /a (z) =
∑∞

j=0 θ̃jz
j of the s degree

MA polynomial c (z) and the r degree AR polynomial a (z). For any h ≥ 1, this

algorithm yields

c (z) = θ̃h−1 (z) a (z) + zhgh (z) , (12)

where

gh (z) = z−h
{
θ̃ (z) − θ̃h−1 (z)

}
a (z) (13)
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is a polynomial of degree at most q = max {r − 1, s − h}. Because the forecast
filter (5) can be expressed as π (h, θ) (B) = gh (B) c (B)−1, the series of predic-
tors v∞t+h|t (θ) defined by (6) satisfies the difference equation c (B) v∞

t+h|t (θ) =

gh (B) vt. This is Åström’s Recursion Formula. The next proposition, whose
proof is in the Appendix, establishes an analogue for the truncated predictors
defined by (9),

Vt+h|t (θ) + c1Vt+h−1|t−1 (θ) + · · · + csVt+h−s|t−s (θ)

= gh,0Vt + gh,1Vt−1 + · · · + gh,qVt−q. (14)

For this result, we allow θ (z) to have zeros on |z| = 1. This is convenient because
estimates of invertible models need not be invertible; see Anderson and Takemura
(1986). Further, the asymptotic limits of AR polynomials of incorrect ARMA
models can have zeros of magnitude one (in order to achieve optimal one-step-
ahead forecasts within the incorrect model class) according to Pötscher (1987,
1991). We use Θ̄r,s to denote the superset of Θr,s obtained by weakening (3) to

a(z) 6= 0 6= c(z), |z| < 1. (15)

Proposition 1. Let θ ∈ Θ̄r,s be given, as well as a vector sequence Vt, t ≥ 1. For

−q + 1 ≤ t ≤ 0, define Vt = 0. Then, for any h ≥ 1, the sequence of truncated

predictors Vt+h|t (θ) , t ≥ 1 of (9) is the solution of (14) determined by the initial

conditions Vt+h|t (θ) = 0,−s + 1 ≤ t ≤ 0.

The recursion (14) is our key to obtaining results for out-of-sample forecast
errors. Before presenting them, we need some basic facts about the conver-
gence of sequences of parameters θ. Given θt =

(
1, θt

1, θ
t
2, . . .

)
, t ≥ 1, and

θ = (1, θ1, θ2, . . .), we write θt → θ to indicate coordinatewise convergence:
limt→∞ θt

j = θj for all j ≥ 0. Although we allow some θt’s to belong to Θ̄r,s\Θr,s,
meaning θt (z) has a unit magnitude zero or pole, for the reasons indicated above,
in order to ensure that AR and MA coefficients also have limits we usually require
the limit θ to be in Θ̄r,s

max = Θ̄r,s \ Θ̄r−1,s−1 or in Θr,s
max.

For every ξ ≥ 0, ε ≥ 0, let Θξ,ε denote the subset of Θ̄r,s consisting of θ such
that θ (z) = a (z) /c(z), where a (z) = 0 only for |z| ≥ 1+ξ, and c(z) = 0 only for
|z| ≥ 1+ε. Note that Θ0,0 = Θ̄r,s and, if ξ > 0 and ε > 0, that Θξ,ε ⊆ Θr,s. These
sets provide the properties we require of the convergent parameter sequences θ t

that define the out-of-sample forecasts Vt+h|t

(
θt
)

and V̂t+h|t

(
θt
)
. The basic facts

are summarized in the next lemma, an elementary result whose proof can be
obtained from the arguments of Pötscher (1991, p.447) and the continuity of the
transformation θ 7→ θ̃.

Lemma 2. (a) The sets Θξ,ε are compact in the sense that every sequence θt ≥ 1
in Θξ,ε has a coordinatewise convergent subsequence whose limit θ belongs to

Θξ,ε.
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(b) Suppose the sequence θt, t ≥ 1 in Θ̄r,s is such that θt → θ ∈ Θ̄r,s
max. Then

for polynomials at (z) = 1 +
∑r

j=1 at,jz
j, a (z) = 1 +

∑r
j=1 ajz

j, ct (z) =

1+
∑s

j=1 ct,jz
j, and c (z) = 1+

∑s
j=1 cjz

j such that θt (z) = at (z) /ct (z) and

θ (z) = a (z) /c (z), and for the corresponding polynomials gh,t (z) and gh (z)

defined in accord with (12)−(13), we have

lim
t→∞

at,j = aj , lim
t→∞

ct,,j = cj , lim
t→∞

gh,t,j = gh,j, (16)

for 0 ≤ j ≤ r, s and q, respectively. Further, if the zeros of a (z), resp. c (z)

belong to {|z| > 1}, then there is a Θξ,ε with ξ > 0, resp. ε > 0, such that

for some m > 0, the set Θ =
{
θ, θt, t ≥ m

}
satisfies

Θ ⊆ Θξ,ε. (17)

If neither a (z) nor c (z) has a unit magnitude zero, then (17) holds with ξ > 0

and ε > 0 for some m.

The next theorem is a key result that makes it possible to derive properties

of out-of-sample forecast errors Vt+h − V̂t+h|t

(
θt
)

from those of the limit model,

Vt+h− V̂t+h|t (θ). Its proof, given in the Appendix, uses (16) and other properties

of Θξ,ε presented in Lemma 10 of the Appendix, together with an adaptation of

the proof of Lemma 5 of Lai and Ying (1991), to establish the assertion (19).

Then (20) is obtained via a uniform Baxter inequality from FPW (2004).

Proposition 3. Let Vt, t ≥ 1 be an A.S. sequence. Suppose a sequence θt, t ≥ 1

in Θ̄r,s is given such that

θt → θ ∈ Θ̄r,s
max ∩ Θξ,ε (18)

for some ξ ≥ 0 and ε > 0. Then, for each h ≥ 1, the truncated predictors

Vt+h|t

(
θt
)

have the sample mean square convergence property

lim
T→∞

1

T

T−h∑

t=1

(
Vt+h|t

(
θt
)
− Vt+h|t (θ)

)′ (
Vt+h|t

(
θt
)
− Vt+h|t (θ)

)
= 0. (19)

If ξ is also positive, then the finite-past predictors V̂t+h|t

(
θt
)

have the analogous

property,

lim
T→∞

1

T

T−h∑

t=1

(
V̂t+h|t

(
θt
)
− V̂t+h|t (θ)

)′ (
V̂t+h|t

(
θt
)
− V̂t+h|t (θ)

)
= 0. (20)

Because the differences appearing in (19) and (20) are differences of forecast

errors, e.g.,

V̂t+h|t

(
θt
)
− V̂t+h|t (θ) =

(
Vt+h − V̂t+h|t (θ)

)
−
(
Vt+h − V̂t+h|t

(
θt
))

, (21)
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it follows from Proposition 2.1 of FPW (2001) (see also Section 5.2.(iii) of this

reference) that the asymptotic properties of the sample second moments of the

forecast errors Vt+h − V̂t+h|t

(
θt
)

and Vt+h − Vt+h|t

(
θt
)

coincide with those of

Vt+h − Vt+h|t (θ), which were established in Theorem 5.2 of FPW (2004). The

next theorem is an immediate consequence.

Although (19) and the related results below do not require θt to be a function

of V1, . . . , Vt, this is the most natural type of θt to occur with forecast errors of

the form Vt+h − Vt+h|t

(
θt
)

and their finite-past analogues. Hence, we call all

forecast errors of this form out-of-sample forecast errors.

