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Abstract: Minimum aberration is a popular criterion for selecting fractional fac-

torial designs. It aims at the minimization of aliasing among lower-order effects.

Cheng, Steinberg and Sun (1999) showed that it is a good surrogate for maximum

estimation capacity, a model robustness criterion, but they are not the same, es-

pecially for resolution IV designs. In this paper, the relationship between these

two criteria is further investigated. The greater divergence of the two criteria on

resolution IV designs is explained by the fact that a minimum aberration resolu-

tion III design can allocate all the available degrees of freedom to the estimation of

two-factor interactions, while it is rarely so for resolution IV designs. A concept of

estimation index is important in this regard.
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1. Introduction

Fractional factorial designs, especially those with two-level factors, have a
long history of successful use in scientific investigations and industrial experi-
ments. A design consisting of 2n−m distinct combinations of n two-level factors
is referred to as a 2n−m fractional factorial design. Such a design is called reg-
ular if it can be constructed by using a defining relation. To set the stage, we
briefly review some notations and basic concepts. Each factor is represented by
one of the letters A, B, C, . . . , and each of the 2n − 1 factorial effects (main
effects and interactions) is represented by a product of a subset of letters, called
a word. The number of letters in a word is called its length. Associated with
every regular 2n−m fractional factorial design is a set of m independent defining
words. The set of distinct words formed by all possible products of the m in-
dependent defining words gives the defining relation of the fraction. Out of the
2n − 1 factorial effects, 2m − 1 appear in the defining relation. The remaining
2n − 2m effects are partitioned into 2n−m − 1 mutually exclusive alias sets, each
of size 2m. These are discussed in many textbooks on experimental design; see,
e.g., Raktoe, Hedayat and Federer (1981).
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An important characteristic of a 2n−m fractional factorial design is its resolu-
tion, defined as the length of the shortest word in the defining relation (Box and
Hunter (1961)). Under a design of resolution r, none of the s-factor interactions
is aliased with any other effect involving less than r−s factors. Under the hierar-
chical assumption that lower-order effects are more important than higher-order
effects and that effects of the same order are equally important, the experimenter
may prefer a design with the highest possible resolution.

Since not all 2n−m designs of maximum resolution are equally desirable,
Fries and Hunter (1980) introduced the minimum aberration criterion for further
discriminating designs of the same resolution. For each regular 2n−m fractional
factorial design D, let Ai(D) be the number of words of length i in its defining
relation and W (D) be the vector

W (D) = (A1(D), A2(D), . . . , An(D)).

Then W (D) is referred to as the wordlength pattern of D. Given two 2n−m

fractional factorial designs D1 and D2, D1 is said to have less aberration than
D2 if As(D1) < As(D2), where s is the smallest integer such that As(D1) �=
As(D2). A 2n−m design has minimum aberration if no other 2n−m design has
less aberration. Simply put, the criterion of minimum aberration sequentially
minimizes A1(D), A2(D), · · ·, etc. Intuitively one expects that this would lead to
less aliasing among lower-order effects, a desirable feature under the hierarchical
assumption. Chen (1998) studied the connection between wordlength patterns
and projections of 2n−m designs, and showed that minimum aberration designs
have good projection properties. Meanwhile Cheng, Steinberg and Sun (1999)
provided some insight into minimum aberration, and justified this criterion by
demonstrating that it is a good surrogate for some model-robustness criteria. A
review of recent developments in minimum aberration designs can be found in
Chen and Hedayat (1998).

One model-robustness criterion considered in Cheng, Steinberg and Sun
(1999) is estimation capacity. For any 1 ≤ k ≤ (n

2

)
, define the estimation capac-

ity Ek(D) of a 2n−m design D as the total number of models containing all the
main effects and k two-factor interactions that can be entertained by D. Here by
saying that a model can be entertained by a design we mean that all the unknown
parameters in the model are jointly estimable under the given design. With equal
weights for the two-factor interactions (a kind of non-informative prior represent-
ing the experimenter’s ignorance), roughly, Ek(D)/

(n(n−1)/2
k

)
can be thought of

as the conditional probability that the true model can be entertained by D given
that it contains all the main effects and k two-factor interactions. It is desirable
to have Ek(D) as large as possible (one can think of k as the number of active
two-factor interactions). A design is said to have maximum estimation capacity
if it maximizes Ek(D) for all k.



