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Abstract: It is known that Silverman’s bootstrap test for multimodality tends to-

wards conservatism, even in large samples, in the sense that the actual level tends

to be less than the nominal one. In this paper, and in the context of testing for a

single mode, we propose a means of calibrating Silverman’s test so as to improve its

level accuracy. The calibration takes two forms — first, an asymptotic approach,

which involves identifying the limiting distribution of the test statistic and adjust-

ing for its departure from a hypothetical Uniform distribution; and second, a Monte

Carlo technique, which enables a degree of correction for second-order effects to be

incorporated. As an aid to applying Silverman’s test to contexts rather different

from those he envisaged, for example to the case of testing for the number of modes

of a density in a compact interval, we show that the modes of the density estimator

remain separated as the bandwidth is decreased, at least until a point is reached

where the first three derivatives of the estimator vanish simultaneously. Theoretical

and numerical properties of alternative forms of Silverman’s test are addressed.
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1. Introduction

In seminal work on bootstrap methods and the analysis of modality, Sil-
verman (1981, 1983) proposed a method for testing the null hypothesis that a
distribution has j modes, versus the alternative that it has j + 1 or more modes.
It is known that Silverman’s test is not asymptotically accurate, in the sense that
even for infinite sample sizes its exact significance level is different from the nom-
inal one, although the extent of level errors is not known with any precision. In
the present paper, in the important case j = 1, we describe the level inaccuracy
of Silverman’s test in both theoretical and numerical terms, and suggest a way
of calibrating the test so as to improve its accuracy.

Calibration produces a test with asymptotically correct level accuracy, and
may be conducted in at least two ways. First, a straightforward adjustment,
depending only on the significance level and applicable for all sample sizes, may
be used. The size of the adjustment is given explicitly by a table, in the case of a
formal test based on a preset level, or by an interpolation formula, if p-values are
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to be determined from data. Second, Monte Carlo methods based on simulation
from a unimodal density may be employed to calibrate the test in a manner that
adjusts for second-order effects, such as those due to sample size.

It should be noted that Silverman’s test has a number of characteristics that
make it rather exceptional in the class of bootstrap procedures. In particular, the
bootstrap part of the algorithm does not consistently estimate the distribution of
the test statistic under the null hypothesis, even up to scale or location changes.
Therefore, the operation of calibrating the test amounts to substantially more
than adjusting its level, as would be the case in more classical problems. The
nature of the test has to be altered, so as to render it asymptotically accurate.
Furthermore, the so-called critical bandwidth for the test has a proper limiting
distribution under the null hypothesis, unlike more conventional settings where
it is asymptotically constant. Therefore, the test really involves a critical dis-
tribution, not just a single value. Calibrating the distribution is important to
producing a test with accurate level.

We also show that when the kernel function is a normal density, the modes
and troughs of the density estimator remain isolated as bandwidth is decreased,
unless or until a point is reached where the first three derivatives of the density
vanish simultaneously. (This is a very rare event, particularly for bandwidths of
the critical size used in bootstrap testing for modality.) The fact that turning
points remain separate provides motivation for using the normal kernel in the
testing problem, additional to that offered by Silverman (1981) in his demon-
stration of the monotonicity of the total number of modes. Silverman’s result,
although very important, applies only to the case where the number of modes
on the whole line is addressed, and there the testing problem is often made more
difficult by spurious modes arising from outlying data values. The ability to
track modes as the bandwidth decreases enables the mode testing problem to
be addressed within a compact interval, even if the density has unbounded sup-
port. We study this modified version of Silverman’s problem, as well as its more
traditional form.

Related work on the problem of testing for modality, or bump hunting as
it is often called, includes the penalised likelihood approach suggested by Good
and Gaskins (1980), Hartigan and Hartigan’s (1985) DIP test (see also Hartigan
(1985)), and Müller and Sawitzki’s (1991) excess mass method. The DIP and
excess mass approaches are numerically equivalent, and a method for calibrating
them has been suggested by Cheng and Hall (1998). Work of Polonik (1995a,b),
developing the ideas behind the excess mass approach, should also be mentioned
in this context. Minotte and Scott (1993) and Minotte (1997) have introduced
and developed the concept of a mode tree, as both an exploratory tool for bump
hunting and an aid to formally testing hypotheses about modality.



TEST FOR MULTIMODALITY 517

Mammen, Marron and Fisher (1992) conducted an extensive theoretical
study of properties of Silverman’s method; see also Mammen (1991a, b). The
same authors (Fisher, Mammen and Marron (1994)) addressed numerical prop-
erties of the technique. Silverman (1986, Section 6.3) reviewed methods for
analysing modality, and Izenman (1991) discussed testing for multimodality in
his account of more recent developments in density estimation. Cuevas and
Gonzales–Manteiga (1991) described methods for bandwidth choice when it is
desired to match the number of modes of the estimated and true densities.

Assessment of modality is often an important part of the analysis of mixture
models, for example in the work of Roeder (1990, 1994) and Escobar and West
(1995). Izenman and Sommer (1988) provided an extensive description of the
application of Silverman’s and other methods to a problem on identifying the
number of modes in a mixture. They included an account of adaptations of
Silverman’s approach for dealing with spurious modes caused by outlying data
clusters. Our work in testing for the number of modes in a compact interval is
relevant to these adaptations.

Section 2 introduces Silverman’s test, in both its original and its modified
forms for testing on a compact interval. In that section we introduce our cali-
brated form of the test, and describe its general properties; we discuss and make
explicit the feature that turning points remain separated as bandwidth is de-
creased; and we briefly address the general case where the null hypothesis is the
existence of j modes. Section 3 develops theory describing the test, showing
explicitly that the limiting bootstrap distribution of the test statistic does not
depend on unknowns. This confirms our claim that the calibrated form of the
test has asymptotically correct level. Section 4 presents numerical work that
corroborates and complements these theoretical conclusions. There we also tab-
ulate the degree of adjustment necessary for the non–Monte Carlo approach to
calibration. Section 5 outlines technical details behind the results in Section 3.

