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Abstract: In nonparametric regression estimation the best possible rate of conver-
gence is attained when the design points are equidistributed. Whole sequences
of equidistributed designs can be generated from vectors with algebraically inde-
pendent components. Generators are determined which perform well already for
moderate numbers of observations. The proposed design sequences are nearly op-
timal in classical settings and simultaneously appropriate for the nonparametric
approach.
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1. Introduction

In statistical applications there is often a strict distinction made between

observational studies and experimental situations. While for the former only a
passive collection is possible for the observational outcomes of the input–output

pairs (x, y), there is a substantial advantage in experiments when the settings for
the input x can be actively chosen. Typically, the method of statistical analysis

which measures the influence of the input x on the output y does not depend on
whether the data arise from observational studies or from planned experiments.
However, the performance of the estimators, tests etc., is strongly influenced by
the distribution of the input variables. In terms of sample sizes, savings of fifty

percent and more are possible in reaching a prescribed accuracy when an optimal
or efficient design for the input x is chosen (see Cox and Reid (2000). For further
readings on the wide–spread scope of applications for experimental designs, we
refer to the handbook by Ghosh and Rao (1996)).

In the present paper we propose a method for generating experimental de-
signs based on equidistributed sequences (see Niederreiter (1992)). The method
is designed for nonparametric regression with an orthogonal expansion for the
estimator. It may be applied also to kernel type estimators and semiparametric

approaches.
We investigate a quasi least squares estimator based on an orthogonal series

expansion. The estimator proposed here for a fixed design is similar to estimators

commonly used in nonparametric random design settings.
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The quasi least squares estimator is particularly simple and intuitively ap-

pealing when applied to an additive regression function estimated from a mul-

tivariate equidistributed design. The construction of the additive quasi least

square estimator follows an idea by Linton and Nielsen (1995) (see also Efro-

movich (1999)).

Most of the existing theory on optimal design of experiments is based on the

assumption that the linear regression model under study is correctly specified.

This fundamental assumption implies that the existing design criteria (such as

those related to D–, A– or G–optimality) take only the variance of the estimator

for the parameters of the response function into account.

When considering regression in a nonparametric setting we are in a quite

different position since, in addition to the variance, there is also a bias term

present. Thus, we have to measure the estimation accuracy in terms of the mean

squared error. On the other hand, the bias term cannot be directly minimized for

the obvious reason that the underlying regression function is unknown. Equidis-

tributed sequences are well suited for approximate calculations of integrals in the

sense that they automatically reduce the bias term.

In this paper we focus on the fixed design case. Few papers have been devoted

to the question of choosing “good” input sequences in a nonparametric setting

so far. For example, Müller (1984) proposed a choice of design points for kernel

type estimation, and Rafaj lowicz (1987) discussed the use of points provided by

quadrature formulae in nonparametric estimation. Recently, experimental design

problems for local least squares estimation were considered by Müller (1998) and

Cheng, Hall and Titterington (1988).

In the next section the class of designs considered is described, and the main

problem is stated in the context of nonparametric regression estimation. In Sec-

tion 3 results on consistency of orthogonal series estimators with equidistributed

designs are stated, together with results on their convergence rate. These asymp-

totic results allow for restricting the class of design generators to quadratic irra-

tionals which, for example, have a one-periodic continued fractions representa-

tion. In Section 5 the algorithm for searching satisfactory generators is proposed.

Finally, in Section 6 selected generators and the corresponding designs are stud-

ied via some simulation results that compare estimation accuracy obtained by

using equidistributed designs with that of equidistant grid designs. Proofs are

deferred to the Appendix.

2. Assumptions

The dependence of the output variable y on the input x is described by a

functional relationship y = f(x) + ε, where ε is a random observational error.

Classical design theory assumes a parametric model, i.e., the structure of the
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response function f is known up to a finite-dimensional parameter ϑ, f(x) =
g(x, ϑ). In particular, most results are related to linear models, f(x) = g(x)>ϑ =
∑p

j=1 gj(x)ϑj . In a nonparametric setting however, the response function may
come from a larger, infinite-dimensional function space. Hence, a whole function
must be estimated rather than merely a few parameters and input variables xi

should cover the whole design region as well as possible. The collection x1, . . . , xn

of input variables is called the design of the experiment.
The function f is estimated from observations yi = f(xi) + εi based on the

design points xi, where the errors εi are zero mean, homoscedastic and uncor-
related. For estimating f in a nonparametric setting we choose equidistributed
design sequences (see Kuipers and Niederreiter (1974)). Denote by {{·}} the
fractional part of a real number.