Theorem 4. Let Vt, t ≥ 1 be an A.S. sequence with asymptotic spectral distri-

bution function GV (λ), and let θt, t ≥ 1 in Θξ,ε with ε > 0 converge to a limit

θ ∈ Θ̄r,s
max. Then given h, l ≥ 1, for all k ≥ 0, we have

lim
T→∞

1

T

T−k∑

t=1

(
Vt+k − Vt+k|t+k−h

(
θt+k

))(
Vt − Vt|t−l

(
θt
))′

= ΓV
k (h, l, θ) , (22)

where, for any θ ∈ Θξ,ε,

ΓV
k (h, l, θ) =

∫ π

−π
e−ikλη (h, θ)

(
eiλ
)

η (l, θ)
(
e−iλ

)
dGV (λ) . (23)

If also ξ > 0, then the same conclusions hold for the series Vt − V̂t|t−h

(
θt
)
, t ≥

1, h ≥ 1.

When the θt are maximum likelihood estimates, Theorem 2.1 of Pötscher

(1991) shows that their limit θ belongs to Θr,s
max, both in the correct (not over-

parameterized) model situation and in quite general situations in which ARMA

(r, s) spectral densities imperfectly approximate a true spectral density that is

continuous and positive.

For scalar autoregressive models estimated by least squares, precise rates of

convergence are available for the finite-past version of (22) for weakly stationary

linear processes satisfying higher moment conditions and other restrictions: see

Wei (1992) for the case h = 1, where earlier work on rates of convergence going

back to Rissanen (1986) is generalized and, in some cases, corrected; see Ing

(2004) for the case h > 1.

3. Basic Data and Regressor Assumptions and Some Consequences

3.1. Extended asymptotic stationarity

To formulate the data assumptions for Xt and yt in (1), it is convenient
to introduce two generalizations of the concept of asymptotic stationarity. Let
Ut, t ≥ 1 be a real-valued column vector sequence, some of whose entries might
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be realizations of stochastic variates while others are deterministic, e.g., polyno-
mials, sinusoids, or trading day or holiday effect regressors. Let IU denote the
identity matrix whose order is the dimension dimU of Ut. The sequence Ut is
said to be scalably asymptotically stationary (S.A.S.) if there exists a decreas-
ing scaling sequence DU,1 ≥ DU,2 ≥ . . . of positive definite diagonal matrices
DU,T = diag(d−1

1,T , . . . , d−1
dim U,T ) satisfying

lim
T→∞

D−1
U,T+kDU,T = IU (k = 0, 1, . . .) , (24)

and having the property that for all k ≥ 0,

ΓU
k = lim

T→∞
DU,T

T−k∑

t=1

Ut+kU
′
tDU,T (25)

exists (finitely). Under (24)–(25), negatively lagged scaled sample second mo-
ments also converge: for k > 0, ΓU

−k = limT→∞ DU,T
∑T

t=k+1 Ut−kU
′
tDU,T =

(ΓU
k )′, and the matrix sequence ΓU

k , k = 0,±1, . . . is positive semidefinite, so
there is a nondecreasing, positive semidefinite matrix valued function GU (λ)
such that ΓU

k =
∫ π
−π e−ikλdGU (λ). The ΓU

k are the asymptotic second moment
matrices of the sequence Ut and GU (λ) is its asymptotic spectral distribution
matrix. As a synonym for the S.A.S. property, we say the entries of Ut are
jointly S.A.S. This mode of stationarity was introduced for regressors without a
formal name in Grenander (1954) to encompass polynomials: if Ut = tp, p ≥ 0,
one can define DU,T = T−(p+1/2) and obtain ΓU

k = (2p + 1)−1 for all k. Then

GU (λ) can be defined to be 0 for λ < 0 and (2p + 1)−1 for λ ≥ 0. Ut is A.S.
when DU,T = T−1/2IU .

If Ut, t ≥ 1 is S.A.S. and has the further property that the sequence Ůt =
t1/2DU,tUt, t ≥ 1 is A.S., then Ut will be said to be extendedly asymptotically sta-

tionary (E.A.S.). The asymptotic lag k second moment of Ůt will be denoted by
Γ̊U

k , and its asymptotic spectral distribution function will be denoted by G̊U (λ).

Of course, if Ut is A.S., it is E.A.S. with Γ̊U
k = ΓU

k and G̊U (λ) = GU (λ). If

Ut = tp, p ≥ 0, then Ůt = 1, Γ̊U
k = 1 and G̊U (λ) = (2p + 1) GU (λ).

3.2. The basic assumptions

We assume that the observed series Yt in (1) results from realizations of yt and
Xt with asymptotic stationarity properties of the sort just defined. Specifically,
we require yt to be A.S., i.e., the limits

γy
k = lim

T→∞

1

T

T−k∑

t=1

yt+kyt (26)

exist for all k ≥ 0. Their asymptotic spectral distribution is denoted by Gy(λ).
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The regressor sequence Xt, t ≥ 1, in (1) is required to be E.A.S. with

DX,T ↘ 0. (27)

Partition Xt as

Xt =

[
XM

t

XN
t

]
, (28)

where the superscript N designates the regressors not in the model. Let the

corresponding partition of A in (1) be A =
[
AM AN

]
, and those of DX,T , ΓX

k

and GX (λ) be

DX,T =

[
DM,T 0

0 DN,T

]
,

ΓX
k =

[
ΓMM

k ΓMN
k

ΓNM
k ΓNN

k

]
, GX (λ) =

[
GMM (λ) GMN (λ)
GNM (λ) GNN (λ)

]
, (29)

respectively. We need ΓMM
0 to be positive definite,

ΓMM
0 > 0. (30)

Further, we require both Xt and its associated A.S. sequence X̊t = t1/2DX,tXt,
to be asymptotically orthogonal to the series yt, meaning

lim
T→∞

T− 1

2

T−k∑

t=k+1

ytX
′
t±kDX,T = 0 , (k = 0, 1, . . .) , (31)

for Xt, and

lim
T→∞

T−1
T−k∑

t=k+1

ytX̊t±k = 0 , (k = 0, 1, . . .) , (32)

for X̊t.
For example, if yt =

∑
bjεt−j , where εt is an independent white noise process

with supt E |εt|
r < ∞, then, for a set of realizations having probability one, (31)

holds when ΓX
0 > 0, and (32) holds when

Γ̊X
0,ii > 0, 1 ≤ i ≤ dimXt. (33)

It suffices that r > 2 if the spectral density of yt is bounded, or that r > 4 if the
spectral density is unbounded but square integrable, see Appendix B of FPW
(2001). Hereafter, we refer to (26)−(27) and (30)−(32) as the assumptions of
Section 3.

Note that (31) yields limT→∞ T−1∑T
t=1 yt = 0 when Xt contains a coordi-

nate that is one for all t because this coordinate’s scaling factor in DX,T can be
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taken to be T−1/2. In this sense, yt in (1) can be thought of as an asymptotically
mean zero process.

The data decomposition being modeled is

Yt = AMXM
t + yM

t , (34)

where, from (1),
yM

t = ANXN
t + yt. (35)

We require XN
t to be asymptotically stationary, i.e.,

DN,T = T−1/2IN , (36)

with IN being the identity matrix of order dimXN
t . (Omitted regressor variables

of larger order would give rise to model residuals that would become infinite in
magnitude as T increases and so would be seen to lack the A.S. property for large
enough T .) Hence, the analogue of (29) for X̊t is

Γ̊X
k =


 Γ̊MM

k Γ̊MN
k

Γ̊NM
k ΓNN

k


 , G̊X (λ) =


 G̊MM (λ) G̊MN (λ)

G̊NM (λ) GNN (λ)


 . (37)

Under (36), it follows from (31) that yM
t is A.S.: for each k ≥ 0,

γM
k = lim

T→∞

1

T

T−k∑

t=1

yM
t+ky

M
t = ANΓNN

k AN ′ + γy
k .