2. Bootstrap Test and Its Properties

2.1. Testing the hypothesis of a single mode

Given a dataset X = {X1, . . . ,Xn} from a distribution with unknown density
f , we wish to test the null hypothesis H0 that f has a single mode in the interior
of a given closed interval I, and no local minimum in I, against the alternative
hypothesis H1 that f has more than one mode in I. To this end, construct the
kernel density estimator

f̂h(x) = (nh)−1
n∑

i=1

K
(x − Xi

h

)
, (2.1)
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where h is a bandwidth and K a kernel function. Following Silverman (1981)
we take K to be the standard normal density function, for which the number of
modes of f̂h on the whole line is always a nonincreasing function of h. Further-
more, f̂h is unimodal for all sufficiently large h, and so the quantity

ĥcrit = inf {h : f̂h has precisely one mode in I} (2.2)

is well-defined, at least when I is the whole line. The definition of ĥcrit for more
general I will be discussed in Sections 2.3 and 3.4.

If H0 is true and I is bounded, then under appropriate conditions on f (see
e.g. Corollary 2.1 of Mammen, Marron and Fisher (1992)), ĥcrit is of size n−1/5,
in the sense that limC1↓0,C2↑∞ lim infn→∞ P (C1n

−1/5 < ĥcrit < C2n
−1/5) = 1.

On the other hand, if H1 is true then ĥcrit may not even converge to zero with n

(see Section 3.3). Therefore, unduly large values of ĥcrit provide evidence of the
invalidity of H0. Rigorous assessment of the size of ĥcrit may be conducted via
the bootstrap, as follows.

Let f̂crit denote the version of f̂h that we obtain by putting h = ĥcrit. Con-
ditional on X , let X∗

1 , . . . ,X∗
n be a resample drawn from the distribution with

density f̂crit, and put

f̂∗
h(x) = (nh)−1

n∑
i=1

K
(x − X∗

i

h

)
.

Let ĥ∗
crit denote the version of ĥcrit in this setting, i.e. the infimum of all band-

widths h such that f̂∗
h has precisely one mode. The test statistic is the bootstrap

distribution of ĥ∗
crit/ĥcrit , and an α-level test of H0 against H1 is to reject H0 if,

for an appropriate quantity λα, P (ĥ∗
crit/ĥcrit ≤ λα|X ) ≥ 1 − α.

It is common to set up the bootstrap test a little differently from this, pro-
ducing a test which is equivalent to that above when λα ≡ 1. This is based on
a notion that the distribution of Un = P (ĥ∗

crit ≤ ĥcrit|X ) is not far from being
uniform on the interval (0, 1), at least for large values of n. This is not strictly
correct, as we note in Section 3. Our reformulation of the test allows it to be
calibrated for level accuracy arising from nonuniformity of the distribution of Un.

Specifically, given a value of α we show in Section 4 how to choose λα in a
completely deterministic way (in fact, using a rational-polynomial approximation
to express λα in terms of α) such that the test has asymptotic level α. Note
particularly that we are not calibrating by adjusting the nominal level, α; rather,
we are calibrating by selecting an appropriate λα for any given value of α.

2.2. Properties of the test

We shall note in Section 3 that, under H0, the bootstrap distribution function
Ĝn, defined by Ĝn(λ) = P (ĥ∗

crit/ĥcrit ≤ λ|X ), converges weakly to a stochastic
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process Ĝ whose distribution does not depend on unknowns. (Each realiza-
tion of Ĝ is a distribution function.) The finite-dimensional distributions of Ĝ

are absolutely continuous, and the realizations of Ĝ are continuous functions
with probability 1. Hence, there exists a unique absolute constant λα such that
P{Ĝ(λα) ≥ 1 − α} = α. Using this definition of λα, tabulated in Section 4, the
bootstrap test is asymptotically correct, in that

P{P (ĥ∗
crit/ĥcrit ≤ λα|X ) ≥ 1 − α} → P{Ĝ(λα) ≥ 1 − α} = α. (2.3)

This approach will be referred to as “Method 1” in Section 4.
Alternatively, since Ĝ does not depend on unknowns then we may estimate

λα by Monte Carlo methods. This involves drawing samples of size n from a
distribution whose density is unimodal with its mode interior to I, and applying
the bootstrap test to each sample. That approach is potentially better able to
correct for second-order effects, for example by taking into account the influence
of a specific sample size. It will be referred to as “Method 2” in Section 4.

We show in Section 3.3 that, under H1, the bootstrap distribution converges
to a degenerate mass at the origin, in the sense that P{Ĝn(λ) ≤ x} → 0 for all
λ > 0 and all x < 1. Therefore, the bootstrap test is consistent.

2.3. Spurious modes, and the definition of ĥcrit, for general intervals I
If both the support of f and the interval I are unbounded then properties of

ĥcrit are generally determined by extreme values in the sample, not by the modes
of f . For example, if f is a unimodal density for which the upper tail decreases
like a constant multiple of x−β−1 for some β > 0 (e.g. if the sampling density
is Student’s t), then the spacings between consecutive pairs of extremes in the
sample X are of size n1/β, from which it may be proved that if I is unbounded
on the right then ĥcrit diverges at least as fast as a constant multiple of n1/β.
For similar reasons, if f is a normal density and I is unbounded on either the
left or the right then ĥcrit cannot decrease to zero any faster than (log n)−1/2.
Likewise, if the support of f is compact and lies within I, and if f decreases to
zero sufficiently quickly at the extremities of its support, then the size of ĥcrit is
driven by the rate of decrease, since that determines the spacings of the extreme
order statistics of f .

To avoid these problems one would usually, in practice, take I to be a com-
pact interval within which f does not vanish. Even for such a choice of I, and
even if K is the normal kernel, the number N(h) of modes of f̂h within I is not
always a monotone function of h. The position of a mode can migrate slightly
as h is altered; if it was just inside or outside I for some h, it can switch to the
other side as we alter h in one direction or another.
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This causes few practical problems, however, since the positions of modes
are readily monitored as h is varied. Indeed, a turning point remains isolated
— that is, it does not merge with other turning points — as h is decreased, at
least until a bandwidth is reached where the first three derivatives of f̂h vanish
simultaneously, as the result below shows.