Definition 1. (Equidistributed designs) Let θ = (θ(1), . . . , θ(d))T be a vector of
distinct irrational numbers satisfying affine linear independence over the ratio-
nals, i.e.,

α0 +
d
∑

j=1

αjθ
(j) = 0 implies α0 = α1 = · · · = αd = 0 (1)

for every set of rational numbers α0, . . . , αd.
An equidistributed sequence in d dimensions is defined by

xi = ({{iθ(1)}}, . . . , {{iθ(d)}}), (2)

i = 1, 2, . . ., where θ = (θ(1), . . . , θ(d)) is called the generator of the sequence.
The first n members x1, . . . , xn of an equidistributed sequence constitute an

equidistributed design of size n.

Note that the designs of Definition 1 are equidistributed in the sense of
Kuipers and Niederreiter (1974), while one can consider other sequences of this
type, for example Van der Corput sequences, we confine our attention to (2) with
θ irrational.

Rational equidistributed designs have been shown to be optimal in Fourier
regression models by Bates, Riccomagno, Schwabe and Wynn (1998).

In the sequel we consider generators with quadratic irrationals θ (j): solutions
of quadratic equations ax2 + bx + c = 0, where a, b and c are integers and the
determinant b2 − 4ac > 0 is not a perfect square. From Lagrange’s theorem
(see Baker (1984)) it follows that θ(j) is a quadratic irrational if and only if its
continued fraction expansion

θ(j) = a0 +
1

a1 +
1

a2 +
1

. . .
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is ultimately periodic with integer coefficients a0, a1, . . .. To keep the presenta-

tion simple we confine ourselves to quadratic irrationals CF (A) which are one–
periodic continued fractions, thus a0 = 0 and a1 = a2 = · · · = A. For example,

CF (1) = (
√

5 − 1)/2 is the famous golden section number and CF (2) =
√

2 − 1.
Let CF = {CF (A)|A = 1, 2, . . .}. We denote by CF d those generators θ =

(θ(1), . . . , θ(d)) with components in CF satisfying the independence condition (1).

We restrict the design region to the unit cube X = [0, 1]d. Let C(X) denote
the space of continuous functions and V (X) the class of functions f of bounded

variation V(f) on X (in the sense of Hardy and Krauze for the multivariate

case, see, e.g., Kuipers and Niederreiter (1974)). L2(X) is the space of square
integrable functions f on X. A finite an orthonormal basis for L2(X) is denoted

by v̄N = (v1, . . . , vN )T . W µ(X) denotes the Sobolev space of functions on X with

smoothness µ, i.e., for µ = p+α, 0 ≤ α < 1, f ∈ W µ is p times differentiable and
its pth derivative is Lipschitz continuous with exponent α. When X = [0, 1] we

write C(0, 1), V (0, 1), etc. For f ∈ W µ(0, 1), 0 < µ ≤ 1, denote by L(f) > 0 the

Lipschitz constant, |f(x′) − f(x′′)| ≤ L(f)|x′ − x′′|µ. A function f ∈ W µ(0, 1) is
periodic if f (p)(0) = f (p)(1), 0 ≤ p ≤ µ.

In the bivariate case we consider addditive regression functions, where f can
be decomposed into marginal effects of two variables x(1), x(2) according to

f(x(1), x(2)) = c0 + g(x(1)) + h(x(2)), (3)

where c0 is the overall mean, and g and h are square integrable functions. In
order to ensure identifiablity we assume g and h integrate to zero. Extension of

(3) to the multivariate case is immediate.

