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Abstract: A longstanding problem of existing empirical process-based tests for re-

gressions is that when the number of covariates is greater than one, they either

have no tractable limiting null distributions or are not omnibus. To attack this

problem, we propose a projection-based adaptive-to-model approach. When the

hypothetical model is parametric single-index, the method can fully utilize the di-

mension reduction model structure under the null hypothesis as if the covariates

were one-dimensional such that the martingale transformation-based test can be

asymptotically distribution-free. Further, the test can automatically adapt to the

underlying model structure such that the test can be omnibus and thus detect al-

ternative models distinct from the hypothetical model at the fastest possible rate

in hypothesis testing. The method is examined through simulation studies and is

illustrated by a data analysis.

Key words and phrases: Adaptive-to-model test, martingale transformation, model

checking, projection pursuit.

1. Introduction

Even when the dimension of covariates is moderate, dimensionality still

causes data structure not easily visualized and thus makes regression modelling

difficult. Therefore, in regression analysis, dimension reduction model structure

is often used to approximate underlying models. A typical example is the para-

metric single-index regression model

Y = g(β>0 X, θ0) + ε, (1.1)

where Y is the response variable with the covariates X ∈ Rp, g(·) is a known

smooth function, β0 ∈ Rp and θ0 ∈ Rd are the unknown regression parame-

ter vectors, ε is the error term with E(ε|X) = 0, and the notation > denotes

transposition.

It is necessary to check the mis-specification of the regression function such

that further regression analysis can proceed. Thus, the saturated alternative
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model is considered where

Y = G(X) + ε, (1.2)

and G(·) denotes some unknown smooth function. There are several methods

available to test the null hypothesis of model (1.1), that can be used for more

general hypothetical parametric models. As this paper focuses on the dimension-

reduction issue, we only briefly mention existing locally and globally smoothing

tests and then give a more detailed comment on existing methods that are used

to handle the curse of dimensionality. Locally smoothing tests include Härdle

and Mammen (1993); Zheng (1996); Fan and Li (1996); Dette (1999); Fan and

Huang (2001); Koul and Ni (2004), and Van Keilegom, Gonzáles-Manteiga and

Sánchez Sellero (2008). In low-dimensional cases, these tests can be sensitive

to high frequency alternative models, but they rely on nonparametric regression

estimation and thus suffer from the curse of dimensionality, see Guo, Wang and

Zhu (2015) for detailed comments. Globally smoothing tests are nonparamet-

ric estimation-free and particularly sensitive to low frequency alternative models

and have better asymptotic behaviours. Examples include Stute (1997); Stute,

Gonz’ales-Manteiga and Presedo-Quindimil (1998); Stute, Thies and Zhu (1998);

Zhu (2003); Khmaladze and Koul (2004); Stute, Xu and Zhu (2008). For more

references, see the review paper by González-Manteiga and Crujeiras (2013).

However, when the dimension is greater than 1, they are usually not asymptoti-

cally distribution-free.

There are several efforts in the literature to alleviate the curse of dimen-

sionality. Guo, Wang and Zhu (2015), as a first attempt in this field, suggested

a model-adaptive test that can avoid the dimensionality problem largely, but

still requires nonparametric estimation. Most existing methods are inspired by

the projection pursuit technique first proposed by Friedman and Stuetzle (1981),

since it is essential to find one or a few directions along which the departures from

hypothetical models can be easily detected. Escanciano (2006) and Lavergne and

Patilea (2008, 2012) proposed tests that are based on projected covariates. Two

earlier and relevant references are Zhu and An (1992) and Zhu and Li (1998). Zhu

(2003) and Stute, Xu and Zhu (2008) used residual processes to construct tests

that can also be regarded as of the dimension-reduction type. These tests usually

need to resort to Monte Carlo approximations to determine critical values (e.g.

Escanciano (2006); and Lavergne and Patilea (2008)) though some of them are

even asymptotically distribution-free such as Lavergne and Patilea (2012). This

is either because of intractability of the null distribution or because of computa-
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tional instability and complexity caused by the computation over all projected

covariates at all directions. A relevant reference about the computation issue is

Wong, Fang and Zhu (1995). Xia (2009) also proposed a projection-based test

that however has no way to control type I error.

Existing projection-based tests that involve residual-marked empirical pro-

cesses are either the supremum or integral over all projected covariates. In

contrast, Stute and Zhu (2002) simply used one projection β>0 X and thus the

test behaves like one with one-dimensional covariate. For model (1.1), letting

ε = Y − g(β>0 X, θ0), we have that, under the null hypothesis,

E(ε|X) = 0⇒ E[Y − g(β>0 X, θ0)]I(β>0 X ≤ u) = 0 for all u ∈ R.

The residual marked empirical process defined by Stute and Zhu (2002) is

Rn(u) = n−1/2
n∑
i=1

[Yi − g(β>nXi, θn)]I(β>nXi ≤ u), (1.3)

where {(X1, Y1), · · · (Xn, Yn)} denotes an i.i.d. sample from the distribution of

(X,Y ), βn and θn are, under the null hypothesis, root-n consistent estimators of β

and θ, respectively. The martingale transformation can lead to an asymptotically

distribution-free test (Stute, Thies and Zhu (1998)), but the construction only

uses the model structure under the null hypothesis. Guo, Wang and Zhu (2015)

gave an example to explicitly illustrate this phenomenon.

The purpose of this paper is to construct a globally smoothing test that

inherits the asymptotically distribution-free and dimension reduction properties

of Stute and Zhu (2002) test under the null hypothesis, and the omnibus prop-

erty of general projection-based tests under the alternative hypothesis such as

Escanciano (2006) and Lavergne and Patilea (2008). For this, we suggest an

adaptive-to-model martingale transformation approach that can make the test

automatically adapt to the underlying model structure under the respective null

and alternative hypothesis.

To accommodate more general alternatives, we consider the model

Y = G(B>X) + ε, (1.4)

where G is an unknown smooth function, B is a p× q matrix with q orthogonal

columns for an unknown q, with 1 ≤ q ≤ p and E(ε|X) = 0. When q = 1

and B = κβ for some constant κ, (1.4) is a semiparametric single-index model

similar to (1.1). When q = p, (1.4) reduces to (1.2) since G(·) is unknown and

G(X) = G(BB>X) ≡: G̃(B>X).

This paper is organised as follows. Basic test construction is described in Sec-
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tion 2. As the sufficient dimension reduction technique is crucial to the adaptive-

to-model strategy for test construction, we give a short review in this section. In

Section 3, we present the asymptotic properties of the residual marked empirical

process under the null hypothesis, and the martingale transformation-based in-

novative process is discussed. Then we investigate the properties of the process

and its innovative process under the alternative hypothesis. In Section 4, the

test statistic is presented, simulation results for small to moderate sample size

are reported, and a data analysis is used as an illustration of application. The

appendix contains proofs of the theoretical results.

2. Projection-Based Adaptive-to-Model Empirical Process

2.1. Basic construction

The null hypothesis can be restated as

H0 : E(Y |X) = g(β>0 X, θ0) for some β0 ∈ Rp, θ0 ∈ Θ ⊂ Rd,

and the alternative hypothesis is that, for any β ∈ Rp, θ ∈ Rd and a p× q matrix

B,

H1 : E(Y |X) = G(B>X) 6= g(β>X, θ),

where G is unknown. Here we assume β0 is a linear combination of the columns

of B. This is for simplicity as, from the theory in sufficient dimension reduction

introduced below, β0 and B can be well identified under both the null and alter-

native hypothesis. As ε = Y − g(β>0 X, θ0), under the null hypothesis, q = 1 and

B = κβ0 for some constant κ, we have E(ε|β>0 X) = E(ε|B>X) = 0. Under the

alternative hypothesis E(ε|B>X) = G(B>X) − g(β>0 X, θ0) 6= 0. Thus, under

the null hypothesis,

E[(Y − g(β0
>X, θ0))I(β>0 X ≤ u)] = 0. (2.1)

According to Lemma 1 of Escanciano (2006), Lemma 2.1 of Lavergne and Patilea

(2008), or a similar result in Zhu and Li (1998) which can be traced back to Zhu

and An (1992), we have that, under the alternative hypothesis, for an α ∈ S+q =

{α = (a1, · · · , aq)> ∈ Rq : ‖α‖ = 1 and a1 ≥ 0},

E[(Y − g(β0
>X, θ0))I(α>B>X ≤ u)] 6= 0. (2.2)

Under the null and alternative hypothesis, we use, respectively β>0 X and α>B>X.