In general, yM
t and XM

t will not be asymptotically orthogonal, e.g.,

lim
T→∞

T−1/2
T−k∑

t=1

yM
t+kX

M ′
t DM,T = lim

T→∞
T−1/2

T−k∑

t=1

ANXN
t+kX

M ′
t DM,T = ANΓNM

k

(38)
will generally be non-zero for some k and some AN 6= 0 unless the sequences
XM

t and XN
t are asymptotically orthogonal in the sense that ΓNM

k = 0 for
k = 0,±1, . . ..

Here and below, asymptotic formulas for the correct regressor case, XM
t =

Xt, can be obtained by setting AN = 0.

3.3. Examples of E.A.S. regressors

Grenander (1954) and Grenander and Rosenblatt (1984, Chap.7) verify the
joint S.A.S. property for regressors whose components Xit are polynomials tp

with p ≥ 0 (scaling sequence T−p−1/2), linear combinations of cos λt and sinλt
with 0 < λ ≤ π, e.g., periodic functions (scaling sequence T −1/2), and products
of polynomials tp and sinusoids (scaling sequence T−p−1/2). Their formulas show
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that (30) holds for vectors Xt whose coordinates are regressors of this type.
Because (t1/2t−p−1/2)tp = 1, the E.A.S. property for polynomial regressors and
their products with sinusoids follows from the A.S. property of the constant
regressor and of the sinusoids. Note that Γ̊X

0 will be singular (but (33) will
hold) if two coordinates of Xt involving a power of t differ only in the power
p, because the corresponding coordinates of X̊t will be identical and therefore
linearly dependent.

3.4. Vector reformulation of the basic assumptions

Our basic assumptions beyond (30) can be usefully reformulated in vector

form as follows. The vector sequence Ut =
[
yt XM ′

t XN ′
t

]′
, t ≥ 1 is S.A.S. with

DU,T = diag
(
T−1/2, DM,T , T−1/2IN

)
, wherein DM,T ↘ 0. Further

GU (λ) =




Gy (λ) 0 0
0 GMM (λ) GMN (λ)
0 GNM (λ) GNN (λ)


 .

The sequence

Ůt =




yt

t1/2DM,tX
M
t

XN
t


 , t ≥ 1 (39)

is A.S. with asymptotic spectral distribution

G̊U (λ) =




Gy (λ) 0 0

0 G̊MM (λ) G̊MN (λ)

0 G̊NM (λ) GNN (λ)


 .

4. Estimation of AM

4.1. OLS estimation of AM

For each t ≥ 1, given Ys, 1 ≤ s ≤ t, the associated OLS estimator of AM in
(34) is

AM
t =

t∑

s=1

YsX
M ′
s

[ t∑

s=1

XM
s XM ′

s

]−1
, 1 ≤ t ≤ T. (40)

Thus

AM
t − AM =

t∑

s=1

ysX
M ′
s

[ t∑

s=1

XM
s XM ′

s

]−1
+ AN

t∑

s=1

XN
s XM ′

s

[ t∑

s=1

XM
s XM ′

s

]−1
.

Hence, setting

CNM = ΓNM
0

(
ΓMM

0

)−1
, (41)
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(31), (36) and (38) yield the asymptotic bias formula

lim
t→∞

(
AM

t − AM
)

t−1/2D−1
M,t = ANCNM . (42)

The r.h.s. of (42) is zero when ΓNM
0 = 0, e.g., when XM

t and XN
t are asymptot-

ically orthogonal.

4.2. GLS estimation of AM

GLS estimates of regression coefficients are usually obtained by applying a
transformation to the data that yields uncorrelated data with constant variance,
followed by application of the same transformation to the regressors, and then
by calculation of the OLS estimate of AM from these transformed quantities.
For data conforming to a given ARMA model, the finite-past one-step-ahead
forecast errors are uncorrelated and, with the rescaling described in Remark 1,
have constant variance. Therefore, given a candidate ARMA model, its GLS
estimates are obtained from its one-step-ahead forecast error formulas. For each
t ≥ 1, given Ys, 1 ≤ s ≤ t, and any ARMA model θ∗, we consider two types of
GLS estimators of AM , one based on the truncated past forecasts,

AM
t (θ∗) =

t∑

s=1

(
Ys − Ys|s−1 (θ∗)

) (
XM

s − XM
s|s−1 (θ∗)

)′

×
( t∑

s=1

(
XM

s − XM
s|s−1 (θ∗)

) (
XM

s − XM
s|s−1 (θ∗)

)′ )−1
(43)

as in Pierce (1971), and the second based on the finite-past forecasts,

ÂM
t (θ∗) =

t∑

s=1

(
Ys − Ŷs|s−1 (θ∗)

) (
XM

s − X̂M
s|s−1 (θ∗)

)′

×
( t∑

s=1

(
XM

s − X̂M
s|s−1 (θ∗)

) (
XM

s − X̂M
s|s−1 (θ∗)

)′ )−1
, (44)

as in Amemiya (1973). Note that both reduce to the OLS estimator (40) when
θ∗ is the parameter for white noise, i.e., θ∗j = 0, j ≥ 1. In these formulas and
elsewhere, a generalized inverse is to be understood whenever the inverse matrix
fails to exist. When θ∗ ∈ Θξ,ε with ξ, ε > 0, then (30) insures that the inverses
exist for all sufficiently large t, by virtue of Theorem 4 with h = 1, θ t = θ∗,
Vt = XM

t , and (45) below.

4.3. Limiting properties of GLS estimates

Partition ΓX
k (θ∗) =

∫ π
−π e−ikλ|θ∗(eiλ)|2dGX(λ) analogously to (29) as

ΓX
k (θ∗) =

[
ΓMM

k (θ∗) ΓMN
k (θ∗)

ΓNM
k (θ∗) ΓNN

k (θ∗)

]
,
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with ΓMM
k (θ∗) =

∫ π
−π e−ikλ

∣∣∣θ∗
(
eiλ
)∣∣∣

2
dGMM (λ), etc. For any θ∗ ∈ Θξ,ε with

ξ > 0, we have

ΓMM
0 (θ∗) ≥ min

|λ|≤π

∫ π

−π

∣∣∣θ∗
(
eiλ
)∣∣∣

2
ΓMM

0 ≥ m (ξ) ΓMM
0 > 0 (45)

with m (ξ) = 2−s (1 + ξ)−r ξr (see (78) below), so we can define

CNM (θ∗) = ΓNM
0 (θ∗) ΓMM

0 (θ∗)−1 . (46)

The following results are an immediate consequence of (45) and of Proposi-

tion 11.1 and (the proof of) Theorem 5.2 of Findley (2003).

Theorem 5. Let a convergent sequence θ∗,t in some Θξ,ε with ξ, ε > 0 be given,

with θ∗,t → θ∗. Under the assumptions of Section 3, we have

lim
t→∞

(
AM

t

(
θ∗,t
)
− AM

)
t−1/2D−1

M,t = ANCNM (θ∗) . (47)

Likewise (ÂM
t (θ∗,t) − AM )t−1/2D−1

M,t converges to ANCNM(θ∗). When XM
t and

XN
t are asymptotically orthogonal, ANCNM (θ∗) = 0.