Let v1, v2, . . . be a complete sequence of orthonormal functions in L2(X).
Typically this will be a system of orthogonal polynomials like the Legendre

polynomials, or the trigonometric system for periodic functions. Let ak =
∫

X f(x)vk(x) dx. We define the estimator f̂n of f in a natural way by

f̂n(x) =
N
∑

k=1

âknvk(x), âkn =
1

n

n
∑

i=1

yivk(xi), (4)

so âkn is the estimator of the regression coefficients ak at stage n. The es-

timators âkn and f̂n will be called quasi least squares estimators. They are
obtained by replacing the inverse of the normalized Fisher information matrix

n−1∑n
i=1 v̄N (xi)v̄

T
N (xi) by the N ×N identity matrix for computational simplic-

ity.
In (4), N plays the role of a smoothing parameter. In asymptotic considera-

tions the degree N = N(n) will depend on the number of observations. Typically,
N increases more slowly than n, and we suppose

N(n) → ∞, N 3(n)/n2−ε → 0, (5)
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for arbitrarily small ε > 0. For f ∈ W µ(X), select N(n) in such a way that

γ1n
1/(1+2µ/d) ≤ N(n) ≤ γ2n

1/(1+2µ/d), (6)

for some constants 0 < γ1 ≤ γ2.

If it is a–priori known that a bivariate function f is additive, then it is

natural to construct its estimator f̂n in an additive form. Let (φk) be a system

of orthonormal functions, complete in L2(0, 1), and which includes a constant

term φ1(x) = 1. This holds for the Legendre polynomials and the trigonometric

system.

We generate the design sequence xi = ({{iθ(1)}}, {{iθ(2)}}) according to Def-

inition 1. The estimator f̂n of (3) has the form

f̂n(x(1), x(2)) = ĉ0 +
N1
∑

k=2

ĝkφk(x(1)) +
N2
∑

l=2

ĥkφk(x(2)),

where the coefficients are given by

ĉ0 =
1

n

n
∑

i=1

yi, ĝk =
1

n

n
∑

i=1

yiφk(x
(1)
i ), ĥk =

1

n

n
∑

i=1

yiφk(x
(2)
i ).

The sequences N1(n) → ∞, and N2(n) → ∞ play the role of smoothing param-

eters, and N(n) = N1(n) + N2(n) − 1 is the joint degree of the basis.

By c, c1, c2, . . . we will denote generic constants throughout. These may vary

from line to line.

3. Asymptotics for Estimation Based on equidistributed designs

The problem of nonparametric estimation is to find a sequence of functions

f̂n based on the pairs (x1, y1), . . . , (xn, yn) such that f̂n approaches f when the

sample size increases.

In the nonparametric setting standard design criteria which are based on the

information matrix cannot be applied because for those exact knowledge of the

model structure is assumed. Moreover, designs which are optimal in the classical

setting are typically concentrated on a relatively small number of design points

and do not allow for checking the assumed model.

It is desirable to consider the integrated mean squared error as a design

criterion:

IMSE(f̂n, f) =

∫

X
Var (f̂n(x)) dx +

∫

X
(Ef̂n(x) − f(x))2 dx.

In the univariate case we consider the situation where the vk are el-

ements of the trigonometric system {1,
√

2 sin(2πx),
√

2 cos(2πx),
√

2 sin(2π2x),√
2 cos(2π2x), . . .}, x ∈ [0, 1].
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Proposition 1. Let f be in V (0, 1) ∩ C(0, 1) and suppose (5) is satisfied for

the sequence N(n). Assume that xi = {{iθ}}, i = 1, . . . , n, is an equidistributed

design with an algebraic irrational generator θ. If f̂n is the estimator of f defined

by (4) then IMSE(f̂n, f) → 0 as n → ∞.

Under slightly more restrictive conditions on the degree N(n) it can be shown

that Proposition 1 remains valid when vk is the system of Legendre polynomials.

Proposition 2. Let f ∈ W µ(0, 1),
√

3/2 < µ ≤ 1 and let N(n) be chosen such

that (6) holds. Let xi = {{iθ}}, i = 1, . . . , n, an equidistributed sequence, where

the generator θ is an ultimately periodic continued fraction. If f is periodic, then

IMSE(f̂n, f) = O(n−
2µ

2µ+1 ).

Note that under the conditions of Proposition 2, f̂n attains the best possible

rate of convergence in the integrated mean squared error sense, uniformly in

W µ(0, 1).