ABERRATION, ESTIMATION CAPACITY AND ESTIMATION INDEX 205

Cheng, Steinberg and Sun (1999) demonstrated that minimum aberration
is a good surrogate for maximum estimation capacity and that the two criteria
often produce quite consistent results, especially for resolution III designs. For
example, it can be seen that 16-run minimum aberration designs maximize Ek(D)
for all k except when n = 6 and 7, and 32-run minimum aberration designs
maximize Ek(D) for all k except when n = 9, 11, 12, 13, 14 and 15. In the
exceptional cases, the minimum aberration designs, all of which are of resolution
IV, maximize Ek(D) for smaller k’s but not the larger ones.

The objective of this article is to further investigate the relationship and
differences between minimum aberration and maximum estimation capacity. The
greater divergence of the two criteria on resolution IV designs is mainly due to
the fact that a minimum aberration resolution III design can allocate all the
available degrees of freedom to the estimation of two-factor interactions, while
it is rarely so for resolution IV designs. This issue will be briefly discussed in
Section 2, and in more detail and generality in Sections 3 and 4. A useful concept
in this connection, called estimation index, is also introduced in Section 2. We
explain in Section 3 why minimum aberration resolution III designs are expected
to have maximum estimation capacity among all designs. Section 4 is devoted to
resolution IV designs. While minimum aberration resolution IV designs (except
the saturated designs) generally do not have maximum estimation capacity over
all designs, in certain situations they can be shown to have maximum estimation
capacity over resolution IV designs. We give one rare example where a minimum
aberration nonsaturated resolution IV design has maximum estimation capacity
over all designs. We also briefly discuss the notion of maximal resolution IV
designs. This is useful for the construction of resolution IV designs and will be
treated elsewhere. In Section 5, we present more properties of the estimation
index, useful for studying designs of higher resolution. Some concluding remarks
and discussions are presented in Section 6.

Throughout this paper, we only consider designs of resolution III or higher.

2. Estimation Index, Minimum Aberration and Maximum Estimation
Capacity

In this section, we revisit the connection between minimum aberration and
maximum estimation capacity as discussed in Cheng, Steinberg and Sun (1999).
For simplicity, let us restrict to the situation where (i) the main effects are of
primary interest and their estimates are required, and (ii) the experimenter would
like to have as much information about two-factor interactions as possible under
the assumption that three-factor and higher-order interactions are negligible.
Presumably this is a situation where one might use a minimum aberration design
of resolution three or higher.

Let f = 2n−m − 1 − n and, for a 2n−m design D of resolution III or higher,
let m1(D), · · · , mf (D) be the numbers of two-factor interactions in the f alias
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sets that do not contain main effects. Cheng, Steinberg and Sun (1999) showed
that a design D∗ has large estimation capacity if it (i) maximizes

∑f

i=1 mi(D),
and (ii) the mi(D∗)’s are as equal as possible. This is because Ek(D) is a Schur
concave function of m(D) = (m1(D), · · · , mf (D)) and is nondecreasing in each
component of m(D); see Cheng, Steinberg and Sun (1999). Cheng, Steinberg
and Sun (1999) also showed that in the first two steps of minimum aberration,
minimizing A3(D) is equivalent to (i) and minimizing A4(D) tends to make the
nonzero mi(D)’s as equal as possible. Based on these results, it was suggested
that minimum aberration is a good surrogate for maximum estimation capacity.

For example, Table 1 shows the values of mi(D)’s, 1 ≤ i ≤ f , for 32-run
minimum aberration designs with 9 ≤ n ≤ 29. For 16 ≤ n ≤ 21 and 24 ≤
n ≤ 29, the mi(D) values of minimum aberration 2n−(n−5) designs are the most
uniform possible. It follows that these designs maximize Ek(D) for all k. A little
more work shows that it is also true for n = 22 and 23. This is the conclusion
drawn in Cheng, Steinberg and Sun (1999) that for n ≥ 16, minimum aberration
32-run designs always have maximum estimation capacity.