Remark 2. As the OLS estimation case with θ∗ = (1, 0, 0, . . .) shows, the
ARMA model used or estimated to obtain the estimates of AM and the associated
h-step-ahead out-of-sample forecasts ÂM

t (θ∗)XM
t+h of the mean function values

AXt+h can differ from the ARMA model used for the disturbance series yM
t

in (35), see (48) below. Another such situation occurs when h > 1 and the
ARMA model or parameter estimate used to forecast the regression residual
series Yt − ÂM

t (θ∗,t)XM
t+h is chosen to minimize average squared h-step-ahead

forecast errors, whereas the model or parameter estimate used to obtain ÂM
t (θ∗,t)

is chosen to be optimal for one-step-ahead forecasting or likelihood maximization.
For these reasons, hereafter we use asterisked symbols, θ∗ or θ∗,t, to designate

models used for regression coefficient estimation and symbols without asterisk, θ
or θt, to designate models for yM

t .

5. Asymptotic Stationarity of Forecast Errors from a Misspecified

regARMA Model with GLS Estimates

5.1. Forecasting with GLS estimates of AM

We analyze errors of forecasts obtained with GLS estimates of AM . To cover

the situations of Remark 2 in addition to usual case of maximum likelihood

estimation of all parameters, we allow the ARMA parameter estimates used for

GLS estimates to be different from those used to estimate the covariance structure

of the regression residuals.
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For h ≥ 1, 1−h ≤ t ≤ T and any θ, θ∗ ∈ Θr,s, consider the forecast functions

Y M
t+h|t (θ, θ∗) = AM

t (θ∗)XM
t+h + yM

t+h|t (θ, θ∗) , (48)

yM
t+h|t (θ, θ∗) =





t−1∑

j=0

πj (h, θ)
(
Yt−j − AM

t (θ∗)XM
t−j

)
, 1 ≤ t ≤ T

0, 1 − h ≤ t ≤ 0.

The forecast errors have the decomposition

Yt+h − Y M
t+h|t (θ, θ∗) =

{
yt+h−yt+h|t (θ)

}
+
(
AM −AM

t (θ∗)
){

XM
t+h−XM

t+h|t (θ)
}

+AN
{
XN

t+h − XN
t+h|t (θ)

}
. (49)

For finite-past forecasting using ÂM
t (θ∗) rather than AM

t (θ∗), we define Ŷ M
t+h|t

(θ, θ∗) = ÂM
t (θ∗) XM

t+h + ŷM
t+h|t (θ, θ∗) with

ŷM
t+h|t (θ, θ∗) =





t−1∑

j=0

πt,j (h, θ)
(
Yt − ÂM

t (θ∗) XM
t−j

)
, 1 ≤ t ≤ T,

0, 1 − h ≤ t ≤ 0.

The forecast errors have a decomposition analogous to (49).

Let θ∗,t, t ≥ 1, and θt, t ≥ 1, be convergent sequences contained in some set

Θξ,ε with ξ, ε > 0, having limits θ∗ and θ respectively, with θ ∈ Θr,s
max. Then with

βt (θ∗) =
[
1
(
AM − AM

t (θ∗)
)

t−1/2D−1
M,t AN

]
,

(50)
β̂t (θ∗) =

[
1
(
AM − ÂM

t (θ∗)
)

t−1/2D−1
M,t AN

]
,

and, with Ůt as in (39), the observable forecast errors are given by

Yt − Y M
t|t−h

(
θt, θt,∗

)
= βt−h

(
θt,∗
){

Ůt−Ůt|t−h

(
θt
)}

, 1 ≤ t ≤ T,
(51)

Yt − Ŷ M
t|t−h

(
θt, θt,∗

)
= β̂t−h

(
θt,∗
){

Ůt −
̂̊
U t|t−h

(
θt
)}

, 1 ≤ t ≤ T.

Define β (θ∗) =
[
1 −ANCNM (θ∗) AN

]
. Under the respective assumptions of

Theorem 5, we have

lim
t→∞

βt

(
θt,∗
)

= lim
t→∞

β̂t

(
θt,∗
)

= β (θ∗) . (52)

From these observations, Theorem 4 and Lemma 11 of the Appendix imme-

diately yield the following theorem, in preparation for which we define

BNM (θ∗) = AN
[
−CNM (θ∗) IN

]
, (53)
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G̊M,θ∗ (λ) = Gy (λ) + BNM (θ∗) G̊X (λ)BNM (θ∗)′ , (54)

and, for any θ, θ∗ ∈ Θr,s,

Γ̊M
k (h, l, θ, θ∗) =

∫ π

−π
e−ikλ η (h, θ)

(
eiλ
)

η (l, θ)
(
e−iλ

)
dG̊M,θ∗ (λ) . (55)

Theorem 6. Let convergent sequences θ∗,t, θt contained in some Θξ,ε with ξ, ε >

0 be given, with θ∗,t → θ∗, θt → θ and θ ∈ Θr,s
max. Under the Assumptions of

Section 3, the out-of-sample forecast errors Yt − Y M
t|t−h

(
θt, θ∗,t

)
, t ≥ 1, h ≥ 1 are

jointly A.S. in the sense that, for any h, l ≥ 1 and k ≥ 0,

1

T

T−k∑

t=1

(
Yt+k−Y M

t+k|t+k−h

(
θt+k, θ∗,t+k

)) (
Yt−Y M

t|t−l

(
θt, θ∗,t

))
→ Γ̊M

k (h, l, θ, θ∗)

(56)

as T → ∞. Likewise the series Yt − Ŷ M
t|t−h

(
θt, θ∗,t

)
, t ≥ 1, h ≥ 1 are jointly A.S.

with the same asymptotic second moments as Yt − Y M
t|t−h

(
θt, θ∗,t

)
, t ≥ 1, h ≥ 1.

This result reveals that the asymptotic sample second moments of the out-

of-sample forecast errors considered are the same as those of the θ-model forecast

errors of the A.S. series

yM
t (θ∗) = yt + AN

(
XN

t − CNM (θ∗) X̊M
t

)
, 1 ≤ t ≤ T, (57)

since G̊M,θ∗ (λ) is the spectral distribution function of this series. For the mean

squared forecast error case k = 0 and l = h in (56), with σhh (θ) =
∫ π
−π |η(h, θ)

(eiλ)|2dGy(λ), (54) yields

Γ̊M
0 (h, h, θ, θ∗) = σhh (θ) + BNM (θ∗)

[∫ π

−π

∣∣∣η (h, θ)
(
eiλ
)∣∣∣

2
dG̊X (λ)

]
BNM (θ∗)′ .

(58)

By specializing the argument used to establish Theorem 6, σhh (θ) is seen to be

the asymptotic average squared error of the h-step-ahead forecast of Yt when Xt

is known. Similarly, using Theorem 5 and Lemma 11, the second quantity on the

right in (58) can be shown to be the limit of the average of the squares of the

h-step-ahead forecast errors of AXt−AM
t (θ∗)XM

t = {(AM−AM
t )t−1/2D−1

M,t}X̊
M
t

+ANXN
t , 1 ≤ t ≤ T .

Remark 3. Note that Γ̊M
k (h, l, θ, θ∗) of (55) is, in general, different from the

function obtained by replacing Xt with X̊t in the quantities defining

ΓM
k (h, l, θ, θ∗) =

∫ π

−π
e−ikλη (h, θ)

(
eiλ
)

η (l, θ)
(
e−iλ

)
dGM,θ∗ (λ) , (59)
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where GM,θ∗ (λ)=Gy (λ)+BNM (θ∗)GX (λ) BNM (θ∗)′. Such replacement would

yield C̊NM (θ∗) = Γ̊NM
0 (θ∗) Γ̊MM

0 (θ∗)−1 rather than CNM (θ∗) in (53)−(55).