It is clear that we cannot define two estimates separately according to null and

alternative hypothesis as we do not know the underlying model, we need an esti-

mate B̂n of B that can adapt the underlying model: under the null B̂n converges
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to a vector proportional to β0 and under the alternative, to B. If this can be

achieved, we can use the empirical version of the left side of (2.2) to be the basis

of a test statistic. Let {(X1, Y1), · · · , (Xn, Yn)} be a sample with the same distri-

bution as (X,Y ). We propose an adaptive-to-model residual marked empirical

process for checking model (1.1) as

Vn(u, α̂) = n−1/2
n∑
i=1

[Yi − g(β>nXi, θn)]I(α̂>B̂>nXi ≤ u), (2.3)

Vn(u) = sup
α̂∈S+

q̂

Vn(u, α̂), (2.4)

where B̂n is a sufficient dimension reduction estimator of B with an estimated

structural dimension q̂ of q, βn and θn are respectively ordinary least squares

estimators of β0 and θ0.

It is clear that to have the model adaptation property of the process be such

that under the null hypothesis, supα̂∈S+
q̂
Vn(u, α̂) is equal to the n−1/2

∑n
i=1[Yi−

g(β>nXi, θn)]I(β>nXi ≤ u) of Stute and Zhu (2002), we must have that under the

null hypothesis, q̂ and B̂ converge to 1 and κβ0, respectively.

2.2. A review on discretization-expectation estimation

To identify and estimate the number q and the matrix B, we use a method

of sufficient dimension reduction (SDR). There are proposals available in the

literature: sliced inverse regression (SIR, Li (1991)), sliced average variance es-

timation (SAVE, Cook and Weisberg (1991)), minimum average variance esti-

mation (MAVE, Xia et al. (2002)), directional regression (DR, Li and Wang

(2007)), likelihood acquired directions (LAD, Cook and Forzani (2009)), and av-

erage partial mean estimation (APME, Zhu, Zhu and Feng (2010)). We briefly

review discretization-expectation estimation (DEE, Zhu et al. (2010a)). The ma-

trix B is not identifiable in model (1.4), one can only identify q base vectors

in the central mean subspace SE(Y |X) spanned by B (see Cook (1998)). This

can be achieved through identifying SE(Y |X), the intersection of all subspaces

span(A) such that Y⊥⊥E(Y |X)|A>X where ⊥⊥ means statistical independence

and span(A) means the subspace spanned by the columns of A. The dimension

of SE(Y |X) is called the structural dimension, denoted as dE(Y |X). Under the

null hypothesis(1.1), SE(Y |X) = span(β0/‖β0‖) and dE(Y |X) = 1; while under the

alternative (1.4), SE(Y |X) = span(B) and dE(Y |X) = q. The central subspace

(Cook (1998)), denoted by SY |X , is the intersection of all subspaces span(A)

such that Y⊥⊥X|A>X. Then SE(Y |X) ⊂ SY |X and, for simplicity, we assume



162 FALONG TAN, XUEHU ZHU AND LIXING ZHU

SE(Y |X) = SY |X in this paper. A special case has ε⊥⊥X in model (1.4).

For the procedure DEE, let the discrete response variable Z(t) = I{Y ≤ t}
where I is the indicator function. Let SZ(t)|X denote the central subspace of

Z(t)|X and M(t) be a p×p positive semi-definite matrix such that Span{M(t)} =

SZ(t)|X. If Ỹ is an independent copy of Y and M = E{M(Ỹ )}, Theorem 1 in Zhu

et al. (2010a) asserts that Span(M) = SY|X and B consists of the eigenvectors

corresponding to the nonzero eigenvalues of M . The estimator of the target

matrix M is then given by

Mn =
1

n

n∑
i=1

Mn(yi),

where Mn(yi) is the estimator of the matrix M(yi) obtained by a sufficient di-

mension reduction method such as SIR (Li (1991)). Then an estimator Bn(q)

of B consists of the eigenvectors associated with the largest q eigenvalues of Mn

when q is given. According to Theorems 2 and 3 in Zhu et al. (2010a), Bn(q)

can achieve root-n consistence to B.

2.3. Structural dimension estimation

A consistent estimator of the structural dimension q is required. Although

the BIC type criterion proposed by Zhu, Miao and Peng (2006) can give a con-

sistent estimator, We suggest a minimum ridge-type eigenvalue ratio estimate

(MRER) to determine the structure dimension q, in the spirit of Xia, Xu and

Zhu (2015). Let λ̂p ≤ · · · ≤ λ̂1 denote the eigenvalues of the estimated matrix

Mn of M , so q = dimSY |X = rank(M). The true structure dimension q can be

estimated by

q̂ = arg min
1≤i≤p

{
i :
λ̂2i+1 + c

λ̂2i + c

}
. (2.5)

The MERC of Luo, Wang and Tsai (2009) used ratios λ̂i+1/λ̂i to determine the

structural dimension q, while we add a ridge c to make the ratios more stable as

the ratios for i > q are about 0/0.

Lemma 1. Under the regularity conditions in Zhu et al. (2010a), the estimator

q̂ of (2.5) with c = log n/n satisfies, as n → ∞, Pr(q̂ = 1) → 1, under H0 and

Pr(q̂ = q)→ 1, under H1.

A justification of this lemma can be found in the Appendix.
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3. Main Results

3.1. Basic properties of the process

Consider the process

V 0
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β>0 Xi, θ0)]I(α>B>Xi ≤ u),

where α ∈ S+q . Let σ2(v, α) = V ar(Y |α>B>X = v) and ψ(u, α) = E(V ar(Y |
α>B>X)I(α>B>X ≤ u)). Under the null hypothesis, q = 1, α = 1, and B =

κβ0. Thus, we write

σ2(v) ≡: σ2(v, 1) = V ar(Y |κβ>0 X = v),

ψ(u) ≡: ψ(u, 1) = E[V ar(Y |κβ>0 X)I(κβ>0 X ≤ u)],

V 0
n (u) ≡: V 0

n (u, 1) = n−1/2
n∑
i=1

[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u).

Here ψ(u) =
∫ u
−∞ σ

2(v)dFκβ0
(dv) where Fκβ0

denotes the distribution of κβ>0 X.

Under the null hypothesis, Theorem 1.1 in Stute (1997) implies that

V 0
n (u) −→ V∞(u) in distribution (3.1)

in the Skorohod space D[−∞,∞) where V∞ is a continuous Gaussian process

with mean zero and covariance kernel K(u1, u2) = ψ(u1 ∧ u2).
To study the process Vn(u, α̂) at (2.3), we give some regularity conditions on

the function g(β>X, θ) and the parameters.

A1 Under H0, (βn, θn) has a linear expansion

√
n

(
βn − β0
θn − θ0

)
=

1√
n

n∑
i=1

l(xi, yi, β0, θ0) + op(1),

where l is an vector-valued function satisfying

I E(l(X,Y, β0, θ0)) = 0;

II L(β0, θ0) = E(l(X,Y, β0, θ0)l
>(X,Y, β0, θ0)) is positive definite.

Ordinary least squares estimator satisfies condition (A1).