For additive functions f we assume that the components of f̂n are both

spanned by the trigonometric system. From Propositions 1 and 2 we can infer

similar asymptotic properties of the estimators f̂n constructed according to (7)

in view of

IMSE(f̂n, f)

= E(ĉ0−c0)2 + E

∫ 1

0
(ˆ̂gn(x(1))−g(x(1)))2dx(1) + E

∫ 1

0
(
ˆ̂
hn(x(2))−h(x(2)))2dx(2),

where ˆ̂gn(x(1)) =
∑N1

k=2 ĝkφk(x(1)) and
ˆ̂
hn(x(2)) =

∑N2

k=2 ĥkφk(x(2)).

Proposition 3. Assume that the additive regression function f is periodic in

both components. Let f̂n be the estimator based on the equidistributed design

xi = ({{iθ(1)}}, {{iθ(2)}}), i = 1, . . . , n, with generator θ = (θ(1), θ(2)) ∈ CF2.

If g and h are in V (0, 1) ∩ C(0, 1), and if (5) holds for N1(n) and N2(n), then

IMSE(f̂n, f) → 0 as n → ∞.

Proposition 4. Assume the conditions of Proposition 3 on the design x1, . . . , xn

and the shape of f and f̂n. If g, h ∈ W µ(X),
√

3/2 < µ ≤ 1, and (6) holds for

N1(n) and N2(n), then IMSE(f̂n, f) = O(n−
2µ

2µ+1 ).

Stone (1986) proved the best rate of convergence is the same for additive

regression as for the univariate case. This is attained by f̂n in view of Proposi-

tion 4.

Note that the results of Propositions 1 to 4 can be generalized to wider classes

of generators which satisfy (1), such as ultimately periodic continued fractions

with bounded coeffiecients.
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4. Choice of the Approximation Order

In the univariate case we use the notation f̂n,N(x) to display the dependence

of f̂n(x) on N . The best choice for the degree is N ∗ = arg minN IMSE(f̂n,N , f).

However, this is not attainable in practice because N ∗ depends on the unknown

function f . Therefore we have to derive an estimate N̂ for the degree N .

Define the residuals by r(n,N) = n−1∑n
i=1(yi − f̂n,N(xi))

2 and the mean

squared error by MSE(n,N) = E n−1∑n
i=1(f̂n,N (xi) − f(xi))

2. Then

E r(n,N) = MSE(n,N) + σ2 − 2σ2

n

N
∑

k=1

n−1
n
∑

i=1

v2
k(xi).

For the trigonometric system (vk) the Lipschitz constant decomposes according

to L(v2
k) ≤ ck. If xi, i = 1, . . . , n, is an equidistributed design with θ ∈ CF d

then n−1∑n
i=1 v2

k(xi) −
∫

X v2
k(x) dx = O(k log(n)/n), which implies E r(n,N) =

MSE(n,N)+σ2−2σ2 N
n +O(N2 log(n)/n2). Following an idea of Mallows, we de-

fine crit(n,N) = r(n,N)−σ2+2σ2N/n. Let N̂ = arg minτ1nβ≤N≤τ2nβ crit(n,N)

where 0 < β <1/2 and 0 < τ1 < τ2. Then it can be shown that IMSE(f̂n,N∗ , f)−
crit(n, N̂) = o(n−(1/2−δ)) a.s. for every δ > 0, if f ∈ W µ(0, 1), µ >

√
3/2, and

xi constitutes an equidistributed design with θ ∈ CF .

This result remains valid if σ2 is replaced by a consistent estimator σ̂2 in

the definition of the criterion function. Similar statements can be made in the

additive case.

5. Selection of Generators for Experimental Designs

Denote by M
(N)
n (θ) = 1

n

∑n
i=1 v̄N (xi)v̄

T
N (xi) the normalized information ma-

trix for estimating a response function spanned by v̄N = (v1, . . . , vN )T when the

equidistributed design xi = {{iθ}}, i = 1, . . . , n, is used.

As a benchmark for the comparison of designs for different values of n

and N we take the theoretically optimal uniform design measure for which

tr((
∫

v̄N (x)v̄T
N (x) dx)−1) = N . Here, tr denotes trace. Denote by q(θ, n,N) =

1
N tr(M

(N)
n (θ)−1)−1 the standardized deviation of the design generated by θ from

the ideal uniform design. Then the design xi = {{iθ}}, i = 1, . . . , n, is considered

to be sufficiently good if |q(θ, n,N)| ≤ δ for a prespecified tolerance δ > 0.