6. Asymptotic Orthogonality and Optimality of GLS

In Findley (2003), an optimality property of GLS relative to other regression

estimates for one-step-ahead within-sample forecasting was derived from prop-

erties of the special case ΓM
0 (1, 1, θ, θ∗) of (59). The corresponding property

for out-of-sample forecast errors will follow automatically when Γ̊M
0 (1, 1, θ, θ∗) =

ΓM
0 (1, 1, θ, θ∗) for all θ, θ∗, see Theorem 8 below. The following result obtains

a more general property, Γ̊M
k (h, l, θ, θ∗) = ΓM

k (h, l, θ, θ∗) for all k, in a situation

that will be shown to commonly occur. Its proof is in the Appendix.

Proposition 7. Suppose XM
t = [XM1′

t XM2′
t ]′, with XM2

t A.S. and with XM1
t

asymptotically orthogonal to both XM2
t and XN

t in the sense that ΓM1M2
k = 0

and ΓNM2
k = 0 for all k. Then for all θ, θ∗ ∈ Θr,s,

Γ̊M
k (h, l, θ, θ∗) = ΓM2

k (h, l, θ, θ∗) = ΓM
k (h, l, θ, θ∗) (60)

holds for all k, where ΓM2
k (h, l, θ, θ∗) is the analogue of (59) for the A.S. regressor

X2t = [XM2′
t XN ′

t ]′.

To illustrate the scope of this result, we consider examples of asymptotic

orthogonality.

6.1. Asymptotically orthogonal regressors

Let Gij (λ) denote the (i, j)-entry of GX (λ). The regressors defined by the i-

th and j-th coordinates of Xt are asymptotically orthogonal if and only if Gij (λ) is

constant on [−π, π], or, equivalently, if differences ∆Gij = Gij (λ′′)−Gij (λ′) with

−π ≤ λ′ < λ′′ ≤ π are zero. Because the positive semidefiniteness of ∆GX (λ)

yields (∆Gij)
2 ≤ ∆Gii∆Gjj, this happens whenever Gii (λ) is constant except

at a sequence of frequencies λk where a jump occurs, Gii (λk+)−Gii (λk−) > 0,

while Gjj is continuous at these frequencies, Gjj (λk+) − Gjj (λk−) = 0.

Grenander and Rosenblatt (1984, Chap.7) shows that a regressor of the form

c0 +
H∑

k=1

(ck cos λkt + dk sinλkt) + cH+1 (−1)t , (61)

has a spectral distribution function with jumps at each frequency λk for which

c2
k + d2

k 6= 0, and also at the frequency 0, resp. π, if c0 6= 0, resp. cH+1 6= 0.

Elsewhere, its spectral distribution function is constant. It is also shown that the

same conclusions apply to a regressor of this form multiplied by a polynomial

in t. It follows that two sinusoids (or products thereof with polynomials) are
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asymptotically orthogonal if and only if they have no common frequency com-

ponents. Thus, for example, polynomials in t are asymptotically orthogonal to

periodic regressors with mean zero (c0 = 0), and deseasonalized regressors of the

sort used to model trading day and holiday effects (see Findley, Monsell, Bell,

Otto and Chen (1998) and Findley and Soukup (2000)) are asymptotically or-

thogonal to seasonal regressors. Further, an A.S. or stationary regressor whose

asymptotic second moments are determined by a spectral density has an abso-

lutely continuous asymptotic spectral measure. Therefore, such a regressor is

asymptotically orthogonal to polynomials and to regressors of the form (61), and

also to products of such regressors. More general examples, with H = ∞ in (61)

for instance, can be extracted from Chap. 7 of Grenander and Rosenblatt (1984).

Now we consider the usual case in which some coordinate XM
i,t of XM

t is

constant, XM
i,t = 1 for all t. In this case, with no loss of generality, XN

t can be

required to be asymptotically orthogonal to this constant regressor, i.e., to have

X̄N = limT→∞ T−1∑T
t=1 XN

t be equal to 0, because the effect of replacing XN
t

by XN
t − X̄N is balanced by changing AM

i to AM
i + AN X̄N . In practice, there

may be no cost in making the technically stronger requirement that GNN (λ)

be continuous at λ = 0, from which it follows that XN
t is asymptotically or-

thogonal to any polynomial regressors in XM
t , because the asymptotic spectral

measures of polynomial regressors increase only at λ = 0; recall Subsection 3.1.

Suppose the subvector XM1
t of XM

t consisting of regressors that are S.A.S. but

not A.S. contains only regressors that are positive integer powers of t, and sup-

pose also that the subvector XM2
t of XM

t of A.S. regressors of XM
t has been

defined in such a way that each nonconstant regressor XM2
j,t of XM2

t has mean

zero, limT→∞ T−1∑T
t=1 XM2

j,t = 0 (e.g., so that c0 = 0 in nonconstant regressors

of the form (61)). Then XM1
t is asymptotically orthogonal to both XM2

t and

XN
t , fulfilling the assumptions of Proposition 7. The formula (60) shows that

the S.A.S. regressors XM1
t have no influence on the asymptotic forecast error

second moments.

6.2. An optimality property of GLS

When Γ̊M
0 (1, 1, θ, θ∗) coincides with ΓM

0 (1, 1, θ, θ∗), under (60) for instance,

the properties of the latter function established in Corollary 6.3 of Findley (2003)

immediately yield an optimality property of GLS for out-of-sample forecasting.

Theorem 8. Suppose Γ̊M
0 (1, 1, θ, θ∗) = ΓM

0 (1, 1, θ, θ∗) holds for all θ, θ∗ in some

Θξ,ε with ξ, ε > 0. If θ̄ denotes a minimizer of Γ̊M
0 (1, 1, θ, θ) on a compact subset

Θ of Θξ,ε, we have

Γ̊M
0

(
1, 1, θ̄, θ̄

)
= min

θ,θ∗∈Θ
Γ̊M

0 (1, 1, θ, θ∗) . (62)
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More precisely, for a fixed θ∗ ∈ Θ, let θ̄∗ denote a minimizer of Γ̊M
0 (1, 1, θ, θ∗)

over Θ. Then

Γ̊M
0

(
1, 1, θ̄, θ̄

)
≤ Γ̊M

0

(
1, 1, θ̄∗, θ∗

)
, (63)

with strict inequality holding for some values of AN if and only if either Γ̊M
0 (1, 1,

θ̄, θ̄) < Γ̊M
0

(
1, 1, θ̄∗, θ̄∗

)
or

CNM (θ∗) 6= CNM (
θ̄∗
)

(64)

holds, for CNM (θ∗) as in (46). When strict inequality obtains in (63), then

CNM (θ∗) 6= CNM (
θ̄
)
. (65)

The case of (63) of general interest concerns θ∗ = (1, 0, 0, . . .) when, in (48),

AM
t (θ∗) = AM

t , the OLS estimator. Then (62) yields an out-of-sample analogue

of the optimality property of GLS estimation relative to OLS for one-step-ahead

within-sample forecasting discussed in Findley (2003). In this reference, it is also

shown that Gaussian likelihood maximization leads to estimates θ t that converge

to the set of minimizers of ΓM
0 (1, 1, θ, θ) = Γ̊M

0 (1, 1, θ, θ). Combining these re-

sults, we have the following optimality property of GLS: for model families as

in Theorem 8, and realizations yielding parameter estimates that converge to

a minimizer of Γ̊M
0 (1, 1, θ, θ), OLS estimation is never better than GLS estima-

tion for one-step-ahead out-of-sample forecasting asymptotically. When XM
t is

misspecified and not asymptotically orthogonal to XN
t , OLS is typically worse.