A2 The function g(β>x, θ) is continuously differentiable with respect to (β, θ)

in some neighbourhood of (β0, θ0). The first-order partial derivatives

m(x, β, θ) =
∂g(β>x, θ)

∂(β, θ)
= (m1(x, β, θ), · · · ,mp+d(x, β, θ))

>

satisfy that there exists a µ− integrable function K0(x) such that
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|mj(x, β, θ)| ≤ K0(x) for all (β, θ) and 1 ≤ j ≤ p+ d,

where µ denotes the distribution of X.

A3 If H(u, β) = E[V ar(Y |X)I(κβ>X ≤ u)], H(u, β) is uniformly continuous

in u at β0.

Theorem 1. Under H0 and Conditions A1-A3, we have, in distribution,

Vn(u) −→ V∞(u)−M(u)>V ≡: V 1
∞(u),

where V∞(u) has the distribution given by (3.1), M(u) = E(m(X,β0, θ0)I(κβ>0 X ≤
u)) and V is a p+ d−dimensional normal vector with zero mean and covariance

matrix L(β0, θ0).

Theorem 1 agrees with Theorem 1 in Stute and Zhu (2002), except for the

definition of M . Thus, under the null hypothesis, our process agrees with that

in Stute and Zhu (2002), and a martingale transformation can be implemented.

We also need to check whether this can be done under the alternative hypothesis.

We then discuss the adaptive-to-model martingale transformation.

3.2. Adaptive-to-model martingale transformation

To set the stage for the model adaptation property of the process, start with

M(u), the vector-valued function on R, and

ψ(u) =

∫ u

−∞
σ2(v)Fκβ0

(dv)

a nonnegative increasing function with ψ(−∞) = 0. Let a = ∂M/∂ψ be the

Radon-Nikodym derivative of M w.r.t. ψ, assuming that it exists. Let

A(u) =

∫ ∞
u

a(v)a>(v)ψ(dv) =

∫ ∞
u

a(v)a>(v)σ2(v)Fκβ0
(dv)

be a (d + p) × (d + p) matrix. We define the innovation process transformation

as

(Tf)(z) = f(z)−
∫ z

−∞
a>(u)A−1(u)

[∫ ∞
u

a(v)f(dv)

]
ψ(du). (3.2)

Here we suppose that A(u) is non-singular and that the process f(z) is bounded

variation or is a Brownian motion.

Using the arguments in the proofs of lemmas 3.1 and 3.2 in Nikabadze and

Stute (1997), we have the following

(i) T (M>V ) ≡ 0,

(ii) TV∞ = V∞ in distribution.
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Thus TV∞ is a centered Gaussian process with a covariance kernel K(u1, u2) =

ψ(u1 ∧ u2) that can be considered as the martingale part in the Doob-Meyer

decomposition of V 1
∞. See Stute, Thies and Zhu (1998).

As T relies on some unknown quantities, it needs to be replaced by its em-

pirical version. To this end, let g1(t, θ) = ∂g(t, θ)/∂t and g2(t, θ) = ∂g(t, θ)/∂θ,

so

m(x, β0, θ0) = (g1(β
>
0 X, θ0)X

>, g2(β
>
0 X, θ0))

>.

Since M(u) = E(m(X,β0, θ0)I(κβ>0 X ≤ u)), we obtain

M(u) =

(
E[g1(β

>
0 X, θ0)XI(κβ>0 X ≤ u)]

E[g2(β
>
0 X, θ0)

>I(κβ>0 X ≤ u)]

)
=


∫ u

−∞
g1

(
v

κ
, θ0

)
r(v)Fκβ0

(dv)∫ u

−∞
g2

(
v

κ
, θ0

)>
Fκβ0

(dv)

 ,

where r(v) = E(X|κβ>0 X = v). It is easy to see that

a =
∂M

∂ψ
=


g1

(
v

κ
, θ0

)
r(v)

1

σ2(v)

g2

(
v

κ
, θ0

)> 1

σ2(v)

 ,

A(u) =

∫ −∞
u

a(v)M>(dv) =


∫ −∞
u

g1

(
v

κ
, θ0

)
r(v)

1

σ2(v)M>(dv)∫ −∞
u

g2

(
v

κ
, θ0

)> 1

σ2(v)M>(dv)

 .

In a general nonparametric framework, there are no assumptions on r and

σ except for smoothness, thus both need to be estimated. We adopt a standard

Nadaraya-Watson estimator for r,

rn(v) =

n∑
i=1

XiK

(
(v − α̂>B̂>nXi)

1

h

)
n∑
i=1

K

(
(v − α̂>B̂>nXi)

1

h

) .

For σ2, one has that σ2(u) = E(ε2|κβ0X = u) can be replaced by

σ2n(u) =

n∑
i=1

ε̂2iK

(
(u− α̂>B̂>nXi)

1

h

)
n∑
i=1

K

(
(u− α̂>B̂>nXi)

1

h

) ,
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where K(·) is a univariate kernel function and h is a bandwidth. We use α̂>B̂>nX

rather than β>nX, where βn is the nonlinear least squares estimate of β0 used by

Stute and Zhu (2002). As q̂ and B̂ have the model adaptation property, we can

derive the model adaptation property of the transformed process.

We can obtain the empirical versions an,Mn and An of a,M and A as

an(v) =


g1

(
v

κn
, θn

)
rn(v)

1

σ2n(v)

g2

(
v

κn
, θn

)> 1

σ2n(v)

 ,

Mn(u) =


1

n

n∑
i=1

g1(β
>
nXi, θn)XiI(α̂>B̂>nXi ≤ u)

1

n

n∑
i=1

g2(β
>
nXi, θn)>I(α̂>B̂>nXi ≤ u)

 ,

An(u)=
1

n

n∑
i=1

I(α̂>B̂>nXi≥u)


g1

(
α̂>B̂>nXi

1

κn
, θn

)
rn(α̂>B̂>nXi)

1

σ2n(α̂>B̂>nXi)

g2

(
α̂>B̂>nXi

1

κn
, θn

)> 1

σ2n(α̂>B̂>nXi)


×(g1(β

>
nXi, θn)X>i , g2(β

>
nXi, θn)).

Replacing a,Mand A in (3.2) by their empirical versions, we obtain the empirical

version of TV :

(TnVn)(u, α̂) = Vn(u, α̂)−
∫ u

−∞
an(v)>A−1n (v)

∫ ∞
v

an(z)Vn(dz)σ2n(v)Fα̂(dv)

=
1

n1/2

n∑
i=1

[Yi − g(β>nXi, θn)]I(α̂>B̂>nXi ≤ u)

− 1

n3/2

n∑
i,j=1

I(α̂>B̂>nXi ≤ u)

×
(
g1

(
α̂>B̂>nXi

1

κn
, θn

)
rn(α̂>B̂>nXi)

>, g2

(
α̂>B̂>nXi

1

κn
, θn

))
×A−1n (α̂>B̂>nXi)I(α̂>B̂>nXj ≥ α̂>B̂>nXi)(Yj − g(β>nXj , θn))

×


g1

(
α̂>B̂>nXj

1

κn
, θn

)
rn(α̂>B̂>nXj)

1

σ2n(α̂>B̂>nXj)

g2

(
α̂>B̂>nXj

1

κn
, θn

)> 1

σ2n(α̂>B̂>nXj)
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where κn is the estimator of κ and Fα̂ is the empirical distribution function of

α̂>B̂>nXi, 1 ≤ i ≤ n.

Theorem 2. Let σ2n(u) be a consistent estimator of σ2 that is bounded away

from zero. Under the regularity conditions of Theorem 1 and H0, we have

sup
α̂∈S+

q̂

TnVn(u, α̂)→ V∞(u) in distribution in the space D[−∞,∞).

Because of model adaptation, the supremum under the null is over only one

direction and the transformed process is a standard Gaussian process, as proved

by Stute and Zhu (2002).