The main difference between the present and the classical A-optimal de-

sign problem statement is the restriction to equidistributed sequences. This side

condition assures that the bias term becomes small for sufficiently large n. An

essential part of the bias is given by
∣

∣

∣n−1∑n
i=1 f(xi)vk(xi) −

∫ 1
0 f(x)vk(x)dx

∣

∣

∣.

Thus, it is important to select the generator θ in such a way that ∆n(θ, f) =
∣

∣

∣n−1∑n
i=1 f(xi) −

∫ 1
0 f(x)dx

∣

∣

∣ converges sufficiently fast to zero, uniformly in f .
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Denote by D?
n the discrepancy of the sequence xi, i = 1, . . . , n. The following

bounds are known from the literature (see Kuipers and Niederreiter (1974)).

(B1) Koksma’s inequality: For every f ∈ V (0, 1) we have ∆n(θ, f) ≤ V (f)D?
n.

(B2) ∆n(θ, f) ≤ c(D?
n)µ for every f ∈ W µ(0, 1), 0 < µ ≤ 1.

(B3) For θ ∈ CF the discrepancy D?
n is of the order O(log(n)/n).

(B4) For θ ∈ CFd the discrepancy is of the order O(n−1+ε) for every ε > 0.

Within the class CF d we consider a selection algorithm for searching “good”

generators because explicit minimization is too time consuming. The selection

algorithm starts by combining generators for lower dimensions and separates

those which are suitable for regression with larger numbers of variables. This

algorithm resembles the procedure of winnowing, i.e., freeing grain from chaff by

wind.

Algorithm for winnowing good design generators

Step 0. Specify the dimension D for which the search will be performed. Choose

the range of search K > 0 and tolerance bounds δ = (δ1, . . . , δD) of

acceptable values for |qd((θ(1), . . . , θ(d)), n,N)| for given dimension d.

Step 1. Set d = 1 and select the set Θ1 of one–dimensional generators θ(1) =

CF (p), p = 1, . . . ,K, for which the corresponding sequence xi ={{iθ(1)}},

i = 1, . . . , n, satisfies |q1(θ(1), n,N)| ≤ δ1.

Step 2. If d < D set d := d + 1 and go to Step 3, otherwise STOP the algorithm

and provide the sets Θ1, . . . , ΘD of generators as the result.

Step 3. Form the set of candidate generators Gd = Θd−1 × Θ1. For each θd =

(θ(1), . . . , θ(d)) ∈ Gd, calculate qd(θd, n,N) and select the set Θd of those

θd ∈ Gd ∩ CFd for which |qd(θd, n,N)| ≤ δd holds. Then go to Step 2.

Occasionally the algorithm might stop at a premature stage when Θd be-

comes void. In that case the range K or the tolerance bounds δ = (δ1, . . . , δD)

have to be increased.

As a side effect the winnowing algorithm results in uniformly distributed

projections onto lower–dimensional hypercubes. This is of particular importance

in situations where not all input variables are essential for fitting the model.

6. Numerical Examples and Simulations

In this section we report the results of using the winnowing algorithm for

selecting good design generators. Generators for the univariate case are mainly

considered as ingredients for higher dimensional designs. We note only that the

golden section number CF (1) = (
√

5 − 1)/2 can be used as a universal design

generator for regression functions spanned by orthonormal Legendre polynomi-

als for various degrees N and sample sizes n, as exhibited in Figure 1 where

Nq(θ, n,N) is depicted.
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Figure 1. Performance of the golden section number CF (1) = (
√

5 − 1)/2.

Table 1. Performance of θ = (CF (i), CF (j)): Nq(θ, n, N).

(i, j) (10,36) (5,43) (3,44) (14,44) (10,14)

Legendre polynomials 0.000 -0.001 0.001 0.001 0.001

trigonometric system 0.005 0.000 -0.013 0.012 0.017

In Table 1 some designs are presented which were selected by the winnowing

algorithm for the additive bivariate third order Legendre polynomial with N = 7

and n = 225.

By construction the winnowing algorithm selects generators, which are of

high quality when the orthonormal system (vk), the sample size n and the degree

N are all specified. We investigate the performance of the associated designs if

some or all experimental conditions are modified. For example, it is shown in

Table 1 that the generators selected for the Legendre polynomials also perform

well if they are used for a trigonometric system consisting of cosine terms only.