Theorem 2.1. Assume that K is the standard normal density. Given h1 > 0,
let xh1 denote a point such that f̂ ′

h1
(xh1) = 0 and f̂ ′′

h1
(xh1) �= 0. As h is decreased

through positive values less than h1, xh varies continuously through points x

satisfying f̂ ′
h(x) = 0, f̂ ′′

h (x) �= 0 and sgn{f̂ ′′
h (x)} = sgn{f̂ ′′

h1
(xh1)}, at least until

a value h2 < h1 is encountered with the property that f̂ ′
h2

(xh2) = f̂ ′′
h2

(xh2) =
f̂ ′′′

h2
(xh2) = 0.

Moreover, provided f has no turning point on the boundary of I, the prob-
ability that N(h) is monotone in h, within a wide range of h’s, converges to 1
under relatively general conditions. This result and others enable us to establish
the asymptotic validity of the bootstrap test under quite general conditions. See
Section 3.4.

2.4. Testing the hypothesis of j modes

The problem of testing the null hypothesis H0j that f has precisely j modes
in I, against the alternative that it has j + 1 or more modes there, is in prin-
ciple similar for all values of j; see Silverman (1981). Indeed, defining ĥcrit,j =
inf {h : f̂h has precisely j modes in I}, n1/5 ĥcrit,j converges in distribution un-
der H0j to max0≤i≤2j−1 (ciRi), where ci = f(ti)1/5/|f ′′(ti)|2/5, t1, . . . , t2j−1 are
the turning points of f in I (assumed to all satisfy f ′′(ti) �= 0), and R1, . . . , R2j−1

are independent and identically distributed random variables with a distribu-
tion that we shall define at (3.2). Intuitively, the independence here follows
from the fact that the turning points are well separated, at least in asymptotic
terms, and the density estimation is local. The bootstrap distribution function,
Ĝn(λ|j) = P (ĥ∗

crit,j/ĥcrit,j ≤ λ|X ), again converges weakly to a stochastic pro-
cess, Ĝ(·|j), but unless j = 1 the distribution of the latter process depends on
the 2j − 2 unknowns {ci/c1 : 2 ≤ i ≤ 2j − 1}. Therefore, if j ≥ 2 then the
bootstrap test cannot be calibrated by simply forming the ratio ĥ∗

crit,j/ĥcrit,j .

3. Theoretical Results

3.1. Distribution of ĥcrit under H0

We define a level point of f to be a real number t such that f ′(t) = 0, and a
turning point to be a level point such that sgn{f ′(t+)} = −sgn{f ′(t−)}. Under
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H0, f has a unique turning point t0 in I. Put c = f(t0)1/5/|f ′′(t0)|2/5, and let

Z(r, s) = r−3
∫

K ′′(s + u)W (ru) du, (3.1)

where K is the standard normal kernel, W is a standard Wiener process, r > 0
and −∞ < s < ∞. Define

R = inf{r > 0 : the function Z(r, s) + s changes sign

exactly once in the range −∞ < s < ∞}, (3.2)

and let S be the unique point at which Y (s) = Z(R, s) + s changes sign. (There
exists another point S1 such that Y (S1) = 0, but sgn{Y (S1+)} = sgn{Y (S1−)}).
The variation-diminishing property of the integral operator with kernel K ′′ en-
sures that with probability 1 the number of sign changes of Z(r, s) + s is a
right-continuous, nonincreasing function of r; see Schoenberg (1950) and Silver-
man (1981). Similarly, if I = (−∞,∞), then the property ensures that ĥcrit is
well-defined by (2.2).

Our first result describes the limiting distribution of ĥcrit. Following Mam-
men, Marron and Fisher (1992) we impose regularity conditions that require f

to be compactly supported, and allow I to be the whole real line. Theorem 3.4
will address alternative settings, where I is compact and f may be infinitely
supported.

Theorem 3.1. Assume that f is supported on a compact interval S = [a, b]
and has two continuous derivatives there; that it has a mode t0, giving a local
maximum, in the interior of S, with f ′′(t0) f(t0) �= 0; that f has no other level
points in S; and that f ′(a+) > 0 and f ′(b−) < 0. Take I = (−∞,∞). Then,
n1/5 ĥcrit converges in distribution to cR as n → ∞.

3.2. Bootstrap distribution of ĥ∗
crit/ĥcrit under H0

For each n it is possible to construct the Wiener process W above, depending
in part on the data, such that, with R defined at (3.2), we have n1/5ĥcrit =
cR + op(1). The reader is referred to the “Hungarian embedding” introduced
during the proof of Theorem 3.1 in Section 5.2, and in particular to the last
paragraph of that section, for details. Let W ∗ denote a second standard Wiener
process, independent of W , and let Z∗ have the definition at (3.1) except that
W there should now be replaced by W ∗. Put

ζ∗(r, s) = Z∗(r, s) + r−1 R Z(R,S + R−1rs) + r−1RS + s,

R∗ = inf{r > 0 : the function ζ∗(r, s) changes sign

exactly once in the range −∞ < s < ∞}.



522 PETER HALL AND MATTHEW YORK

Our next result describes the limiting bootstrap distribution of ĥ∗
crit.

Theorem 3.2. Assuming the conditions of Theorem 3.1,

sup
−∞<x<∞

|P (n1/5 ĥ∗
crit ≤ cx|X ) − P (R∗ ≤ x|W )| → 0

in probability as n → ∞.

Taking x = n1/5 c−1 λ ĥcrit = λR+ op(1) in Theorem 3.2, we deduce that the
stochastic process Ĝn, defined by Ĝn(λ) = P (ĥ∗

crit/ĥcrit ≤ λ|X ), converges weakly
to Ĝ, where Ĝ(λ) = P (R∗/R ≤ λ|W ). By definition of the distributions of R and
R∗, the distribution of the stochastic process Ĝ does not depend on unknowns.
This confirms the asymptotic accuracy of the calibrated test proposed in Section
2.2, in particular the validity of formula (2.3) under the null hypothesis.