When the distribution of X is elliptically contoured, particularly spherically

contoured such as normal distributions, the formulation of the transformation can

be much simpler and the computation much easier. Without loss of generality,

consider spherically contoured distributions. Suppose the regression function g

does not rely on the parameter θ. Let g′(β>0 x) be the derivative of g(·) about

β>0 x. Thus we have m(x, β0) = g′(β>0 x)x and

M(u) = E[g′(β>0 X)XI(κβ>0 X ≤ u)] =

∫ u

−∞
g′
(
v

κ

)
r(v)dFκβ0

(dv).

Therefore a = ∂M/∂ψ = (g′(v/κ)r(v))/σ2(v) and A(u) =
∫ −∞
u a(v)M>(dv) =∫ −∞

u (g′(v/κ)r(v))/σ2(v)M>(dv).

If Γ is an orthogonal matrix with the first row β>0 /‖β0‖, the first component

of ΓX is β>0 X/‖β0‖. Since the conditional distribution of the other components

of ΓX, given the first is still spherical, these conditional expectations are zero.

Therefore,

M(u) = Γ>Eg′(β>0 X)ΓXI(κβ>0 X ≤ u)

=
β0
‖β0‖2

Eg′(β>0 X)β>0 XI(κβ>0 X ≤ u)

=
β0
‖β0‖2

∫ u

−∞

[
g′
(
v

κ

)
v

κ

]
Fκβ0

(dv).

Thus we obtain

a(v) =
β0
‖β0‖2

g′(v/κ)v/κ

σ2(v)
,

A(u) =
β0β

>
0

‖β0‖4

∫ ∞
u

[g′(v/κ)v/κ]2

σ2(v)
Fκβ0

(dv).

The matrix A(u) is singular with rank 1. To derive relevant asymptotic results

as those in Theorem 2, let
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h(v) = Eg′(β>0 X)β>0 XI(κβ>0 X ≤ v) and V1 =
β>0 V

‖β0‖2
.

Then M>(u)V = h(u)V1, and the conclusion of Theorem 1 would be rewritten

as

Vn → V∞ − hV1 in distribution.

The new a and A now become real-valued:

a =
∂h

∂ψ
and A(u) =

∫ ∞
u

a2(v)σ2(v)Fκβ0
(dv).

Similarly, we can also obtain the empirical analogues An and Tn of A and T ,

respectively. Theorem 2 can be applied with these new functions in the results.

Convergence in D[−∞,∞) means convergence in D[−∞, u] for any finite u.

Since the transformation involves the inverses of A(u), our test statistic would

yield instabilities in the distributional behaviors for large values of u. Thus, all

the processes should be constrained in proper subsets of the real line. In practice,

we would consider TnVn on a given quantile of κnβ
>
nXi, 1 ≤ i ≤ n. See Stute

and Zhu (2002). Now we show that the transformed process can automatically

adapt to alternative models such that a test can detect them.

3.3. The properties under the alternative hypothesis

Consider a sequence of alternatives converging to the null hypothesis

H1n : Yn = g(β>0 X, θ0) + CnG(B>X) + η, (3.3)

where E(η|X) = 0, and β0 is the linear combination of the columns of B. When

Cn is a fixed constant, the model is under global alternatives equivalent to

model (1.4). If it tends to zero, the models are under local alternatives. We

give the asymptotic property of the estimator q̂ of the structure dimension q

under the local alternatives. A lemma shows that when Cn goes to zero quickly,

q̂ is an inconsistent estimate of q.

Lemma 2. Under the local alternative H1n and the conditions of Lemma 1 with

Cn = 1/
√
n, the estimator q̂ of (2.5) with c = log n/n satisfies P (q̂ = 1)→ 1, as

n→∞.

To derive the asymptotic properties of supα̂∈S+
q̂
TnVn(u, α̂), under the local

alternative H1n, we need an additional condition

A4

√
n

(
βn − β0
θn − θ0

)
= γ +

1√
n

n∑
i=1

l(xi, yi, β0, θ0) + op(1),
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where γ is some constant vector and the vector-valued function l is given in

(A1). Under H1n with Cn = 1/
√
n, (A4) is satisfied for the nonlinear least

squares estimate. See Lemma 3 in supplementary materials of Guo, Wang and

Zhu (2015).

Theorem 3. If A1-A4 hold, we have

(i) under the global alternative H1 that is equivalent to H1n with fixed Cn,

1√
n

sup
α̂∈S+

q̂

TnVn(u, α̂)→ L(u) in probability,

where L(u) is some nonzero function.

(ii) under the local alternatives H1n with Cn = 1/
√
n, we have, in distribution,

sup
α̂∈S+

q̂

TnVn(u, α̂)→ Ṽ 1
∞(u) +

∫ u

−∞
[H0(v)− a(v)>A−1(v)W (v)σ2(v)]Fκβ0

(dv),

where H0(v) = E[G(B>X)|κβ>0 X = v], W (v) =
∫∞
v a(z)H0(z)Fκβ0

(dz), and

Ṽ 1
∞(u) is a zero-mean Gaussian process with covariance function

K̃(s, t) = E

{
ε2
[
I(κβ>0 X ≤ s)

−
∫ s

−∞
a(v)>A−1(v)a(κβ>0 X)I(κβ>0 X≥v)σ2(v)Fκβ0

(dv)

]
×
[
I(κβ>0 X≤t)

−
∫ t

−∞
a(v)>A−1(v)a(κβ>0 X)I(κβ>0 X ≥ v)σ2(v)Fκβ0

(dv)

]}
.

Based on Theorems 2 and 3, we can derive the asymptotic properties of

functionals of supα̂∈S+
q̂
TnVn(u, α̂) over all u.

4. Numerical Studies

4.1. Test statistics in practical use

The test statistic is a functional of TnVn. Here we consider the Crämer−von

Mises statistic

CW 2
n =

∫ x0

−∞
sup
α̂∈S+

q̂

(TnVn(u, α̂))2Fn(d u), (4.1)

where Fn is the empirical distribution function of βn/‖βn‖Xi, 1 ≤ i ≤ n. We

take κn = 1/‖βn‖ here. Using Theorem 2 and the Continuous Mapping Theorem

we obtain that, under the null hypothesis,

CW 2
n −→

∫ x0

−∞
B2(ψ(u))Fκβ0

(du) in disitribution,

where B(u) is a standard Brownian motion. To obtain a distribution-free limit
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for our test, since

1

ψ(x0)2

∫ x0

−∞
B2(ψ(u))σ2(u)Fκβ0

(du) =

∫ 1

0
B(u)2du in disitribution,

we consider

W 2
n =

1

ψn(x0)2

∫ x0

−∞
sup
α̂∈S+

q̂

(TnVn(u, α̂))2σ2nFn(d u),

where ψn(u) = 1/n
∑n

i=1(Yi − g(β>nXi))
2I(βn/‖βn‖Xi ≤ u) is the estimator of

ψ(u) and σ2n can be any consistent estimator of the conditional variance σ2 of

Subsection 3.1. Therefore,

W 2
n →

∫ 1

0
B2(u)du in disitribution.

If the regression model is homoscedastic, then σ2 is a constant and we can

estimate it by

σ2n =
1

n

n∑
i=1

[Yi − g(β>nXi, θn)]2.

Under the null hypothesis ψ(x0) = σ2Fκβ(x0) and it can be estimated by σ2nFn(x0),

so W 2
n becomes

W 2
n =

1

σ2nF
2
n(x0)

∫ x0

−∞
sup
α̂∈S+

q̂

(TnVn(u, α̂))2Fn(d u).

For ease of comparison, we give five examples in the following. For x0, as

Stute and Zhu (2002) did, we choose the 99% quantile of Fn in the numerical

examples.