The superiority of GLS over OLS can be observed with time series of typical

lengths. Among an unsystematically chosen set of eight monthly U.S. Imports

series of length at most 156 months modeled by seasonal ARIMA models with

trading day effect regressors as described in Findley, Monsell, Bell, Otto and

Chen (1998), Kellie Wills determined that the average squared out-of-sample

forecast error from the eighty-fifth month to the end of the series was smaller

with GLS trading day coefficient estimates for six of the series (for h = 1, 12)

and smaller with OLS estimates for two of the series (for h = 1, 12).

6.3. AR(1) Models: h = 1 and dim XM2
t = dim XN

t = 1

For the situation of Proposition 7, we now present some illustrative formulas

related to the minimum asymptotic average squared forecast errors Γ̊M
0

(
1, 1, θ̄, θ̄

)

and Γ̊M
0

(
1, 1, θ̄∗, θ∗

)
based on (60) for the situation in which dimXM2

t = dimXN
t

= 1 and a first-order autoregressive model, with θ = θ (φ) = (1,−φ, 0, 0, . . . ), is

used for the regression error series yM
t in (34). Thus

ΓX
0 (θ) =

∫ π

−π

∣∣∣1 − φeiλ
∣∣∣
2
dGX (λ) =

(
1 + φ2

)
ΓX

0 − φ
(
ΓX

1 + ΓX
−1

)
(66)
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and, from (54) and (60),

Γ̊M
0 (1, 1, θ, θ∗)

=

∫ π

−π

∣∣∣1 − φeiλ
∣∣∣
2
dGy (λ) + BNM (θ∗)

∫ π

−π

∣∣∣1 − φeiλ
∣∣∣
2
dGX2 (λ) BNM (θ∗)′ . (67)

Setting θ∗ = θ and making use of (66), we obtain

Γ̊M
0 (1, 1, θ, θ) =

(
1 + φ2

){
γy
0 +

(
AN

)2
ΓNN

0

}
− 2φ

{
γy
1 +

(
AN

)2
ΓNN

1

}

−
(
AN

)2

{(
1 + φ2

)
ΓNM2

0 − φ
(
ΓNM2

1 + ΓNM2
−1

)}2

(1 + φ2) ΓM2M2
0 − 2φΓM2M2

1

.

Thus, Γ̊M
0 (1, 1, θ, θ) is a rational function of φ whose minimizing value φ̄ is a zero

of a polynomial in φ of degree five in general.

For this reason, to demonstrate strict inequality in (63), we proceed indirectly

and show for the OLS choice θ∗ = (1, 0, 0, . . . ), i.e., for φ∗ = 0, that very generally

(64) holds when one or more of ΓNM2
0 , ΓNM2

1 , and ΓNM2
−1 is nonzero. We begin

by noting from (66) that

CNM2 (θ (φ)) =

(
1 + φ2

)
ΓNM2

0 − φ
(
ΓNM2

1 + ΓNM2
−1

)

(1 + φ2) ΓM2M2
0 − 2φΓM2M2

1

is strictly monotonic for −1 < φ < 1 quite generally, since

d

dφ
CNM2 (θ (φ)) =

(
1 − φ2

)
{
2ΓNM2

0 ΓM2M2
1 −

(
ΓNM2

1 + ΓNM2
−1

)
ΓM2M2

0

}

{
(1 + φ2) ΓM2M2

0 − 2φΓM2M2
1

}2 ,

is nonzero with constant sign over (−1, 1) whenever

2ΓNM2
0 ΓM2M2

1 −
(
ΓNM2

1 + ΓNM2
−1

)
ΓM2M2

0 6= 0. (68)

Because φ∗ = 0, the minimizer θ̄∗ =
(
1,−φ̄∗, 0, 0, . . .

)
of Γ̊M

0 (1, 1, θ, θ∗) is deter-

mined by the value φ̄∗ minimizing (67) with BNM2 (θ∗) = AN
[
−CNM2 1

]
and

CNM2 = ΓNM2
0 /ΓM2M2

0 , see (41). This is the property of the lag one asymptotic

autocorrelation of (57) with XM
t = XM2

t , because of (54). Thus

φ̄∗ =
γy
1 +

(
AN

)2
{

ΓNN
1 +

(
CNM2

)2
ΓM2M2

1 − CNM2
(
ΓNM2

1 + ΓNM2
−1

)}

γy
0 + (AN )

2
{
ΓNN

0 − (CNM2)
2
ΓM2M2

0

} . (69)

Except possibly at a single value of (AN )2, this optimal φ̄∗ will be non-zero, i.e.,

will be such that θ̄∗ 6= θ∗ when either γy
1 or ∆NM2 = ΓNN

1 + (CNM2)2ΓM2M2
1 −
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CNM2(ΓNM2
1 +ΓNM2

−1 ) is nonzero, which will generally be the case. The property

θ∗ 6= θ̄∗ yields (64) under (68), due to (84). For more details and an example in

which ∆NM2 6= 0 is verified, see Subsection 7.3 of Findley (2003).

7. Joint Asymptotic Stationarity of Forecast Errors from Misspecified

regARIMA Models

Suppose Yt = AXt + yt in (1) arises by applying a “differencing” transfor-

mation δ (B) =
∑d−1

j=0 δjB
j to nonstationary data Wt of the form

Wt = AZt + wt (t ≥ −d + 1) , (70)

with Xt = δ (B)Zt and yt = δ (B)wt. Then the decomposition Xt = [XM ′
t XN ′

t ]′

is obtained from a decomposition Zt = [ZM ′
t ZN ′

t ]′ with XM
t = δ (B)ZM

t , etc.

With δ0 = 1 and δ (z) =
∑d

j=0 δjz
j, define δ̃0 = 1 and δ̃j = −

∑j−1
i=0 δ̃iδj−i,

j = 1, 2, . . .. Bell (1984, p.650) shows it is not difficult to verify from Yt =

δ (B)Wt that, for any h ≥ 1 and t ≥ 0, there exist coefficients cj,h depending

only on δ1, . . . , δd and h, such that

Wt+h =
h−1∑

j=0

δ̃jYt+h−j +
d−1∑

j=0

cj,hWt−j , (t ≥ 0) .

Therefore, when t ≥ 0, given forecasts of Yt+h−j , 0 ≤ j ≤ h−1, say Y M
t+h−j|t(θ, θ∗,

T ), 0 ≤ j ≤ h − 1, defined as in (48), we have a corresponding forecast of Wt+h,

WM
t+h|t (θ, θ∗, T ) =

h−1∑

j=0

δ̃jY
M
t+h−j|t (θ, θ∗, T ) +

d−1∑

j=0

cj,hWt−j. (71)

The observable forecast errors at times t ≥ h thus have the decomposition

Wt − W M
t|t−h (θ, θ∗, T ) =

h−1∑

j=0

δ̃j

(
Yt−j − Y M

t−j|t−h (θ, θ∗, T )
)

. (72)

Consequently, these forecast errors inherit joint and uniform asymptotic sta-

tionarity from the corresponding properties of the Yt − Y M
t−j|t−h (θ, θ∗, T ). An

immediate consequence of Theorem 6 is

Theorem 9. Let convergent sequences θ∗,t, θt contained in some Θξ,ε with ξ, ε >

0 be given, with θ∗,t → θ∗, θt → θ and θ ∈ Θr,s
max. Under the Assumptions of

Section 3, the out-of-sample forecast errors Wt−W M
t|t−h

(
θt, θ∗,t

)
, t ≥ 1, h ≥ 1 are

jointly A.S. In particular,

lim
T→∞

1

T

T∑

t=1

(
Wt − W M

t|t−h

(
θt, θ∗,t

))2
= Γ̊M,δ

0 (h, h, θ, θ∗) (73)
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with

Γ̊M,δ
0 (h, h, θ, θ∗) =

∫ π

−π

∣∣∣
h−1∑

j=0

eijλδ̃jη (h − j, θ)
(
eiλ
) ∣∣∣

2
dG̊M,θ∗ (λ) .