To illustrate the uniformity of the selected designs we exhibit the design

generated by θ = (CF (5), CF (43)) in Figure 2. It performs almost optimally for

both Legendre polynomials and a trigonometric system.

The winnowing algorithm reduces the computational burden for selecting

generators, but it does not guarantee that the generator is optimal. To verify the

efficiency of the winnowing algorithm the quality of winnowed generators is com-

pared with those found by exhaustive search. This is done here for comparison

only, since it is applicable for relatively small problems.

The winnowing algorithm started from the set CF (i), i = 1, . . . , 55, of uni-

variate generators. Thus, exhaustive search had to be conducted over the gener-

ators θ = (CF (i), CF (j)), i, j = 1, . . . , 55. As a basis, additive bivariate third

order Legendre polynomials were used. The winnowing algorithm was performed
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with two different values for the tolerance bound δ1. In the first case (strategy

I), δ1 was selected in such a way that the computational time was reduced by a

factor of 1/2 compared to exhaustive search. In the second case (strategy II), the

reduction in computational time was by a factor of 1/20. The results of compar-

isons are summarized in Table 2 for various n. Column 2 gives the performance

of the optimal generator found by exhaustive search, while the results for the

winnowing algorithm are listed in columns 3 and 4, respectively. For strategy I

the winnowing algorithm found the optimal generators across the whole range of

n. Strategy II resulted in a small loss of quality for small sample sizes, and in

optimal values for larger n.
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Figure 2. Design generated by θ = (CF (5), CF (43)).

A simple competitor to equidistributed designs could be equidistant grid de-

signs concentrated on a
√

n × √
n square lattice. These designs perform poorly

as is indicated in the last column of Table 2. Hence, they are not to be recom-

mended, at least for small to moderate sample sizes.

Table 2. Comparison of the winnowing algorithm with exhaustive search

and equidistant designs.

n

exhaustive

search

winnowing

strategy I

winnowing

strategy II

equidistant

design

25 0.314 0.314 0.341 13.10

49 -0.007 0.017 0.037 4.57

100 0.000 0.000 0.112 1.847

225 0.000 0.000 0.000 0.762
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Another commonly used competitor is a design generated by random (or

pseudo-random) numbers from a uniform distribution. For comparison we gen-

erated 100 random designs of size n = 225 from the uniform distribution on

the unit square. For each of these random designs the performance measure

Nq((x1, . . . , xn), n,N) = tr(M
(N)
n (x1, . . . , xn)−1) − N was calculated. The best

random design had a value of 0.0002, but proved to be worse still by an order of

magnitude than the best design from Table 2. The mean performance measure

was 0.21 with a standard deviation of 0.28, which shows large variation. Thus,

equidistributed designs do better than randomly generated designs.

We also investigated the performance of equidistributed designs compared to

equdistant grid designs and randomly generated designs when the test function

to be estimated does not come from the space spanned by the basis functions. As

a measure of performance we calculated the empirical integrated mean squared

error

EIMSE (x1, . . . , xn) =
1

mL

m
∑

j=1

L
∑

`=1

[

f(κ`) − f̂ (j)
n (κ`)

]2
,

where m = 100 replicates of the observations y
(j)
i = f(xi) + ε

(j)
i at the design

points xi, i=1, . . . , n, were generated according to a Gaussian noise with variance

σ2, and f̂
(j)
n denotes the estimate based on the jth series of observations (xi, y

(j)
i ),

j = 1, . . . ,m. Moreover, to avoid evaluation of the integral, L = 500 points κ`

were randomly generated from the uniform distribution, and the integral was

estimated by the average of the squared deviations.

Some results are exhibited in Figures 3 and 4 for the case of a trigonometric

test function f(x) = sin(πx(1)) + cos(πx(2)), while additive bivariate third order

Legendre polynomials were used as the basis. The sample size was n = 121 for

all designs considered.
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Figure 3. Comparison of equidistributed and equidistant designs.
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Figure 4. Comparison of equidistributed and randomly generated designs.

In Figure 3 the equidistributed design generated by θ = (CF (10), CF (14))

is compared with an 11 × 11 eduidistant grid design. The picture shows that

EIMSE is smaller for the equidistributed design than for the equidistant grid

design for all values of σ.