Table 1. m1(D), · · · , mf (D) for minimum aberration 2n−(n−5) designs
with 9 ≤ n ≤ 29.

n r ρ f m1(D), · · · , mf (D)
9 4 3 22 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4,0
10 4 2 21 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5
11 4 3 20 3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0
12 4 3 19 4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,0,0,0,0
13 4 3 18 5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,0,0,0
14 4 3 17 6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0
15 4 3 16 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,0
16 4 2 15 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
17 3 2 14 8,8,8,8,8,8,8,8,8,8,8,8,8,8
18 3 2 13 8,8,8,8,8,8,8,8,8,8,8,8,9
19 3 2 12 8,8,8,8,8,8,8,8,8,9,9,9
20 3 2 11 8,8,8,8,8,9,9,9,9,9,9
21 3 2 10 9,9,9,9,9,9,9,9,9,9
22 3 2 9 8,8,10,10,10,10,10,10,11
23 3 2 8 8,11,11,11,11,11,11,11
24 3 2 7 12,12,12,12,12,12,12
25 3 2 6 12,12,12,12,12,12
26 3 2 5 12,12,12,12,13
27 3 2 4 12,13,13,13
28 3 2 3 14,14,14
29 3 2 2 14,14

r and ρ denote resolution and estimation index respectively.
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The situation is quite different when the number of factors is less than half
the run size. In this case minimum aberration designs (which are of resolution
IV) typically do not maximize Ek(D) for all k. One can see from Table 1 that
for all the minimum aberration designs with n ≥ 16, all the mi(D)’s are positive.
This means that there is at least one two-factor interaction in every alias set
that does not contain main effects. Such designs can entertain models with up
to f = 2n−m − n − 1 two-factor interactions; in other words, all the available
degrees of freedom can be allocated to the estimation of two-factor interactions.
On the contrary, most of the minimum aberration resolution IV designs with
n ≤ 15 have some zero mi(D)’s. For example, under the minimum aberration
211−6 design, 15 of the mi(D)’s are nonzero and 5 are zero. Such a design can
only estimate up to 15 two-factor interactions, even though there are 20 degrees
of freedom which are not aliased with main effects. As a result, for the minimum
aberration 211−6 design, Ek(D) = 0 for all k > 15. On the other hand, there are
211−6 resolution III designs with at least one two-factor interaction in each alias
set that does not contain main effects. Such designs have larger Ek(D)’s than
the minimum aberration design for k ≥ 16 and those k’s which are not much
smaller than 16, due to the continuity of Ek as a function of k. Alternatively,
although the nonzero mi(D)’s for a minimum aberration design are nearly equal,
the presence of some zero values prevents it from maximizing Ek(D) for all k.

These observations will be studied more generally in the next two sections.
In particular, we show in Section 3 that for all resolution III designs with n >

2n−m−1, there is at least one two-factor interaction in each alias set that does
not contain main effects. In this connection, it is useful to introduce a concept
called estimation index.

For a regular 2n−m fractional factorial design D, there are 2n−m−1 mutually
exclusive alias sets. Let ρi(D) be the length of the shortest word in the ith alias
set, i = 1, · · · , 2n−m−1. Then the estimation index of D is ρ(D) =max{ρi(D) :
i = 1, · · · , 2n−m − 1}.

According to this definition, the estimation index of the saturated resolution
III design (n = 2n−m − 1) is equal to 1; this is because every alias set con-
tains one main effect. All other resolution III or higher designs have ρ(D) ≥ 2.
Furthermore, all the mi(D)’s, 1 ≤ i ≤ f , are positive if and only if ρ(D) = 2.

We end this section by drawing some connection with linear codes. See
MacWilliams and Sloane (1977) for basic concepts and notations of algebraic
coding theory. Let the defining words of a fractional factorial design be repre-
sented by binary row vectors. A regular 2n−m fractional factorial design can be
considered as an [n, n−m] linear code: the null space of the m×n matrix whose
rows are m independent defining words of the 2n−m design. Then the defining
relation of the design can be considered as its dual code, the [n,m] linear code
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generated by the m independent defining words. It is well known that the resolu-
tion of a 2n−m design is the same as the minimum distance of the dual code. We
point out the interesting fact that the estimation index is equal to the covering
radius of the dual code. Thus, like minimum distance, the concept of covering
radius in coding theory also has an interpretable statistical meaning in the the-
ory of fractional factorial designs. Another connection can be made with designs
for computer experiments. Johnson, Moore and Ylvisaker (1990) introduced the
notions of minimax and maximin distance designs. It can be seen that these two
criteria, when applied to regular two-level fractional factorial designs, are the
same as minimum estimation index and maximum resolution, respectively, for
the dual designs (codes). But our experimental design goals are different from
theirs.