3.3. Distribution of ĥcrit and ĥ∗
crit/ĥcrit under H1

We show that ĥcrit tends to be much larger, and ĥ∗
crit/ĥcrit much smaller,

under H1 than under H0. This implies that the asymptotic power of the band-
width test is 1 under fixed alternatives in H1. Similar arguments may be used to
address power under local alternatives, in particular under bimodal distributions
where the second mode is n−1/5 distant from the first. These are the so-called
“difficult cases” of Cheng and Hall (1999).

Theorem 3.3. Assume the conditions of Theorem 3.1, except that where before
f had just one local maximum in the interior of S, we now ask that it have m

turning points t1, . . . , tm there, that 2 ≤ m < ∞ and that each f(ti) f ′′(ti) �= 0.
Then (a) there exists a constant C = C(f) > 0 such that P (ĥcrit > C) → 1, and
(b) for each λ > 0, Ĝn(λ) → 1 in probability.

3.4. Alternative regularity conditions

Here we let I be a proper subset of the support of f , and show that in such
cases the earlier results continue to be valid in an asymptotic sense. By way of
notation, let εn be a sequence of positive constants converging to zero, let δ > 0
be fixed, put Hn = [εnn−1/5, δ], let H′

n denote the set of all h ∈ Hn such that f̂h

has precisely one mode in I, and redefine ĥcrit = inf H′
n if H′

n is nonempty, and
ĥcrit = δ otherwise. Let N(h) denote the number of modes of f̂h within I.

Theorem 3.4. Assume that I is compact, that f ′′ is bounded and continuous
in an open interval containing I, that f has only a finite number of level points
t in I at each of which f(t) f ′′(t) �= 0, and that neither endpoint of I is a level
point of f . Then, if εn → 0 sufficiently slowly and δ > 0 is sufficiently small,
(a) the probability that N(·) is nonincreasing on Hn converges to 1, (b) under
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H0, the probability that H′
n is not empty converges to 1, and (c) the conclusions

of Theorems 3.1–3.3 apply for the above definition of ĥcrit.

The analogues of Theorems 3.1 and 3.2 require that we assume additionally
that f have one mode interior to I, and no other turning points there; and the
analogue of Theorem 3.3 requires f to have at least two modes interior to I.

It follows that if we restrict attention to bandwidths that are not too small
then, with probability tending to 1 as n increases, the calibration methods sug-
gested in Section 2 apply in the case of testing for the number of modes on a
compact interval.

4. Numerical Results

In this section we quantify the asymptotic conservatism of the critical band-
width test, and use two different methods to compute the constant λα, required
for calibrating the bandwidth test so as to give it correct level. We simulated the
calibrated forms of the test on unimodal distributions for sample sizes n = 50, 100
and 200, and compared performance with the version of the bandwidth test pro-
posed by Silverman (1981). We studied the power of these different forms of the
test by considering a family of bimodal normal mixtures.

In these simulations we determined the critical bandwidth ĥcrit by computing
kernel density estimates on an equally spaced grid of 256 points, and searching for
the smallest bandwidth that yielded a unimodal density estimate. For unimodal
distributions the actual level of the test was estimated by the proportion of times
that null hypothesis was rejected, and the same approach was used to estimate
the power of the test for bimodal distributions.

To quantify the asymptotic conservatism of the bandwidth test we simulated
the test on samples of size n = 10,000 drawn from a standard normal distribution.
Other simulations, not reported here, indicated that samples of this size were
sufficiently large to capture the asymptotic behaviour of the test. We drew 5000
samples from the standard normal distribution and, for each sample, we drew
5000 resamples. To avoid problems associated with the detection of spurious
modes in the tails of the distribution, discussed in Section 2, we conducted the
test over the interval I = [−1.5, 1.5]. The actual test levels, obtained for a range
of nominal levels, are given in Table 1. These results indicate that the critical
bandwidth test is particularly conservative, even in the limit. When the test is
performed at the nominal levels of 0.01, 0.05, 0.1 and 0.2, the actual levels of the
test are 0.000, 0.010, 0.032 and 0.102, respectively.

To implement the calibrated forms of the test proposed in this paper, we need
to specify the constant λα. In Section 2 we discussed two possible approaches to
calculating λα. The first (Method 1) was an asymptotic correction based on the
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limiting distribution of the test statistic and the second (Method 2) was based on
Monte Carlo techniques, which enabled a degree of correction for second-order
effects. To compute the asymptotic version of λα we used the results of the simu-
lation which computed the asymptotic level accuracy. The constant λα was cho-
sen to produce a test with correct level accuracy for α = 0.001, 0.002, . . . , 0.999.
These values of λα, determined by Monte Carlo simulation, are plotted on Fig-
ure 1. The somewhat erratic nature of the plotted points there is the result of
stochastic error. If we were able to do an infinite number of simulations for each
value of α, the plot would be a one-to-one function of α and would be indis-
tinguishable from the smooth curve in Figure 1, on the scale of that figure. A
function of the form

λα =
a1α

3 + a2α
2 + a3α + a4

α3 + a5α2 + a6α + a7
(4.1)

was fitted to the output to provide a means of approximating λα for arbitrary α.
The coefficients are listed in Table 2, and the approximating curve is included in
Figure 1.

Table 1. Asymptotic level of Silverman’s critical bandwidth test.

Nominal level Actual level Nominal level Actual level

0.005 0.000 0.130 0.050
0.010 0.000 0.140 0.057
0.020 0.002 0.150 0.062
0.030 0.004 0.160 0.070
0.040 0.006 0.170 0.079
0.050 0.010 0.180 0.088
0.060 0.012 0.190 0.094
0.070 0.016 0.200 0.102
0.080 0.021 0.250 0.149
0.090 0.025 0.300 0.202
0.100 0.032 0.350 0.252
0.110 0.038 0.400 0.308
0.120 0.043 0.500 0.423

Table 2. Estimated coefficients for the approximating function for λα.

a1 a2 a3 a4 a5 a6 a7

0.94029 −1.59914 0.17695 0.48971 −1.77793 0.36162 0.42423
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Figure 1. Asymptotic value of λα. The points are the empirically computed
values and the line is the approximating function.