In Figure 4 the same equidistributed design is compared with three different

random designs for various values of σ. Also, in this comparison, the equisdis-

tributed design provides smaller estimation errors. Even if it may occasionally

happen that a random design has a quality comparable to the selected equidis-

tributed design, one can simultaneously observe a large variability of the quality

of random designs (see run Rand. 3 in Figure 4 in which the random design has

an EIMSE about 5 times as large as that of the equidistributed design).
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Appendix: Proofs

Proof of Proposition 1. From the orthonormality and completeness of the

sequence (vk) it follows that the integrated mean squared error IMSE(f̂n, f)

can be decomposed according to

IMSE(f̂n, f) = Wn + B2
n + R(N, f), (7)

a variance term Wn =
∑N

k=1 Var (âkn), a bias term B2
n =

∑N
k=1(E(âkn) − ak)2
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and an approximation error R(N, f) =
∑∞

k=N+1 a2
k, respectively. Here and in the

sequel we suppress the dependence of N = N(n) on n.

For the variance of âkn we have Var (âkn) = σ2n−1(n−1∑n
i=1 v2

k(xi)). The

term in the brackets converges to 1 due to the equidistribution of xi, i = 1, . . . , n.

This term is uniformly bounded in k. Hence, Wn ≤ c1N/n.

From the definition of âkn we obtain

(E(âkn) − ak)2 =

(

n−1
n
∑

i=1

f(xi)vk(xi) −
∫

X
f(x)vk(x)dx

)2

from which (E(âkn) − ak)2 ≤ (V(fvk)D∗
n)2 follows by the Koksma inequality (or

the Koksma-Hlavka inequality, see Kuipers and Niederreiter (1974), p.143), for

f ∈ V (X) ∩ C(X).

It can be verified that V(fvk) ≤ supx∈X |vk(x)|V(f) + supx∈X |f(x)|V(vk),

(see e.g., Fang and Wang (1994), p.63). For continuously differentiable vk the

total variation equals
∫ 1
0 |v′k(x)|dx. Hence, for the trigonometric system we get

V(vk) = ck.

Summarizing the above results we obtain B2
n ≤ c2N

3(D∗
n)2 and, hence,

IMSE(f̂n, f) ≤ c1
N

n
+ c2

N3

n2−ε
+ R(N, f).

The first term in this equation converges to zero due to the fact that condition

N3/n2−ε → 0 implies N/n → 0. (5) ensures convergence of the second term to

zero. Finally, also R(N, f) → 0 as N → ∞, since f ∈ L2(0, 1).

Proof of Proposition 2. Note that fvk ∈ W µ(0, 1) and that for the Lips-

chitz constant, L(fvk) ≤ supx∈[0,1] |vk(x)|L(f) + supx∈[0,1] |f(x)|L(vk). For the

trigonometric system we have L(vk) = 2
√

2πk. This, together with (B2), implies

B2
n ≤ cN3(D∗

n)2µ.

It remains to evaluate R(N, f). Let dN (f) be the error of the best ap-

proximation of f by linear combinations of v̄N = (v1, . . . , vN ) in the supremum

norm, dN (f) = supγN
||f − γT

N v̄N ||∞. Now R(N, f) = infγN
||f − γT

N v̄N ||22 ≤
∫

X(f(x) − γT
N v̄N (x))2dx ≤ d2

N (f). For the trigonometric system it follows from

Jackson’s theorem (see Timan (1963)) that if f is periodic and f ∈ W µ(0, 1) then

dN (f) = O(N−µ). From the above and (B3) resp. (B5), we get

IMSE(f̂n, f) ≤ c1
N

n
+ c2

N3

n2µ−ε
+

c3

N2µ
. (8)

Choose N(n) according to (6) with d = 1 to balance the convergence rate of

the first and last term in (8), attaining the order O(n−2µ/(2µ+1)). One can verify

that the middle term on the r.h.s. of (8) converges to zero at the rate O(n−δ),
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where δ = (3−4µ2−2µ+ε(2µ+1))/(2µ+1). For µ >
√

3/2 this rate is faster than

that attained by the first and the third terms. Thus, IMSE(f̂n, f) = O(n
−

2µ
2µ+1 )

and the best rate of convergence is attained by f̂n.
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