3. Resolution III Designs

We have seen that if D is a nonsaturated resolution III design, then ρ(D) ≥ 2.
An interesting fact is that the lower bound is always achieved if 2n−m−1 < n <

2n−m − 1. Note that this is when the maximum possible resolution is three (It is
well known that designs with resolution at least four can be constructed if and
only if n ≤ 2n−m−1). We state this result in the following theorem.

Theorem 1. If 2n−m−1 < n < 2n−m − 1, then any resolution III 2n−m design
achieves the minimum possible estimation index 2.

This confirms and generalizes what we saw in Table 1 about 32-run minimum
aberration designs with n > 16. Thus when the maximum possible resolution is
III, we can say that the mi(D)’s for a nonsaturated minimum aberration reso-
lution III design may tend to be nearly equal since none of them can be zero.
In view of this result, we conjecture that all minimum aberration 2n−m designs
with 2n−m−1 < n < 2n−m − 1 maximize Ek(D)’s for all k. This is known to be
true for 16- and 32-run designs.

We use the following upper bound on the covering radius of a linear code
due to Godlewski (see Zemor and Cohen (1991)) to prove Theorem 1.

Lemma 1. If an [n,m] linear code of minimum distance d and covering radius
c exists, then a[c, d] + m ≤ a[n, d], where a[x, y] is the maximal dimension of a
linear code of length x and minimum distance y.

Proof of Theorem 1. It is enough to show that the design has estimation
index at most 2, i.e., to show that if 2n−m−1 < n < 2n−m − 1, then the covering
radius of an [n,m] linear code of minimum distance 3 is at most 2. We prove this
by showing that a contradiction would result if there is an [n,m] linear code of
minimum distance 3 whose covering radius is larger than 2. Since n > 2n−m−1,
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a resolution III regular fractional factorial design with n factors must have run
size at least 2n−m. It follows that a[n, 3] = m. So if there is an [n,m] linear code
of minimum distance 3 whose covering radius c is at least 3 then, by Lemma 1,
a[c, 3] + m ≤ m, which implies that a[c, 3] ≤ 0. However, since c ≥ 3, clearly
a[c, 3] ≥ 1. This is a contradiction.

Note that a resolution III design with n ≤ 2n−m−1 can have estimation
index 3.

4. Resolution IV Designs

When n ≤ 2n−m−1, resolution IV designs can be constructed. In this case,
the following result holds.

Theorem 2. If 2n−m−2 < n ≤ 2n−m−1, then any resolution IV 2n−m design has
estimation index at most 3.

Proof. We need to show that if 2n−m−2 < n ≤ 2n−m−1, then the covering radius
of an [n,m] linear code of minimum distance 4 is at most 3. The proof is similar to
that of Theorem 1. Since n > 2n−m−2 and the run size of a resolution IV regular
fractional factorial design with n factors must be at least 2n, we conclude that
the run size of such a design is larger than 2n−m−1, and so is at least 2n−m. It
follows that a[n, 4] = m. So if there is an [n,m] linear code of minimum distance
4 whose covering radius c is at least 4, then by Lemma 1, a[c, 4] + m ≤ m, which
implies that a[c, 4] ≤ 0. A contradiction arises since c ≥ 4 ⇒ a[c, 4] ≥ 1.

The resolution IV designs covered by Theorem 2 can have estimation indices
2 or 3. Those with n ≤ 2n−m−2, however, can have estimation index greater
than 3; e.g., the 27−2 design defined by I = ABCF = ABDG = CDFG has
estimation index 4.

A 2n−m design of resolution IV with n = 2n−m−1, called a saturated resolu-
tion IV design, is unique up to isomorphism and can be constructed by folding
over a saturated resolution III 2(n−1)−m design. As shown in Cheng and Mukerjee
(1998), under such a design the

(n
2

)
two-factor interactions are distributed uni-

formly over the 2n−m−1 − 1 alias sets that do not contain main effects, i.e., each
of these alias sets contains the same number of two-factor interactions. Therefore
this design has maximum estimation capacity over all designs and the estimation
index is equal to 2.