This asymptotic value of λα, needed for Method 1, could have been calculated
by simulating the limiting distributions of ĥcrit and ĥ∗

crit rather than simulating
the test on very large samples. However, while these limiting distributions are
known in theory they are extremely complicated, particularly that of ĥ∗

crit. We
found it more straightforward to approximate the asymptotic distributions of
ĥcrit and ĥ∗

crit by repeatedly applying the test to large samples. For this purpose
we took n = 10,000 and sampled from the standard normal distribution.

In the case of Method 2 one performs Monte Carlo simulation for a sample
size equal to that of the dataset, rather than referring to the (effectively asymp-
totic) case n = 10,000. Specifically, in order to determine the appropriate value
of λα(n) one would simulate from a unimodal distribution resembling the sam-
pled one, in particular with scale chosen empirically. Simulation would be from
that part of the “model” distribution over the interval where the test was being
conducted. We found that Monte Carlo simulation from the normal distribution
produced a test with good level accuracy over a wide class of sampled distribu-
tions, although in some cases the test was anticonservative, as we shall shortly
see.

It should be stressed that for none of these methods are we calibrating by
adjusting the nominal level, α, of the test. Instead, we are enhancing coverage
accuracy by choosing an appropriate λα for a specified value of α, rather than
simply taking λα = 1 as in Silverman’s (1981) standard test.

In our simulation study we considered three versions of the critical bandwidth
test. The first was the form of the test proposed by Silverman (1981), equivalent
to taking λα ≡ 1. In the description of the bandwidth test in Section 2 we stated
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that the resampled data are drawn from the distribution with density f̂crit. In
practice, f̂crit is normally rescaled so that the resampling distribution has the
same mean and variance as the data. This adjustment improves level accuracy
of the test for small to medium samples sizes, so we used the adjustment in our
study. Silverman’s test is much more conservative when this rescaling is not used.
Our second version of the test, Method 1, also used the rescaled version of f̂crit.
However for the third testing procedure, Method 2, we did not rescale f̂crit, since
the value of λα used here implicitly incorporates a correction for the variance
inflation effect of the kernel density estimator.

To compare the level accuracy of Method 1, Method 2 and Silverman’s ver-
sion of the test we illustrate performance for samples of sizes n = 50 and 200,
drawn from unimodal distributions. We drew 1000 samples and, for each sample,
we drew 1000 resamples. The results for the standard normal, Beta (3,4) and
Gamma (3) distributions are shown in the first, second and third rows, respec-
tively, of Figure 2. For the standard normal distribution we conducted the test
over the interval I = [−1.5, 1.5], for the Beta (3,4) we used I = [0, 1], and for the
Gamma (3) we took I to be [0.5,5]. The normal and gamma distributions had
infinite support so we chose I to be sufficiently wide to contain the majority of
the data while still being narrow enough to avoid problems caused by detecting
spurious modes in the tails. While the beta distribution had bounded support its
right-hand tail tended to zero sufficiently quickly for there to be, potentially, tail
problems. We experimented with a range of choices for I, and found that there
was little difference in the performance of the test and that the level accuracy of
the test actually deteriorated as I was shortened from [0,1].

The first panel in each row of Figure 2 shows the respective sampling den-
sity. The next two panels depict level accuracy for n = 50 and 200. The plots
reveal that Silverman’s method was conservative for all three distributions, for
the three sample sizes considered. Methods 1 and 2 produced tests with good
level accuracy. Method 2 tended to perform slightly better than Method 1, par-
ticularly for the Beta (3,4) distribution. For beta and gamma data both methods
are slightly anticonservative when n = 50 or 100 (not shown here), although at
least for Method 2 this has virtually vanished by n = 200.

To examine the increase in apparent power achieved by calibrating the band-
width test we studied mixtures of normal distributions with densities of the form
f(x) = 0.5φ(x − µ) + 0.5φ(x + µ), where φ is the standard normal density, for
µ = 1.1, 1.2, . . . , 2.0. When µ = 1.1 the two modes are only barely discernible
and, as µ increases to 2, the separation and size of the modes increase. The
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Figure 2. Level accuracy. The three rows show results for the normal,
Beta (3,4) and Gamma (3) distributions, respectively. The three panels in
each row show the density of the sampling distribution, and results for n = 50
and n = 200, respectively. In each of the last two panels in each row, level
accuracy for Silverman’s critical bandwidth test, and for the Method 1 and
Method 2 tests, are depicted by a dot-dashed line, a dotted line and a dashed
line, respectively.
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Figure 3. Power for bimodal mixtures of normal distributions. The power
of Method 1 (triangle), Method 2 (cross) and Silverman’s critical bandwidth
test (square) for bimodal mixtures with densities of the form f(x) = 0.5 φ(x−
µ) + 0.5 φ(x + µ). The value of µ is plotted on the x-axis. The four panels
show the power for samples of size n = 50 and n = 200 for the levels α = 0.05
and α = 0.1 .

apparent power of the three forms of the test is plotted in Figure 3 for levels
α = 0.05 and 0.1, and for sample sizes n = 50 and 200. The apparent power of
all three methods increases as µ increases. Silverman’s test is the least powerful,
Method 1 and Method 2 generally have about 10% greater apparent power. For
the difficult cases of µ = 1.1, 1.2 and 1.3, where the modes are not well-separated,
the calibrated versions of the test have over twice the apparent power of the
uncalibrated one. Method 1 has more apparent power than Method 2 under the
alternative hypothesis, but in some cases it tends to be anti-conservative relative
to Method 2; see Figure 2.



TEST FOR MULTIMODALITY 529

5. Technical Arguments

5.1. Outline proof of Theorem 2.1

By properties of derivatives of the normal density, (∂/∂h)f̂ (i)
h (x)=hf̂

(i+2)
h (x).

Let xh denote a turning point of f̂h, so that f̂ ′
h(xh) ≡ 0, and put x′

h = (∂/∂h)xh.
In this notation,

0 =
∂

∂h
f̂ ′

h(xh) =
∂

∂h
f̂ ′

h(x)
∣∣∣
x=xh

+ f̂ ′′
h (xh)x′

h = h f̂
(3)
h (xh) + f̂ ′′

h (xh)x′
h.