4.2. Numerical examples

We conducted some simulations to show the performance of the distributional

approximations for small to moderate sample size. We made a comparison with

Stute and Zhu (2002)’s test TSZn , Guo, Wang and Zhu (2015)’s test TGWZ
n ,

Stute, Gonz’ales-Manteiga and Presedo-Quindimil (1998)’s test TSGPn and Zheng

(1996)’s test TZHn . We took five representative examples. The first was to confirm

that the proposed test, that can be regarded as an extension of Stute and Zhu

(2002)’s test, is omnibus. The second includes both high-frequency and low-

frequency model such that we could compare with Guo, Wang and Zhu (2015)’s

dimension reduction model-adaptive test based on locally smoothing and Stute,

Gonz’ales-Manteiga and Presedo-Quindimil (1998)’s test that determines critical

values by the wild bootstrap. The third includes models with higher structural
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dimension and the fourth was to check the influence of dimensionality. The

fifth was to check the performance of our test under non-elliptically contoured

distribution. The significant level was set to be α = 0.05, and the reported

results are the average of 2,000 replications. In all models, the value of a = 0

corresponds to the null hypothesis and a 6= 0 to the alternatives.

Example 1. The data were generated from the model

Y =
1

4
exp(2β>1 X) + aβ>2 X + ε.

We considered two cases: p = 3, β1 = (1, 0, 0)>, β2 = (0, 1, 0)> and p = 4, β1 =

(1, 1, 0, 0)>/
√

2, β2 = (0, 0, 1, 1)>/
√

2. In both cases, n = 50, 100, X was N(0, Ip)

and ε was N(0, 1). Under the alternatives E(Y −1/4 exp(2β>1 X)|β>1 X) = 0. The

results in Figure 1 obviously show that TSZn fails to work while W 2
n performs very

well.

Example 2. Consider the models

H21 : Y = β>0 X + a cos(
π

2
β>0 X) + ε;

H22 : Y = β>0 X +
1

4
a exp(β>0 X) + ε;

H23 : Y = β>0 X +
1

2
a(β>0 X)2 + ε;

where p = 8, β0 = (1, 1, . . . , 1)/
√
p, X = (X1, X2, . . . , Xp)

> independent of ε.

The central mean subspaces SE(Y |X) has structural dimension 1 with B = β0
under both the null and alternative hypotheses. The predictors xi, i = 1, . . . , n

were i.i.d. N(0, Ip) andN(0,Σ) with Σ = (1/2|i−j|)p×p so as to check the influence

of correlation between the covariates. The errors εi’s were independent N(0, 1).

The first is a high-frequency model and the others are low-frequent.

The empirical sizes and powers of the three tests are presented in Tables 1 and

2. We can see that both TGWZ
n and W 2

n control the size very well, even for n =

50. TSGPn seems slightly more conservative with higher empirical size than 0.05.

For the first model, TGWZ
n has relatively higher power than W 2

n and TSGPn do,

especially in the correlated case. For the modelsH12 andH13, bothW 2
n and TSGPn

are more powerful. Thus locally smoothing performs better for high frequency

models and globally smoothing works better for low frequency models. The

comparison also shows that W 2
n is more robust against the underlying correlation

structure of the predictors than TSGPn in both significance level maintainance and

power performance.

We considered a model whose structural dimension q is greater than 1 un-
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Figure 1. The empirical sizes and powers of TSZ
n and W 2

n in Example 1. The dash and
solid line denote the results of TSZ

n and W 2
n , respectively.

der the alternatives. In this simulation, we compared our test for alleviating

the dimensionality problem with that of Zheng (1996), a representative locally

smoothing method.

Example 3. The data were generated from the model

H31 : Y = β>1 X + a(β>2 X)2 + ε;

H32 : Y = β>1 X + a exp{−(β>2 X)2}+ ε;

where β1 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)>/
√
p/2 and β2 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

p/2

)/
√
p/2. The

predictors xi, i = 1, . . . , n were i.i.d N(0, Ip) and N(0,Σ) and the εi’s were

N(0, 1). In each case we took p = 2 and p = 8.
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Table 1. Empirical sizes and powers of TGWZ
n , W 2

n , and TSGP
n for H0 vs. H21, H22 and

H23 in Example 2.

a TGWZ
n W 2

n TSGP
n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100
H21, X ∼ N(0, Ip) 0.0 0.0445 0.0480 0.0470 0.0525 0.0640 0.0650

0.2 0.0830 0.1490 0.0635 0.0950 0.1050 0.1320
0.4 0.1915 0.4595 0.1180 0.2155 0.1710 0.3260
0.6 0.4245 0.8115 0.2005 0.4245 0.2930 0.5680
0.8 0.6025 0.9590 0.3090 0.6480 0.4600 0.8010
1.0 0.7590 0.9915 0.4170 0.8285 0.5830 0.9060

H21, X ∼ N(0,Σ) 0.0 0.0470 0.0460 0.0465 0.0505 0.0760 0.0680
0.2 0.0655 0.1090 0.0500 0.0495 0.0910 0.0650
0.4 0.1350 0.3595 0.0485 0.0590 0.0790 0.0960
0.6 0.2645 0.6870 0.0645 0.0935 0.0970 0.1370
0.8 0.4065 0.8905 0.0640 0.1035 0.1100 0.1700
1.0 0.5580 0.9780 0.0840 0.1650 0.1300 0.2280

H22, X ∼ N(0, Ip) 0.0 0.0450 0.0515 0.0495 0.0535 0.0590 0.0590
0.2 0.0530 0.0680 0.0750 0.1220 0.0930 0.1190
0.4 0.0965 0.1550 0.1865 0.3430 0.2180 0.3260
0.6 0.1670 0.3145 0.3505 0.6565 0.3610 0.6020
0.8 0.2595 0.5400 0.5320 0.8705 0.5550 0.8420
1.0 0.3685 0.7535 0.7085 0.9655 0.7170 0.9570

H22, X ∼ N(0,Σ) 0.0 0.0520 0.0540 0.0525 0.0510 0.0760 0.0680
0.2 0.0955 0.1675 0.1705 0.4230 0.2020 0.3420
0.4 0.2465 0.5385 0.5050 0.8770 0.4370 0.7460
0.6 0.4510 0.8520 0.7330 0.9900 0.6670 0.9130
0.8 0.6455 0.9670 0.8780 0.9995 0.7980 0.9510
1.0 0.7940 0.9935 0.9550 1.0000 0.8980 0.9600

The simulation results are presented in Tables 3 and 4. When p = 2, we can

see that Zheng (1996)’s test TZHn can maintain the significance level occasionally,

but usually, the empirical sizes are lower than 0.05. In contrast, W 2
n works much

better even for n = 50. For the empirical power, both TZHn and W 2
n have high

power. But the power of W 2
n grows slightly faster as a increases. When the

dimension p is 8, the empirical size of TZHn is far from the significance level and

its power is much lower than that in the p = 2 case. Nevertheless, our test

W 2
n is much less affected by the dimensionality increasing than TZHn . These

phenomena validate the theoretical results that locally smoothing tests suffer

from the dimensionality that causes slower convergence rates under the null and

slower divergence rates under the alternative than globally smoothing tests.