Unlike resolution III designs, among the 32-run resolution IV designs, only
three have estimation index 2: the saturated resolution IV design with n = 16,
the minimum aberration design with n = 10, and the 29−4 design defined by
I = ABCF = ABDG = ACDH = BCDEJ which does not have minimum
aberration. Thus as far as the estimation of two-factor interactions is concerned,
most of the resolution IV designs leave some degrees of freedom unused. This is
tied to some deep results in finite geometry.
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It is well known that a regular 2n−m design of resolution III or higher cor-
responds to a set of n points in PG(n − m − 1, 2), the (n − m − 1)-dimensional
projective geometry with three points per line; see Bose (1947). In this connec-
tion, a design has resolution IV or higher if and only if the corresponding set
of points do not contain a line (which corresponds to a defining word of length
three). A set of points in a projective geometry that does not contain a line is
called a cap. Thus caps, regular fractional factorial designs of resolution IV or
higher, and linear codes whose dual codes have minimum distances at least 4 are
synonymous.

A cap is called maximal if it is no longer a cap whenever an additional point
is added. Equivalently, a design of resolution IV or higher is called maximal
if and only if the resolution reduces to three whenever a factor is added. If
a resolution IV design is not maximal, then it can be constructed by deleting
factors from a maximal resolution IV or higher design. Applications of this idea
to the construction of resolution IV designs will be treated elsewhere.

A result in the projective geometric literature (see Bruen, Haddad and
Wehlau (1998)) shows that a cap is maximal if and only if the dual of the corre-
sponding linear code has covering radius 2. In the language of factorial design,
this result can be rephrased as the following.

Theorem 3. A regular fractional factorial design of resolution IV or higher is
maximal if and only if its estimation index is equal to 2, i.e., if and only if all
the degrees of freedom not aliased with main effects can be used for estimating
two-factor interactions.

Here is a simple statistical proof. If the estimation index is not 2, then
there is at least one alias set that contains neither a main effect nor a two-factor
interaction. One can use this alias set to define a new factor, which will not
cause a main effect to be aliased with two-factor interactions. Then the resulting
design still has resolution IV or higher, and the original design is not maximal.
The other direction can be proved similarly.

Thus a resolution IV design has all mi(D)’s positive if and only if it is
maximal. However, there are relatively few maximal resolution IV designs. As
mentioned earlier, there are only three such designs (with 9, 10 and 16 factors)
in the 32-run case. This fundamental difference between resolution III and IV
designs is why minimum aberration designs of resolution IV usually fail to max-
imize Ek(D)’s for all k over all designs. However, we show in the following that
in some situations, minimum aberration resolution IV designs have maximum
estimation capacity over all resolution IV designs.

Let N = 2n−m. The saturated resolution IV design with n = N/2 is clearly
maximal. Davydov and Tombak’s (1990) remarkable result on maximal caps
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implies that there is no maximal resolution IV design with 5N/16 < n < N/2.
Combining this with Theorems 2 and 3, we have

Theorem 4. Let N = 2n−m. Then any regular resolution IV 2n−m design with
5N/16 < n < N/2 has estimation index three.

One can see from Table 1 that all the 32-run minimum aberration designs
with 10 < n < 16 have at least one mi(D) equal to zero. In fact, an important
consequence of Davydov and Tombak’s result is that if 5N/16 < n < N/2, then
a resolution IV design must be constructed by deleting certain factors from the
saturated resolution IV design. Under the saturated resolution IV design, all
two-factor interactions are in the N/2 − 1 alias sets that do not contain main
effects. Deleting factors does not change where the remaining factorial effects are
located. Therefore as long as 5N/16 < n ≤ N/2, under an arbitrary resolution
IV design all two-factor interactions must appear in N/2 − 1 alias sets only, i.e.,
all the resolution IV designs have at most N/2 − 1 nonzero mi(D)’s. Then since
for minimum aberration designs these values are nearly equal, one can conclude
that the minimum aberration designs have large, if not maximum, Ek(d)’s over
the resolution IV designs for all k. For example, for 10 < n ≤ 16 in Table 1, the
15 nonzero mi(D)’s are the most uniform possible - they differ from one another
by at most 1.

In general, we have the following result.

Theorem 5. Let N = 2n−m and 5N/16 < n < N/2. Suppose D is a regular
2n−m design obtained by deleting N/2−n factors from a saturated resolution IV
design. If there are no defining words of length four among the deleted factors,
then D maximizes Ek(d) for all k over all 2n−m designs of resolution IV.