Therefore, x′
h = −h f̂

(3)
h (xh)/f̂ ′′

h (xh), whence

∂

∂h
f̂

(i)
h (xh) = h f̂

(i+2)
h (xh) − h f̂

(i+1)
h (xh) f̂

(3)
h (xh) {f̂ ′′

h (xh)}−1. (5.1)

As we alter h, xh varies continuously through values of x such that f̂ ′
h(x) = 0.

Suppose that f̂ ′′
h1

(xh1) < 0 for some h1. If it is not true that f̂ ′′
h (xh) < 0 for all

0 < h < h1, then the quantity h2 = sup{h < h1 : f̂ ′′
h(xh) = 0} is well-defined,

and 0 < h2 < h1. Suppose f̂
(3)
h2

(xh2) �= 0. Taking i = 2 in (5.1), we have that
(∂/∂h) f̂ ′′

h (xh) → +∞ as h ↓ h2. This means that f̂ ′′
h (xh) decreases through

negative values as h ↓ h2, contradicting the hypothesis that f̂ ′′
h2

(xh2) = 0.
Similarly, if f̂ ′′

h1
(xh1) > 0 for some h1 then f̂ ′

h(xh) > 0 for all h < h1,
unless or until a point is reached at which the first three derivatives of f̂h vanish
simultaneously; call this event E . The result proved in the previous paragraph
means that we may track a mode as h decreases, and it keeps the mode property.
It will be uniquely defined unless it merges with another mode. In this event,
since there must be at least one local minimum between the two modes, the local
minimum must merge with the two modes at the same time as the modes merge,
which is precluded by the result in the first sentence of this paragraph unless
or until h has become so small that E occurs. Hence, each mode (and similarly,
each local minimum) remains distinct as we decrease h, unless or until E occurs.

5.2. Outline proof of Theorem 3.1

Put h0 = n−1/5. It is known from Corollary 2.1 of Mammen, Marron and
Fisher (1992) that, under the conditions of Theorem 3.1,

lim
C1↓0,C2↑∞

lim inf
n→∞ P (C1h0 ≤ ĥcrit ≤ C2h0) = 1 (5.2)

lim
C1↓0,C2↑∞

lim sup
n→∞

P{f̂ ′
h(x) = 0 for some h ∈ [C1h0, C2h0]

and x �∈ [t0 − C2h0, t0 + C2h0]} = 0. (5.3)



530 PETER HALL AND MATTHEW YORK

By applying the approximation of Komlós, Major and Tusnády (1975) we may
prove that in the neighbourhood of any turning point t0 of f one can approximate
f̂ ′

h(t) − E{f̂ ′
h(t)} by

Z1(h, t) = −n−1/2h−3
∫

K ′′( t − x

h

)
W 0{F (x)} dx, (5.4)

where W 0 is a standard Brownian bridge and F is the distribution function
associated with f . During the proof of Theorem 4 of Mammen, Marron and
Fisher (1992) it is shown that if h = h0R

† denotes the infimum of values of h

such that Z1(h, t)+f ′′(t0) (t− t0) (as a function of t) has precisely one zero, then
ĥcrit/h0 = R† + op(1) as n → ∞.

In the integrand at (5.4) we may replace W 0{F (x)} by D(x) = W 0{F (x)}−
W 0{F (t0)} without affecting the value of the integral. Using properties of the
modulus of continuity of a Gaussian process (see e.g. Garsia (1970)) one may
prove that D(t0 + hs) = W 0{F (t0) + hs f(t0)} −W 0{F (t0)} + Op{h0 (log n)1/2}
uniformly in |hs| = O(h0). Therefore, defining

W1(u) = {h0f(t0)}−1/2 [W 0{F (t0) − h0u f(t0)} − W 0{F (t0)}]

(a standard Wiener process) and

Z2(ρ, s) = −f(t0)1/2 ρ−3
∫

K ′′(s + u)W1(ρu) du ,

we have
Z1(h, t0 + hs) = hZ2(h/h0, s) + Op

{
(h3

0 log n)1/2
}

,

uniformly in h ∈ [C1h0, C2h0] and s ∈ [−C2h0/h, C2h0/h] for any 0 < C1 <

C2 < ∞. Noting (5.2) and (5.3) we see that this limitation on h and s is no
impediment, and thence that R† = R†† + op(1), where R†† denotes the infimum
of values of ρ such that Z2(ρ, s) + f ′′(t0) s (as a function of s) has precisely one
zero.

With c as defined in Section 3, put W (t) = sgn{f ′′(t0)} c−1/2W1(ct) and, for
this W , define Z(r, s) as in Section 3. Then W is a standard Wiener process, and
Z2(ρ, s)/f ′′(t0) = Z(ρ/c, s). Therefore, R†† = cR, and so ĥcrit/h0 = R† +op(1) =
R†† + op(1) = cR + op(1), which completes the proof of Theorem 3.1.

5.3. Outline proof of Theorem 3.2

Work through the above argument a second time, with f̂h and f replaced by
f̂∗

h and f̂crit, respectively, and with all probabilities computed in the bootstrap
distribution, conditional on X . The theory is similar, with several changes. First,
W1 should be replaced by W ∗

1 , which (conditional on X ) is a Wiener process.
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Second, the quantity Z2(ρ, s) in the formula Z2(ρ, s)+sf ′′(t0) should be replaced
by

Z∗
2 (ρ, s) = −f(t0)1/2 ρ−3

∫
K ′′(s + u)W ∗

1 (ρu) du .