Likewise the forecast error series Wt − ŴM
t|t−h

(
θt, θ∗,t

)
, t ≥ 1, h ≥ 1 are jointly

A.S. with the same asymptotic second moments as Wt − W M
t|t−h

(
θt, θ∗,t

)
, t ≥

1, h ≥ 1.

Γ̊M,δ
0 (h, h, θ, θ∗) has a decomposition analogous to (58). For h = 1, we have

Γ̊M,δ
0 (1, 1, θ, θ∗) = Γ̊M

0 (1, 1, θ, θ∗), so the optimality results for GLS obtained in

Theorem 8 apply in the regARIMA modeling case as well.

Remark 4. Theorems 5, 6 and 9 extend to sets Θ0,ε with ε > 0 providing

ΓMM
0 (θ∗) > 0 holds for the limit θ∗ because of the continuity of ΓMM

0 (θ) on

these sets.

8. Extensions

8.1. Tests

We have presented convergence results for sample means of squared forecast

errors of regARIMA models under simple, nearly minimal assumptions. A nat-

ural next step would seem to be to undertake, under additional assumptions,

the derivation of distributional results for statistics that test whether the asymp-

totic mean squared errors from competing models are the same or not. In fact

West (1996), using moment and mixing assumptions about high-level quantities

related to the statistics, has derived tests for an interesting variety of scenarios

involving out-of-sample forecast errors and multivariate models. However, the

applications presented in the technical report Findley (1990) of a similar test

statistic, derived (incompletely) for the case of within-sample average squared

forecast errors in the report (with some additional details in Findley (1991) and

Findley and Wei (1993)), show that it is not straightforward to use such statistics

effectively because they are not robust against outliers or nonstationarities in the

fourth moments of the data, and such problems have to be identified and dealt

with appropriately prior to testing. Rivers and Vuong (2002) provide a rigorous

theory for model selection tests like those of Findley (1990). Their assumptions

are also high-level, but they verify them for a simple, interesting example.

8.2. Transitory regressors

The widely used intervention regressors of Box and Tiao (1975) converge to

0 exponentially rapidly with increasing t. They are not covered by the results

presented above because their natural scaling sequence is the constant 1 for (30),
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which causes (27) to fail. However, the arguments in Section 9 of Findley (2003)

show that the addition to Xt in (1) of such regressors has no impact on the

asymptotic second moments (55).
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Appendix: Proofs and Additional Lemmas

A.1. Proof of Proposition 1.

Let vt, t ≥ 1 be a coordinate sequence of Vt, t ≥ 1. For T ≥ 1, define the poly-

nomial vT (z) =
∑T

t=1 vtz
t. Due to (15), c (z)−1 =

∑∞
j=1 c̃jz

j is convergent for

|z| < 1. From (5) and (12), c (z)π (h, θ) (z) vT (z) = c (z) {gh (z) c (z)−1 vT (z)} =

gh (z) vT (z). For 1 ≤ t ≤ T , the coefficient of zt on the l.h.s. is
∑min{t−1,s}

j=0 cj

vt+h−j|t−j (θ), and on the r.h.s. it is
∑min{t−1,q}

j=0 gh,jvt−j . Using the Propo-

sition’s initializations, we can express the coincidence of these coefficients as∑s
j=0 cjvt+h−j|t−j (θ) =

∑q
j=0 gh,jvt−j . Because T is arbitrary, this verifies the

Proposition.

A.2. Further properties of Θξ,ε

Lemma 10. (a) When ε > 0, then for any 0 ≤ ε− < ε and any ξ ≥ 0,

sup
θ∈Θξ,ε

∞∑

j=1

(1 + ε−)j |θj | < ∞, (74)

lim
J→∞

sup
θ∈Θξ,ε

∞∑

j=J

(1 + ε−)j |θj| = 0. (75)

Similarly, when ξ > 0 then for every 0 ≤ ξ− < ξ and any ε ≥ 0, the sums
∑∞

j=1 (1 + ξ−)j
∣∣∣θ̃j

∣∣∣ converge uniformly on Θξ,ε.

(b) For any ε ≥ 0, the uniform convergence of
∑∞

j=1 (1 + ε)j |θj| on a sub-

set Θ ⊆ Θ̄r,s implies the uniform convergence of the corresponding sums∑∞
j=1 (1 + ε)j |ηj (h, θ)| on Θ for the forecast error filters (7), for each h ≥ 1.

(c) If Θ is a subset of Θr,s on which the sums
∑∞

j=1 (1 + ε)j |θj| and
∑∞

j=1 (1 + ε)j

|θ̃j | converge uniformly for some ε > 0, then there exist tΘ ≥ 1 and KΘ > 0
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such that for all t ≥ tΘ,

sup
θ∈Θ

t−1∑

j=0

|ηt,j(h, θ)−ηj(h, θ)|=sup
θ∈Θ

t−h−1∑

j=0

|πt−h,j(h, θ)−πj(h, θ)| ≤ KΘ (1+ε)−t .

(76)

Hence, given any A.S. series Vt, t ≥ 1, for the forecast functions Vt+h|t (θ)

and V̂t+h|t (θ) defined as in (9) and (10), we have

lim
T→∞

1

T

T−h−1∑

t=1

sup
θ∈Θ

(
V̂t+h|t (θ) − Vt+h|t (θ)

)′ (
V̂t+h|t (θ) − Vt+h|t (θ)

)
= 0.

(77)

Proof. We first consider the uniform convergence assertions (a) and (b). For

θ ∈ Θξ,ε, θ (z) is a ratio of products of factors of the form 1 − νz with |ν| ≤

(1 + ε)−1 or (1 + ξ)−1. If, say, |ν| ≤ (1 + ε)−1, then for 0 ≤ ε− < ε we have

(ε − ε−) (1 + ε)−1 ≤ |1 − νz| ≤ 2 + ε− (78)

for |z| ≤ 1 + ε−. It follows readily that there exists a K (ε−) < ∞ such that

supθ∈Θξ,ε
|θ (z)| ≤ K (ε−) , |z| ≤ 1 + ε−. Applying Cauchy’s inequality (Hille

(1959, p.202)), for the j-th coordinates of each θ ∈ Θ we obtain supθ∈Θξ,ε
|θj| ≤

K (ε−) (1 + ε−)−j (j ≥ 0). Hence, given such an ε−, by choosing ε0 so that

ε− < ε0 < ε, we obtain

sup
θ∈Θξ,ε

∞∑

j=J

(1+ε−)j |θj| = sup
θ∈Θξ,ε

∞∑

j=J

(
1 + ε−
1+ε0

)j

(1+ε0)
j |θj|

≤ K (ε0)
∞∑

j=J

(
1+ε−
1+ε0

)j

for all J ≥ 0, from which (74) and (75) follow. The analogous argument applies

to the reciprocal functions θ̃ (z).