Proof. Under a saturated resolution IV design, all N/2−1 two-factor interactions
involving a given factor must appear in different alias sets. Since there are N/2−1
alias sets, each of them must contain exactly one such two-factor interaction.
It follows that if N/2 − n factors are deleted, then the number of two-factor
interactions that remain in the ith alias set is equal to (n − N/4) + γi, where
γi is the number of pairs of deleted factors whose interaction appears in the ith
alias set of the saturated resolution IV design. If there is no defining word of
length four among the deleted factors, then all their two-factor interactions must
appear in different alias sets of the saturated resolution IV design, i.e., the γi’s
are either 1 or 0. Then the N/2− 1 nonzero mi(D)’s differ from one another by
at most 1. It follows that D maximizes Ek(d) for all k over all 2n−m designs of
resolution IV.

A result similar to Theorem 5 for resolution III designs can be found in Cheng
and Mukerjee (1998). Recently, Butler (2003) showed that for 5N/16 < n <
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N/2, a minimum aberration design can be obtained by deleting from a saturated
resolution IV design N/2 − n factors which form a minimum aberration design
among all (N/2 − n)-factor subdesigns of the saturated resolution IV design.
Theorem 5 shows that if the deleted subdesign has resolution at least V, then
the resulting design has maximum estimation capacity over all resolution IV
designs.

For n = 10 and N = 32, the minimum aberration design is maximal. As can
be seen from Table 1, under this design, all 21 mi(D) values are nonzero: twenty
are equal to 2 and one is equal to 5. This is also the only maximal resolution
IV 32-run design with ten factors. According to Davydov and Tombak’s (1990)
result quoted earlier, all other resolution IV designs have only fifteen nonzero
mi(D) values. For these designs, an upper bound of Ek(D) can be obtained by
making all the nonzero mi(D)’s equal to 45/15=3. This is because the sum of all
mi(D)’s is 45, the total number of two-factor interactions. Cheng, Steinberg and
Sun (1999) provided an explicit formula for Ek(D) as a function of the mi(D)’s.
Comparing the Ek values for the two sets of mi(D)’s, twenty 2’s and one 5 versus
fifteen 3’s and six 0’s, we see that the former dominates the latter. Therefore
the 32-run minimum aberration design with n = 10 has maximum estimation
capacity over all resolution IV designs. This design actually has maximum esti-
mation capacity over all designs. For a resolution III design, there is at least one
defining word of length three which produces three two-factor interactions that
are aliased with main effects. Therefore the sum of the mi(D)’s for a resolution
III design is at most 42. As far as the maximization of Ek(D) is concerned, the
best one can do is to make all the mi(D)’s equal to 42/21=2, which is clearly in-
ferior to the minimum aberration resolution IV design. This is one rare example
where a minimum aberration nonsaturated resolution IV design has maximum
estimation capacity over all designs. Again one crucial point is that this design
has estimation index equal to 2. Note that Cheng, Steinberg and Sun (1999)
mistakenly listed this as one of the 32-run minimum aberration designs that do
not maximize Ek(D)’s for all k over all designs.

5. More on Estimation Index

The last two sections concentrate on resolution III and IV designs. In this
section we present some further properties of estimation index which may be
useful for studying designs of higher resolution.

Suppose the resolution of a design D is r. Then there is no confounding
among the effects involving at most [(r − 1)/2] factors, where [x] is the largest
integer ≤ x. This implies that 2n−m − 1 ≥ ∑[(r−1)/2]

i=1

(n
i

)
, and that there are

∑[(r−1)/2]
i=1

(n
i

)
alias sets each of which contains exactly one effect that involves

[(r − 1)/2] or fewer factors. Therefore the design can be used to estimate all
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the effects involving [(r − 1)/2] or fewer factors. Suppose one then wants to be
able to entertain as many [(r + 1)/2]-factor effects as possible. There are two
possibilities regarding the [(r + 1)/2]-factor effects, which we summarize in the
following proposition.

Proposition 1. Let D be a 2n−m design of resolution r. Then 2n−m − 1 ≥
∑[(r−1)/2]

i=1

(n
i

)
.

(i) If 2n−m − 1 =
∑[(r−1)/2]

i=1

(n
i

)
, then r is an odd integer, D is a saturated

design of resolution r, and ρ(D) = (r− 1)/2. Furthermore, D can be used to
estimate all (r − 1)/2-factor and lower-order effects assuming that the higher-
order effects are negligible, but it cannot be used to estimate any (r + 1)/2-
factor effect if estimates of all the (r − 1)/2-factor and lower-order effects
are required.