We considered a nonlinear null model against alternative models with higher
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Table 2. Empirical sizes and powers of TGWZ
n , W 2

n , and TSGP
n for H0 vs. H21, H22 and

H23 in Example 2.

a TGWZ
n W 2

n TSGP
n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100
H23, X ∼ N(0, Ip) 0.0 0.0450 0.0500 0.0490 0.0500 0.0790 0.0650

0.2 0.0540 0.0735 0.1075 0.1610 0.1280 0.1640
0.4 0.0990 0.2030 0.2605 0.5250 0.2100 0.3870
0.6 0.1905 0.4590 0.4610 0.8350 0.3970 0.6900
0.8 0.3365 0.7550 0.6625 0.9575 0.5520 0.8660
1.0 0.4830 0.9120 0.7925 0.9940 0.7120 0.9620

H23, X ∼ N(0,Σ) 0.0 0.0495 0.0480 0.0500 0.0470 0.0710 0.0740
0.2 0.1385 0.2640 0.3565 0.7110 0.3050 0.5380
0.4 0.4490 0.8575 0.7930 0.9920 0.6910 0.9610
0.6 0.7750 0.9935 0.9455 0.9995 0.8970 0.9970
0.8 0.9005 0.9995 0.9790 1.0000 0.9700 1.0000
1.0 0.9525 1.0000 0.9925 1.0000 0.9860 1.0000

structural dimensions. A more comprehensive comparison is made between Zheng

(1996)’s test TZHn , Guo, Wang and Zhu (2015)’s test TGWZ
n , and our test W 2

n .

Example 4. Consider the models

H41 : Y = exp(
1

2
X1) + aX3

2 + ε;

H42 : Y = exp(
1

2
X1) + a{X3

2 + cos(πX3) +X4}+ ε;

H43 : Y = exp(
1

2
X1) + a{X3

2 + cos(πX3) +X4 − |X5|+X2
6 +X7 ×X8}+ ε;

where (X1, . . . , Xp) was independent of ε and N(0, Ip) with p = 4 or 8. Let βi be

the unit vector with the i-th component 1, i = 1, . . . , p and a = 0, 0.2, 0.4, . . . , 1.

When a 6= 0, the structural dimension q = 2, B = (β1, β2) for H41; q = 4, B =

(β1, β2, β3, β4) for H42; q = 8, B = (β1, β2, . . . , β8) for H43. Under the alterna-

tives, the models H42 and H43 do not have dimension reduction structure for

p = 4 and p = 8. This is used to further check the usefulness of the model

adaptation method. The simulation results are reported in Figure 2.

From this figure, we can see that when p = 4, the performance of our test

is slightly better than its two competitors. However, when p = 8, Zheng’s test

TZHn behaves much worse than W 2
n and TGWZ

n . This again indicates that the

dimensionality is a severe issue for the locally smoothing test without model

adaptation; the adaptive-to-model test TGWZ
n can also work well though it is

also locally smoothing-based. For model H42 with p = 4 and model H43 with
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Table 3. Empirical sizes and powers of TZH
n and W 2

n for H0 vs. H31 in Example 3.

a TZH
n W 2

n

n = 50 n = 100 n = 50 100
H31, X ∼ N(0, Ip), p = 2 0.0 0.0345 0.0430 0.0465 0.0500

0.2 0.0820 0.1505 0.2095 0.4375
0.4 0.3020 0.6170 0.6240 0.9210
0.6 0.6180 0.9440 0.8615 0.9925
0.8 0.8410 0.9930 0.9445 1.0000
1.0 0.9345 0.9995 0.9885 1.0000

H31, X ∼ N(0, Ip), p = 8 0.0 0.0265 0.0295 0.0500 0.0450
0.2 0.0260 0.0475 0.2095 0.4190
0.4 0.0360 0.0850 0.5770 0.9020
0.6 0.0765 0.1640 0.8100 0.9935
0.8 0.1145 0.2600 0.9260 0.9980
1.0 0.1635 0.3805 0.9560 1.0000

H31, X ∼ N(0,Σ), p = 2 0.0 0.0315 0.0390 0.0520 0.0475
0.2 0.0930 0.1565 0.2335 0.4660
0.4 0.3250 0.6530 0.6275 0.9305
0.6 0.6515 0.9550 0.8690 0.9955
0.8 0.8740 0.9985 0.9510 1.0000
1.0 0.9550 1.0000 0.9775 1.0000

H31, X ∼ N(0,Σ), p = 8 0.0 0.0185 0.0350 0.0465 0.0530
0.2 0.0695 0.1495 0.5565 0.9055
0.4 0.2045 0.4365 0.9330 1.0000
0.6 0.3370 0.7320 0.9835 1.0000
0.8 0.4740 0.8580 0.9930 1.0000
1.0 0.5545 0.9200 0.9970 1.0000

p = 8, W 2
n and TGWZ

n still work well in the power performance, even though

the model has no dimension reduction structure when a 6= 0. Further, the glob-

ally smoothing-based test procedure shows its advantage as our test W 2
n can

outperform TGWZ
n when have the model adaptation property.

We looked at elliptically contoured distributions as to simlicity.

Example 5. The data were generated from the models

H51 : Y = β>0 X + a cos(
π

2
β>0 X) + ε;

H52 : Y = β>0 X +
1

2
a(β>0 X)2 + ε;

H53 : Y = β>1 X +
1

4
a exp(β>2 X) + ε;

H54 : Y = β>1 X +
1

2
a(β>2 X)2 + ε,
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Table 4. Empirical sizes and powers of TZH
n and W 2

n for H0 vs. H32 in Example 3.

a TZH
n W 2

n

n = 50 n = 100 n = 50 n = 100
H32, X ∼ N(0, Ip), p = 2 0.0 0.034 0.0455 0.0530 0.0500

0.2 0.083 0.1155 0.1215 0.2050
0.4 0.250 0.4730 0.3430 0.6100
0.6 0.524 0.8480 0.6200 0.9195
0.8 0.782 0.9785 0.8540 0.9920
1.0 0.935 0.9985 0.9575 0.9995

H32, X ∼ N(0, Ip), p = 8 0.0 0.0215 0.0265 0.0550 0.0480
0.2 0.0285 0.0375 0.1185 0.1970
0.4 0.0475 0.0760 0.3215 0.5830
0.6 0.0650 0.1550 0.5690 0.8910
0.8 0.1280 0.2930 0.7965 0.9900
1.0 0.1765 0.4210 0.9230 1.0000

H32, X ∼ N(0,Σ), p = 2 0.0 0.0310 0.0430 0.0510 0.0515
0.2 0.0745 0.1410 0.1205 0.1880
0.4 0.2545 0.4900 0.3190 0.5955
0.6 0.5420 0.8540 0.6160 0.9150
0.8 0.8105 0.9835 0.8400 0.9880
1.0 0.9420 0.9990 0.9480 0.9995

H32, X ∼ N(0,Σ), p = 8 0.0 0.0270 0.0295 0.0520 0.0470
0.2 0.0235 0.0395 0.0885 0.1430
0.4 0.0485 0.0770 0.1895 0.3720
0.6 0.0725 0.1480 0.3750 0.7000
0.8 0.1145 0.2845 0.5705 0.9015
1.0 0.1900 0.4605 0.7465 0.9715

where β0=(1, · · · , 1)/
√
p, β1=(1, . . . , 1︸ ︷︷ ︸

p/2

, 0, . . . , 0)>/
√
p/2, β2=(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

p/2

)/

√
p/2 and p = 8. The p components of the predictor vector X were independent

χ2
1 and the errors ε were N(0, 1). The simulation results are reported in Table 5.

We can see that the proposed test has uniformly lower empirical size than the

significance level, although for models H51 and H52, it works fairly well. This

suggests that the assumption of elliptically contoured distribution is important

for this test.