The assumptions of (b) are that DJ = supθ∈Θ

∑∞
j=J (1 + ε)j |θj| , J ≥ 0

converges to zero and that D0 < ∞. It follows by induction from (4) that

supθ∈Θ,0≤j≤J (1 + ε)j
∣∣∣θ̃j

∣∣∣ ≤ DJ
0 . From this inequality and (7), for a given h ≥ 1

and each j ≥ 0,

∣∣∣ (1 + ε)j ηj (h, θ)
∣∣∣ =

∣∣∣ (1 + ε)j
min(j,h−1)∑

i=0

θ̃iθj−i

∣∣∣

=
∣∣∣
min(j,h−1)∑

i=0

(1 + ε)i θ̃i (1 + ε)j−i θj−i

∣∣∣ ≤ Dh−1
0

j∑

i=max(0,j−h+1)

(1 + ε)i |θi|.
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Therefore, for all J ≥ 0, supθ∈Θ

∑∞
j=J (1 + ε)j |ηj (h, θ)| ≤ hDh−1

0 Dmax(0,J−h+1),
from which uniform convergence follows because limJ→∞ Dmax(0,J−h+1) = 0.

Applying (b), we obtain (76) of (c) immediately from the Baxter inequality
(3.5) of FPW (2004). From this bound, (77) follows from (c) of Proposition 5.2

of FPW (2004) and (a2) of Theorem 2.1 of FPW (2001).

A.3. Proof of Proposition 3

Whenever θt → θ, it is clear from (4) that θ̃t → θ̃ and hence from (5) that
π (h, θ) = (π0 (h, θ) , π1 (h, θ) , . . . ) satisfies

π
(
h, θt

)
→ π (h, θ) . (79)

Consequently, for any fixed u ≥ 1 and any sequence Vt, t ≥ 1, the truncated

forecasts Vu+h|u

(
θt
)

=
∑u−1

j=0 πj
(
h, θt

)
Vu+h−j have the property

lim
t→∞

Vu+h|u

(
θt
)

= Vu+h|u (θ) . (80)

The analogous result holds for the finite-past forecasts, because the ρk (θ) are con-
tinuous and the eigenvalues of the matrix [ρj−k (θ)]0≤j,k≤t−1 in (11) are bounded

away from zero due to (74)−(75), see Proposition 3.1 and (3.12) of FPW (2004).
We now extend the proof of Lemma 5 of Lai and Ying (1990) to cover our

situation in which, unlike the situation they consider, the initial values we use to
calculate vt+h|t

(
θt
)

via (14), namely vm−1−j+h|m−1−j

(
θt
)
, 0 ≤ j ≤ s− 1, with m

as in Lemma 2, depend on t. Applying (14) to both vt+h|t

(
θt
)

and vt+h|t (θ) and
subtracting, we obtain

ct (B)
{
vt+h|t

(
θt
)
− vt+h|t (θ)

}

= ct (B) vt+h|t

(
θt
)
− c (B) vt+h|t (θ) − {ct (B) − c (B)} vt+h|t (θ)

= {gh,t (B) − gh (B)} vt − {ct (B) − c (B)} vt+h|t (θ) = φt. (81)

With ε and m > s as in Lemma 2, it follows from the proof of part (i) of Lai and

Ying’s Lemma that there is a K > 0 such that, with ρ = (1 + ε)−1, we have, for
t ≥ m,
∣∣∣vt+h|t

(
θt
)
− vt+h|t (θ)

∣∣∣

≤ K
{ t−m∑

i=0

ρi |φt−i|+ρt−m
s−1∑

j=0

∣∣∣vm−1−j+h|m−1−j

(
θt
)
−vm−1−j+h|m−1−j (θ)

∣∣∣
}
. (82)

From (80), the sequences vu+h|u

(
θt
)
− vu+h|u (θ) , 1 ≤ u ≤ m − 1, converge to 0,

and so are bounded:

sup
t≥1,1≤u≤m−1

∣∣∣vu+h|u

(
θt
)
− vu+h|u (θ)

∣∣∣ < ∞. (83)
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Hence, from (82) and the Cauchy-Schwarz inequality, there is a K ′ > 0 such that
for T ≥ m,

T∑

t=m

(
vt+h|t

(
θt
)
− vt+h|t (θ)

)2
≤ K ′

{
1 +

T∑

t=m

φ2
t

}
.

Because of this inequality and (83), in order to verify (19) it suffices to verify
limT→∞ T−1∑T

t=m φ2
t = 0. From φt’s defining formula (81), this follows from

(16), limT→∞ T−1∑T
t=m v2

t = γv
0 < ∞, and limT→∞ T−1∑T

t=1{vt+h|t(θ)}2 =∫ π
−π |π(h, θ)(eiλ)|2dGv(λ) < ∞, the latter being a consequence of

∑∞
j=1 |πj(h, θ)|

< ∞ and Theorem 2.1 of FPW (2001).

A.4. Proof of Proposition 7

Under the assumptions on XM1
t , Proposition 11.1 of Findley (2003) shows

that

CNM (θ∗) =
[
0 ΓNM2

0 (θ∗)
]



[
ΓM1M1

0 (θ∗)
]−1

0

0
[
ΓM2M2

0 (θ∗)
]−1




=
[
0 CNM2 (θ∗)

]
, (84)

from which (60) follows easily because X2t is A.S.

A.5. Lemma 11 and its proof

The following Lemma is used to establish Theorem 6.

Lemma 11. (a) Let Vt, t ≥ 1 and V̂t, t ≥ 1 denote vector sequences of the same

dimension such that, for the scaling matrices DV,T = diag(d−1
1,T , . . . , d−1

dim V,T ),
T ≥ 1,

lim
T→∞

T∑

t=1

(
V̂t − Vt

)′
D2

V,T

(
V̂t − Vt

)
= 0 (85)

holds. Then for every k ≥ 0, DV,T
∑T−k

t=1

{
V̂t+kV̂

′

t − Vt+kV
′

t

}
DV,T → 0.

Thus, if Vt, t ≥ 1 is S.A.S. with diagonal scaling matrices DV,T , then so

is V̂t, t ≥ 1, and both sequences have the same asymptotic second moment

matrices.

(b) For any an S.A.S. sequence Ut, t ≥ 1, whose scaling matrices satisfy DU,T ↘
0, and any convergent sequence of matrices βt → β of order dimU , we have

lim
T→∞

T∑

t=1

(βtUt − βUt)
′ D2

U,T (βtUt − βUt) = 0. (86)

Hence βtUt, t ≥ 1 is S.A.S. with scaling matrices DU,T and asymptotic second

moment sequence βΓU
k β′, k ≥ 0.
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The assertion of (a) is equivalent to the validity of d−1
u,T d−1

v,T

∑T−k
t=1 {ût+kv̂t−

ut+kvt} → 0 for every combination of coordinate entries ut and vt of Vt (the same

coordinates for every t), where ût and v̂t are the corresponding entries of V̂t. This

follows from a straightforward modification of the argument on pp. 830–831 of

FPW (2001).

For (b), it is enough to consider the case dimUt = 1, and since βtUt −βUt =

(βt − β) Ut, we can further assume β = 0. Note that, for any 1 ≤ T0 < T ,

D2
U,T

T∑

t=1

β2
t U2

t ≤

(
sup
t≤T0

β2
t

)
D2

U,T

T0∑

t=1

U2
t +

(
sup

t≥T0+1
β2

t

)
D2

U,T

T∑

t=T0+1

U2
t . (87)

Because supT≥1 D2
U,T

∑T
t=T0+1 U2

t ≤ supT≥1 D2
U,T

∑T
t=1 U2

t < ∞, (since D2
U,T∑T

t=1 U2
t converges), and β2

t → 0, a standard argument, see Lemma A.1 of FPW

(2001), shows that the r.h.s. of (87) tends to 0, which yields (86). The remaining

assertions follow from (a).
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