(ii) If 2n−m−1 >
∑[(r−1)/2]

i=1

(n
i

)
, then ρ(D) ≥ [(r+1)/2]. In this case, in addition

to all the effects involving no more than [(r − 1)/2] factors, D can be used
to entertain at most 2n−m − 1−∑[(r−1)/2]

i=1

(n
i

)
effects that involve [(r + 1)/2]

factors. This upper bound is achieved if and only if ρ(D) = [(r + 1)/2].

Proposition 1 is self-evident and requires no proof.
Suppose we are in the situation where estimates of all the effects involving

fewer than s factors are required; furthermore we would like to be able to entertain
as many s-factor interactions as possible. A design of resolution 2s + 1 can be
used to estimate all s-factor interactions and lower-order effects. If the run size
of such a design is too large, then we need a design of resolution 2s − 1 or 2s
which, by Proposition 1, has estimation index at least s. The largest number of
s-factor interactions can be entertained if the estimation index is equal to s.

For example, suppose estimates of all main effects and two-factor interac-
tions are required. Then one needs a design of resolution at least V. One can
define Ek(D) as the number of models containing all main effects, all two-factor
interactions and k three-factor interactions that can be entertained by a design
D. If a minimum aberration design of resolution at least V has estimation index
3, then it is expected to have large, if not maximum, Ek(D) for all k’s. On
the other hand, if the minimum aberration design has estimation index greater
than 3 and there is another design with estimation index 3, then the minimum
aberration design is expected to have large (or maximum) Ek(D) for smaller k’s,
but does not maximize Ek(D) for larger k’s.

Another lower bound on the estimation index (which requires no information
about the resolution) can be established:

Proposition 2. Let D be a 2n−m design. Then ρ(D) ≥min{l :
∑l

i=0

(n
i

) ≥
2n−m}.
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Proposition 2 can be proved as follows. Let l∗ =min{l :
∑l

i=0

(n
i

) ≥ 2n−m}.
Then

∑l∗−1
i=0

(n
i

)
< 2n−m, which implies that the

∑l∗−1
i=1

(n
i

)
effects involving at

most l∗−1 factors are scattered in fewer than 2n−m−1 alias sets. Therefore there
is at least one alias set that contains an effect involving at least l∗ factors but does
not contain any effect involving fewer than l∗ factors. It follows that ρ(D) ≥ l∗.

It is easy to see that if the lower bound in Proposition 1 is achieved (i.e.,
when 2n−m−1 =

∑[(r−1)/2]
i=1

(n
i

)
and ρ(D) = (r−1)/2, or 2n−m−1 >

∑[(r−1)/2]
i=1

(n
i

)

and ρ(D) = [(r + 1)/2]), then the lower bound in Proposition 2 is also achieved.
A class of designs that achieve both lower bounds in Propositions 1 and 2 is

that of half-replicates of maximum resolution. Let D be a 2n−1 design where the
single defining effect is the interaction of all n factors. Then D has resolution
n. By examining the alias structure of D, it is easy to see that when n is odd
ρ(D) = (n−1)/2, and when n is even ρ(D) = n/2. In the former case 2n−1−1 =
∑(n−1)/2

i=1

(n
i

)
and ρ(D) = (n − 1)/2; in the latter case 2n−1 − 1 >

∑(n−1)/2
i=1

(n
i

)

and ρ(D) = [(n + 1)/2]. Therefore the lower bound in Proposition 1 is achieved,
and so is the bound in Proposition 2.

6. Concluding Remarks

We have shown that all resolution III 2n−m designs with 2n−m−1 < n <
2n−m−1 have estimation index equal to 2, while most resolution IV designs have
estimation index greater than 2. This is why minimum aberration resolution III
designs are expected to have maximum estimation capacity among all designs (at
least this is true for all the cases that have been verified), but it does not hold
for most resolution IV designs. In general, if a minimum aberration design of
resolution III or higher has estimation index 2, then it is expected to have large,
if not maximum, Ek(D) for all k’s. On the other hand, if a minimum aberration
design has estimation index 3, but another design has estimation index 2, then
the minimum aberration design tends to be optimal for smaller k’s, but not for
larger k’s. In this case, if the number of active two-factor interactions is expected
to be large, then one may want to use a design which has minimum aberration
among those with estimation index 2. In some cases, we have also shown that
minimum aberration resolution IV designs have maximum estimation capacity
over resolution IV designs.
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