4.3. Data analysis

This data set was used to understand various self-noise mechanisms. The

data set is available at UCI Machine Learning Repository https://archive.

ics.uci.edu/ml/datasets/Airfoil+Self-Noise. There are 1,503 observations

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
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Figure 2. The empirical sizes and powers of TZH
n , TGWZ

n , and W 2
n in Example 4. The

dash, dash-dotted and solid line denote the results of TZH
n , TGWZ

n , and W 2
n respectively.

on one output variable: Scaled sound pressure level Y (in decibels), and five in-

put variables: Frequency X1 (in Hertzs), Angle of attack X2 (in degrees), Chord

lengthX3 (in meters), Free-stream velocityX4 (in meters per second) and Suction

side displacement thickness X5 (in meters). All the variables were standardized

separately. To establish a regression relationship between Y and the covariates

X = (X1, · · · , X5), we tried the simple model first. When dimension reduction

was applied, we found that Y may be conditionally independent of X given a pro-
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Table 5. Empirical sizes and powers of TGWZ
n , W 2

n and TSGP
n for H0 vs. H51, H52, H53

and H54 in Example 5.

a TGWZ
n W 2

n TSGP
n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100
H51, 0.0 0.0410 0.0415 0.0520 0.0430 0.0800 0.0740

X1, · · · , Xpi.i.d. ∼ χ2
1 0.2 0.0780 0.1385 0.0890 0.1170 0.1120 0.1430

0.4 0.1955 0.4415 0.1630 0.3310 0.2170 0.3720
0.6 0.3945 0.7980 0.2790 0.5900 0.3880 0.6410
0.8 0.6100 0.9660 0.4195 0.8035 0.5710 0.8470
1.0 0.7825 0.9965 0.5415 0.9180 0.6920 0.9510

H52, 0.0 0.0340 0.0370 0.0470 0.0485 0.0690 0.0580
X1, · · · , Xpi.i.d. ∼ χ2

1 0.2 0.3735 0.7460 0.6160 0.9415 0.6290 0.9450
0.4 0.8715 0.9990 0.9650 1.0000 0.9740 1.0000
0.6 0.9825 1.0000 0.9985 1.0000 0.9980 1.0000
0.8 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000

H53, 0.0 0.0265 0.0300 0.0130 0.0120 0.0720 0.0700
X1, · · · , Xpi.i.d. ∼ χ2

1 0.2 0.4830 0.8610 0.2630 0.4950 0.5940 0.6130
0.4 0.6230 0.9135 0.2605 0.3820 0.5650 0.5400
0.6 0.6795 0.9270 0.2095 0.3300 0.4970 0.4520
0.8 0.7105 0.9255 0.1945 0.2865 0.4880 0.4330
1.0 0.7320 0.9335 0.1800 0.2975 0.4720 0.4090

H54, 0.0 0.0285 0.0265 0.0130 0.0180 0.0660 0.0600
X1, · · · , Xpi.i.d. ∼ χ2

1 0.2 0.1380 0.2910 0.2390 0.5385 0.3630 0.5840
0.4 0.4200 0.8230 0.6265 0.9575 0.6900 0.9550
0.6 0.6555 0.9705 0.8105 0.9980 0.8830 0.9950
0.8 0.8250 0.9960 0.8930 0.9995 0.9540 1.0000
1.0 0.9030 0.9995 0.9180 0.9995 0.9800 1.0000

jected covariate β>1 X in which the direction β1 is searched by DEE. The scatter

plot in Figure 3 shows a seemly linear relationship.

To further explore the exhaustive search of projected covariates, we used the

second projected covariate searched by DEE, and the scatter plot of Y against

(β>1 X,β
>
2 X) is presented in Figure 4.

Clearly, the second direction β2 is not necessary, the projection of the data

onto the space β>1 X contains almost all the information on model structure.

Thus, we use a linear model to fit the data with the direction β̂>1 = (−0.6323,

−0.4339, −0.5339, 0.2386, −0.2644). To test whether the linear model is ade-

quate, we used our test. The value of the test statistic W 2
n = 7.5322 and the

p-value was about 0. Hence we needed to further explore a possible model. And

a cubic polynomial of β̂>1 X looked surmising. The fitted curve is added into the
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Figure 3. Scatter plot of the response against the β̂>
1 X in which the direction β̂1 is

obtained by DEE.

Figure 4. Scatter plot of the response against the (β̂>
1 X, β̂

>
2 X) in which the directions

β̂1 and β̂2 are obtained by DEE.
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Figure 5. Plot of Y against β̂>
1 X obtained by DEE and the fitted cubic polynomial

curve.

scatter plot. See Figure 5.

We present the residual plot against β̂>1 X in Figure 6. From this plot, the

fitting should be appropriate although the dispersion about the value 0 of β̂>1 X

seems slightly larger than in other places. Overall, the dispersion change against

β̂>1 X is very significant. Thus a working model was used to fit this dataset as

Y = θ1 + θ2(β
>X) + θ3(β

>X)2 + θ4(β
>X)3 + ε.

The value of the test statistic W 2
n = 0.1596 and the p-value is 0.70. The model

is plausible.

5. Discussions

In this paper, we propose a projection-based test that is based on residual

marked empirical process and an adaptive-to-model martingale transformation.

Compared to existing projection-based tests, the new test have the asymptoti-

cally distribution-free property under the null hypothesis and the omnibus prop-

erty under the alternative hypothesis. It is noted that our test is particularly use-

ful for the models with single index. If we consider multiple index in model (1.1),

a test can be constructed as long as we can well estimate the multiple index β0
and θ0, but the limiting null distribution is not tractable. This method is now
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Figure 6. Scatter plot of residuals against β̂>
1 X in which the direction β̂>

1 is obtained
by DEE.

for models with dimension reduction structure. It is of interest to investigate

extension of the method to models without such kind of structure. The research

is ongoing.

Appendix

Proof of Lemma 1. Under the regularity conditions given by Zhu et al. (2010a),

Theorem 2 therein asserts that Mn −M = Op(n
−1/2). Following the analogous

argument of Zhu and Ng (1995) or Zhu and Fang (1996), we have λ̂i − λi =

Op(n
−1/2) for i = 1, · · · , p.

(I) Under H0, since dim(SY |X) = 1, we have λ1 > 0, λl = 0 for any l > 1.

Therefore, λ̂21 = λ21 + Op(n
−1/2) and λ̂2l = Op(n

−1), l = 2, . . . , p. Hence, for any

l > 1,

λ̂22 + cn

λ̂21 + cn
=

cn +Op(1/n)

λ21 + cn +Op(1/
√
n)
→ 0,

λ̂2l+1 + cn

λ̂2l + cn
=
cn +Op(1/n)

cn +Op(1/n)
→ 1.

Therefore, the minimizer q̂ = 1 with a probability going to 1.

(II) Under the alternative H1, dim(SY |X) = q, we have λl > 0 and λ̂2l =
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λ2l +Op(1/
√
n) for l = 1, . . . , q and λ̂2l = Op(1/n) for l = q+ 1, . . . , p. Hence, for

l < q

λ̂2q+1 + cn

λ̂2q + cn
−
λ̂2l+1 + cn

λ̂2l + cn
=

cn +Op(1/n)

λ2q + cn +Op(1/
√
n)
−
λ2l+1 + cn +Op(1/

√
n)

λ2l + cn +Op(1/
√
n)

→ −
λ2l+1

λ2l
< 0.

For l > q

λ̂2q+1 + cn

λ̂2q + cn
−
λ̂2l+1 + cn

λ̂2l + cn
=

cn +Op(1/n)

λ2q + cn +Op(1/
√
n)
− cn +Op(1/n)

cn +Op(1/n)
→ −1 < 0.

Therefore, we can conclude that Pr(q̂ = q) −→ 1.

Proof of Theorem 1. Under the null hypothesis, Pr(q̂ = 1) → 1. Thus we can

work only on the event q̂ = 1 as the probability of the event q̂ 6= 1 tends to 0.

Then α̂ = 1 and Vn(u) = Vn(u, α̂). Decompose the term Vn(u) as

Vn(u) = Vn(u, α̂) = n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}I(B̂>nXi ≤ u)

= n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}I(κβ>0 Xi ≤ u) +

n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}[I(B̂>nXi ≤ u)− I(κβ>0 Xi ≤ u)]

≡: V1n + V2n,

where κ = 1/‖β0‖. Following the analogous argument of Theorem 1 in Stute

and Zhu (2002), we obtain V1n −→ V∞ −M(u)>V ≡ V 1
∞ and V2n tends to zero

uniformly in u.