Third, the quantity sf ′′(t0) in Z2(ρ, s) + sf ′′(t0), formerly an approximation to
f ′(t0 +hs)/h, should be replaced by f̂ ′

crit(t̂0 +hs)/h, or a suitable approximation,
where t̂0 is the turning point of f̂crit nearest to t0. Now, for bandwidths h of size
h0 = n−1/5,

f̂ ′
crit(t̂0 + hs) = ĥcrit Z2{ĥcrit/h0, (h/ĥcrit) (ŝh + s)} + h (ŝh + s) f ′′(t0) + op(h0),

where ŝh = (t̂0 − t0)/h. Furthermore, ĥcrit = cRh0 + op(h0) and (t̂0 − t0)/ĥcrit =
S + op(1), and so, writing h = crh0,

f̂ ′
crit(t̂0 + hs)
h f ′′(t0)

=
ĥcrit

h
Z

{
ĥcrit

c h0
,

h

ĥcrit

(ŝh + s)
}

+ (ŝh + s) + op(1)

= (R/r)Z(R,S + R−1rs) + r−1RS + s + op(1).

We may write Z∗
2 (ρ, s)/f ′′(t0) = Z∗(ρ/c, s), and so the analogue of Z2(cr, s)×

f ′′(t0)−1 + s = Z(r, s) + s in the present setting, which is Z∗
2 (ρ, s) f ′′(t0)−1 +

f̂ ′
crit(t̂0 − hs) {h f ′′(t0)}−1, may be written as Y ∗(s) = Z∗(r, s) + (R/r)Z(R,S +

R−1rs) + r−1RS + s, plus terms which converge to zero.

5.4. Outline proof of Theorem 3.3

Under the conditions of the theorem, there exist constants 0 < h1 ≤ h2 < ∞
such that (a) for all h < h1, fh(x) =

∫
K(y) f(x−hy) dy has at least two turning

points interior to I, and (b) for all h > h2, fh(x) has at most one turning point
interior to I. If C < h1 then P (ĥcrit > C) → 1.

Let ĥ∗(h) be the version of ĥ∗
crit computed if the resample X∗

1 , . . . ,X∗
n is

drawn from the distribution with density f̂h, instead of from f̂crit. It may be
shown that for each ε, δ > 0 with ε < h1, P (h1 − ε < ĥcrit < h2 + ε) → 1 as
n → ∞ and

sup
h1−ε<h<h2+ε

P{ĥ∗(h) ≤ δ|X} → 1

in probability. The theorem follows from these results.

5.5. Outline proof of Theorem 3.4

Choose δ > 0 so small that the equation f ′
h(x) = f ′′

h (x) = 0 has no solutions
with h ∈ (0, δ] and x ∈ I. In view of Theorem 2.1, if part (a) of Theorem 3.4
fails then there exists a constant C1 > 0, and sequences of random variables
h(n) ∈ [C1n

−1/5, δ] and xh(n) ∈ I, such that, with E(n) = {f̂ ′
h(n)(xh(n)) =
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f̂ ′′
h(n)(xh(n)) = 0}, the probability P{E(n)} is bounded away from 0 along an

infinite sequence {nk} of n’s. (We choose to neglect the third derivative.) We
show that this leads to a contradiction. Two cases need separate treatment —
where h(n) does not converge to zero, and where it does.

Case 1. For some ε > 0, P{h(nk) > ε} does not converge to 0. Suppose
P{h(nk) > ε} is bounded away from zero. Along a subsequence of values of k, the
random vector (x(nk), h(nk)) converges in distribution. Let (x1, h1) be a point of
support of its limiting distribution. Necessarily, h1 ∈ [ε, δ]. Since (f̂ ′

h(x), f̂ ′′
h (x))

converges to (f ′
h(x), f ′′

h (x)), with probability one, uniformly in values of (x, h)
in any sufficiently small neighbourhood of (x1, h1), then f ′

h1
(x1) = f ′′

h1
(x1) = 0,

which contradicts our choice of δ. Therefore, Case 1 cannot arise.

Case 2. h(nk) → 0 in probability. Since P{f̂ ′
h(n)(xh(n)) = 0} is bounded away

from 0 along a subsequence, and

sup
C1n−1/5≤h≤δ, x∈I

|f̂ ′
h(x) − f ′

h(x)| → 0

in probability, and because h(n) → 0 in probability, then for some t0 ∈ I with
f ′(t0) = 0, some sequence of constants δn → 0, and all ε > 0,

lim sup
n→∞

P{E(n) , h(n) ∈ [C1h0, δn] , |xh(n) − t0| ≤ ε} > 0. (5.5)

Next we prove the following lemma.

Lemma 5.1. Assume the conditions of Theorem 3.4, let t1, . . . , tm denote the
turning points of f interior to I, put h0 = n−1/5, and let δn → 0 so slowly that
h0/δn → 0. Then

lim
C2→∞

lim sup
n→∞

P
{
f̂ ′

h(x) = f̂ ′′
h(x) = 0 for some h ∈ [C2h0, δn]

and some x ∈ I satisfying inf
1≤k≤m

|x − tk| > C2h0

}
= 0.

Proof. Let t0 ∈ I be a turning point of f , and let j = 1 or 2. We begin by
proving that for all C1 > 0 and 0 < ε < 1

2 ,

E
{

sup
u:t0+ρh0u∈I

sup
C1≤ρ≤δn/h0

(1 + |u|)−(1/2)−ε ρj n(2−j)/5

×|f̂ (j)
ρh0

(t0 + ρh0u) − f
(j)
ρh0

(t0 + ρh0u)|
}

= O(1). (5.6)

The approximation of Komlós, Major and Tusnády (1975) gives

f̂
(j)
h (x) − f

(j)
h (x) = (n1/2hj+1)−1

∫
K(j+1)(y)W 0{F (x − hy)} dy

+R1jn(x, h) (nhj+1)−1 log n
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for n ≥ 2, where

E
{

sup
x∈I

sup
C1h0≤h≤δn

|R1jn(x, h)|
}

= O(1).

Properties of the modulus of continuity of W 0 (e.g. Garsia (1970)) yield, for
n ≥ 2,

∫
|K(j+1)(y)|

∣∣∣W 0[F{t0 + h(u − y)}] − W 0{F (t0) + h(u − y) f(t0)}
∣∣∣ dy

= R2jn(u, h)h (log n) (1 + |u|),
where

E
{

sup
u:t0+hu∈I

sup
C1h0≤h≤δn

|R2jn(u, h)|
}

= O(1).