Proof of Lemma 2. Using the notation in the proof of Lemma 1 and following

the analogous argument for proving Theorem 2 in Guo, Wang and Zhu (2015),

we obtain Mn −M = Op(n
−1/2); therefore λ̂i − λi = Op(n

−1/2) for i = 1, · · · , p.
Note that λl = 0 for any l > 1. The proof is concluded from the arguments for

proving Lemma 1.

Proof of Theorem 2. We work only on the event q̂ = 1 as q = 1 under the null

hypothesis. Let V 2
n (u) = n−1/2

∑n
i=1[Yi − g(β>nXi, θn)]I(B̂>nXi ≤ u). Under the

null, α̂ = 1 and supα̂∈S+
q̂
TnVn(u, α̂) = TnV

2
n (u). More explicitly,

TnV
2
n (u) = V 2

n (u)−
∫ u

−∞
an(v)>A−1n (v)

(∫ ∞
v

an(z)V 2
n (dz)

)
σ2n(v)F1n(dv).
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Let V 1
n (u) = n−1/2

∑n
i=1[Yi − g(β>0 Xi, θ0)]I(B̂>nXi ≤ u). Then

TnV
1
n (u) = V 1

n (u)−
∫ u

−∞
an(v)>A−1n (v)

(∫ ∞
v

an(z)V 1
n (dz)

)
σ2n(v)F1n(dv).

Here F1n is the empirical distribution function of B̂>nXi, 1 ≤ i ≤ n. As with

the arguments for proving Lemma 3.2 and Theorem 1.3 in Stute, Thies and Zhu

(1998), we obtain

TnV
2
n (u) = TnV

1
n (u) + op(1),

TnV
1
n (u) = TV 1

n (u) + op(1).

Under H0 we have V 0
n (u) = n−1/2

∑n
i=1[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u), so

TV 0
n (u)− TV 1

n (u) = V 0
n (u)− V 1

n (u)

−
∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 0
n (dz)σ2(v)Fκβ0

(dv)

+

∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 1
n (dz)σ2(v)Fκβ0

(dv).

Using the proof for Theorem 1 in Stute and Zhu (2002), we obtain that TV 0
n −

TV 1
n = op(1) uniformly in u. Therefore Lemma 3.3 in Stute, Thies and Zhu

(1998) gives our result.

Proof of Theorem 3.

(I) First we consider the global alternative hypothesis. Under the alternative

H1, Lemma 1 asserts that Pr(q̂ = q)→ 1, thus we work on the event q̂ = q, α̂ =

α = (a1, . . . , aq)
>. On this event, supα̂∈S+

q̂
TnVn(u, α̂) = supα∈S+

q
TnVn(u, α).

Let δn = (β>n , θ
>
n )> and δ0 = (β>0 , θ

>
0 )>. According to White (1981), we have√

n(δn − δ̃0) = Op(1), where δ̃0 may not be equal to the true value δ0 under the

null hypothesis.

Take

V 1
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B̂>nXi ≤ u),

V 2
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B>Xi ≤ u).

As in the proof for Theorem 3.2, we obtain that

n−1/2[TnVn(u, α)− TnV 1
n (u, α)] = op(1),

n−1/2[TnV
1
n (u, α)− TV 2

n (u, α)] = op(1).

Here
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n−1/2TV 2
n (u, α) =

1

n

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B>Xi ≤ u)

− 1√
n

∫ u

−∞
a1(v, α)>A−11 (v, α)

∫ ∞
v

a1(z, α)V 2
n (dz)σ21(v, α)Fα(dv).

From

1√
n

∫ ∞
v

a1(z, α)V 2
n (dz)=

1

n

n∑
i=1

I(α>B>Xi ≥ v)a1(α
>B>Xi, α)[Yi−g(β̃>0 Xi, θ̃0)],

we derive that, under H1,

n−1/2TV 2
n (u, α)→

∫ u

−∞
H(v, α)Fα(dv)

−
∫ u

−∞
a1(v, α)>A−11 (v, α)a2(v, α)σ21(v, α)Fα(dv),

where Fα is the distribution function of α>B>X and

H(v, α) = E(G(B>X)− g(β̃>0 X, θ̃0)|α>B>X = v),

σ21(v, α) = E[(G(B>X)− g(β̃>0 X, θ̃0))
2 + ε2|α>B>X = v],

a1(v, α) =

{
g1

(
v

κ1
, θ̃0

)
E(X>|α>B>X = v)

σ21(v, α)
,
g2(v/κ1, θ̃0)

σ21(v, α)

}>
,

A1(v, α) = E{I(α>B>X ≥ v)a1(α
>B>X,α)(g1(β̃0

>
X, θ̃0)X

>, g2(β̃0
>
X, θ̃0))},

a2(v, α) = E{I(α>B>X ≥ v)a1(α
>B>X,α)(G(B>X)− g(β̃0

>
X, θ̃0))}.

Hence we conclude that

n−1/2TnVn(u, α)→
∫ u

−∞
H(v, α)Fα(dv)

−
∫ u

−∞
a1(v, α)>A−11 (v, α)a2(v, α)σ21(v, α)Fα(dv).

Therefore
1√
n

sup
α̂∈Sq̂

TnVn(u, α̂)→ some nonzero function.

The resulting test statistic converges to infinity at the rate of O(
√
n).

(II) Under the local alternatives H1n, Lemma 2 asserts that P (q̂ = 1) → 1

as n→∞, thus we consider the event q̂ = 1. Let

V 2
n (u) = n−1/2

n∑
i=1

[Yi − g(β>nXi, θn)]I(B̂>nXi ≤ u).

With α̂ = 1, B̂n is a vector, and supα̂∈Sq̂ TnVn(u, α̂) = TnV
2
n (u), let
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V 1
n (u) = n−1/2

n∑
i=1

[Yi − g(β>0 Xi, θ0)]I(B̂>nXi ≤ u).

Following the argument for proving Theorem 3.3 we obtain that

TnV
2
n (u) = TnV

1
n (u) + op(1),

TnV
1
n (u) = TV 1

n (u) + op(1),

TV 0
n (u) = TV 1

n (u) + op(1).

To finish the proof, it remains to derive the limit of TV 0
n (u). We have that

V 0
n (u) = n−1/2

∑n
i=1[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u) and

TV 0
n (u) = V 0

n (u)−
∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 0
n (dz)σ2(v)Fκβ0

(dv).

Here σ2(u) = E(ε2|κβ>0 X = u). Under the local alternative H1n,

V 0
n (u) =

1

n

n∑
i=1

G(B>Xi)I(κβ>0 Xi ≤ u) +
1√
n

n∑
i=1

εiI(κβ>0 Xi ≤ u).

For the second term in TV 0
n (u),∫ ∞

v
a(z)V 0

n (dz) =
1√
n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)[Yi − g(β>0 Xi, θ0)]

=
1

n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)G(B>Xi)

+
1√
n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)εi.

Hence we can conclude that

TV 0
n (u)→ Ṽ 1

∞(u) +

∫ u

−∞
[H0(v)− a(v)>A−1(v)W (v)σ2(v)]Fκβ0

(dv),

where H0(v) = E[G(B>X)|κβ>0 X = v], W (v) =
∫∞
v a(z)H0(z)Fκβ0

(dz) and

Ṽ 1
∞(u) is a zero-mean Gaussian process with covariance function

K̃(s, t) = E{ε2[I(κβ>0 X ≤ s)

−
∫ s

−∞
a(v)>A−1(v)a(κβ>0 X)I(κβ>0 X ≥ v)σ2(v)Fκβ0

(dv)]

× [I(κβ>0 X ≤ t)−
∫ t

−∞
a(v)>A−1(v)a(κβ>0 X)I(κβ>0 X ≥ v)σ2(v)Fκβ0

(dv)]}.
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