Hence, with ρ = h/h0 and W2(v) = {h0 f(t0)}−1/2[W 0{F (t0) − h0v f(t0)} −
W 0{F (t0)}] we have

f̂
(j)
ρh0

(t0 + ρh0u) − f
(j)
ρh0

(t0 + ρh0u)

= (n1/2 ρj+1h
j+(1/2)
0 )−1f(t0)1/2

∫
K(j+1)(y)W2{ρ(y − u)}dy

+R3jn(u, ρ)(n1/2hj
0ρ

j)−1 log n,

where R3jn(u, h) satisfies

E
{

sup
u:t0+ρh0u∈I

sup
C1≤ρ≤δn/h0

|Rkjn(u, h)|
}

= O(1). (5.7)

Let 0 < ε < 1
2 , and define

V1 = sup
|t|≤1

|W2(t)|, V2 = sup
|t|≥1

|t|−(1/2)−ε|W2(t)| and V = max(V1, V2).

Then |W2(t)| ≤ V (1 + |t|)(1/2)+ε for all t. Hence, for j = 1, 2,
∫

|K(j+1)(y)W2{ρ(y − u)}| dy ≤ V

∫
|K(j+1)(y)| (1 + ρ|y − u|)(1/2)+ε dy

≤ C V (1 + ρ)(1/2)+ε (1 + |u|)(1/2)+ε,

where the constant C depends only on ε. Therefore,

|f̂ (j)
ρh0

(t0 + ρh0u) − f
(j)
ρh0

(t0 + ρh0u)| = R4jn(u, ρ)n−(2−j)/5 ρ−j (1 + |u|)(1/2)+ε,

where R4jn satisfies (5.7). This implies (5.6).
Returning to the proof of Lemma 5.1, we first apply (5.6) for j = 1. Given

x ∈ I, let t0 = t0(x) ∈ {t1, . . . , tm} denote the turning point to which x is
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nearest. Since f ′′(t0) �= 0, there exists C > 0 such that |f ′
h(x)| > C |x − t0|

uniformly in values x ∈ I that are nearer to t0 than to any other turning point
in I. Hence, with u = u(x, h) = (x− t0)/h, |f̂ ′

h(x)| ≥ |f ′
h(x)| − |f̂ ′

h(x)− f ′
h(x)| ≥

C h |u| − R4,1,n(u, ρ)h2
0 h−1 (1 + |u|)(1/2)+ε, and so by (5.6), for all C1 > 0,

lim
C3→∞

lim sup
n→∞

P
{
f̂ ′

h(x) = 0 for some h ∈ [C1h0, δn] and some x ∈ I

satisfying inf
1≤k≤m

|x − tk| > C3h
}

= 0. (5.8)

Next we apply (5.6) when j = 2. There exists a constant C > 0 such that
|f ′′

h (x)| ≥ C uniformly in |x− t0| ≤ C3h and h ∈ [C1h0, δn], and for such values of
(x, h), |f̂ ′′

h (x)| ≥ |f ′′
h (x)| − |f̂ ′′

h (x) − f ′′
h (x)| ≥ C − R4,2,n(u, ρ) ρ−2 (1 + C3)(1/2)+δ ,

whence by (5.6) we have for all C3 > 0,

lim
C2→∞

lim sup
n→∞

P
{
f̂ ′′

h (x) = 0 for some h ∈ [C2h0, δn] and some x ∈ I

satisfying inf
1≤k≤m

|x − tk| ≤ C3h
}

= 0. (5.9)

Lemma 5.1 follows from (5.8) and (5.9).
In view of Lemma 5.1, result (5.5) will fail if, for all 0 < C1 < C2 < ∞,

P
{
f̂ ′

h(x) = f̂ ′′
h (x) = 0 for some h ∈ [C1h0, C2h0] and some x ∈ I

satisfying |x − t0| ≤ C2h0

}
→ 0.

The Wiener−process approximation arguments used during the proof of the
lemma may be employed to show that the probability on the left-hand side con-
verges to

P

[ ∫
K(2)(y + u)W2(ρy) dy = −ρ3 p u ,

∫
K(3)(y + u)W2(ρy) dy = −ρ3 p

for some ρ ∈ [C1, C2] and some u satisfying |u| ≤ C2

]
,

where p = f ′′(t0)/f(t0)1/2. This probability is zero. Therefore, (5.5) cannot be
correct, and so part (a) of Theorem 3.4 must be valid.

In conclusion, we outline derivation of parts (b) and (c) of Theorem 3.4.
Suppose f has just m turning points t1, . . . , tm in I. Choose ε > 0 so small that
Jj = [tj − ε, tj + ε] ⊆ I and Jj does not include any tk’s with k �= j, let h(u) =
n−1/5u, let Mj(u) equal the number of turning points of f̂h(u) in Jj, and put
cj = f(tj)1/5/|f ′′(tj)|2/5. The methods employed to derive Theorem 3.1 may be
used to show that for arbitrary fixed 0 < C1 < C2 < ∞ the vector (M1, . . . ,Mm)
of processes Mj(u), u ∈ [C1, C2], has a joint weak limit (L1, . . . , Lm), where (i) the
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processes Lj are stochastically independent, and (ii) each Lj has the distribution
of the number of zeros of Yj(s) = Z(u/cj , s) + s. (The processes Lj and Mj are
right-continuous step functions with left-hand limits.) The probability that a
mode “migrates” away from a turning point converges to 0 as n → ∞. Indeed, if
δ > 0 is sufficiently small and J ⊆ I denotes a set on which |f ′

h| is bounded away
from zero uniformly in 0 < h ≤ δ, then, since f̂ ′

h − f ′
h converges to 0 uniformly

in h ∈ [εnn− 1
5 , δ], provided εn → 0 sufficiently slowly, we may show that

P{there exists no x ∈ J or h ∈ [εnn−1/5, δ] such that f̂ ′
h(x) = 0} → 1.

In view of these results, parts (b) and (c) of Theorem 3.4 may be derived by
making minor changes to the proofs of Theorems 3.1—3.3.
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