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Abstract: Multiple event data are frequently encountered in incident and prevalent

cohort studies when the multiple events are considered as the major outcomes. For

incident cohorts, statistical analysis for the time to the first event, the first gap time,

can be conducted using standard techniques in survival analysis under appropriate

conditions. These techniques are, nevertheless, inappropriate for analyzing the

second gap time because of the presence of induced informative censoring. For

prevalent cohorts, because the sample is biased in general, standard methods do

not apply to gap times of any order, but techniques for truncated data can be used

for the analysis of the first gap time. It is shown that the combined incident and

prevalent data form the usual survival data for analysis of the second gap time

when certain stationarity conditions are satisfied. The problems are illustrated by

a cohort example to study the natural history of Human Immunodeficiency Virus

(HIV) and Acquired Immunodeficiency Syndrome (AIDS).
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1. Introduction

Multiple event data are frequently encountered in medical follow-up studies
when the events are considered as the major outcomes for the progression of a
disease. To analyze multiple event data, either the time to an event or the time
between successive events could be used as the variable of interest. The gap
time, defined as the time between successive events, is generally the preferred
variable when multiple events are chronologically ordered. Examples of such
multiple event data include repeated hospitalizations due to a specific disease,
multiple infections or tumors, and chronologically-ordered clinical events such
as HIV (Human Immunodeficiency Virus), AIDS (Acquired Immunodeficiency
Syndrome), and death in a natural history study of AIDS. Besides these examples,
multiple events could also arise in problems unrelated to disease progression. An
example is the promotion from assistant to associate professorship, and from
associate to full professorship in university tenure-track positions.

An incident population in epidemiology is comprised of individuals who ex-
perience the incidence of the initiating event within a specified calendar time
interval, say [0, C] where C is a positive constant. Suppose K events occur in
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chronological order following the incidence of the initiating event. Denote by X

the calendar time of the initiating event, Y the time from the initiating event
to event j-1, and Z the time from event j-1 to event j, where j is a fixed event
index with value 2, 3, . . ., or K. For simplicity, and without loss of generality,
we set K = 2 and consider Y as the first gap time, and Z the second gap time.
The variables Y and Z are usually correlated because they come from the same
subject. In this paper the main interest is focused on the outcome variable Z,
the second gap time.

An incident cohort is a sample selected from the incident population. In
general, standard methods in survival analysis serve as appropriate tools for
analyzing the first gap time under an independent censoring assumption. Nev-
ertheless, even if the observation of the multiple events is terminated subject to
independent censoring, these methods are not applicable for analyzing the sec-
ond gap time because of the presence of induced informative censoring (Gelber,
Gelman and Goldhirsch (1989)). A prevalent cohort is defined as a group of
individuals who have experienced the initiating event and have not experienced
the first event before calendar time 0. For prevalent cohorts, standard methods
do not apply to gap times of any order but, as will be discussed in Section 2.2,
techniques for truncated data can be used for the analysis of the first gap time.
According to the definition of incident and prevalent cohorts, it is understood
that an incident cohort satisfies X ≥ 0 and a prevalent cohort satisfies X ≤ 0
and X + Y ≥ 0. Figures 1 and 2 provide simple explanatory plots for incident
and prevalent cohort data. In Figure 1, individuals 1, 2 and 3 are included in
the incident cohort and the observation of their multiple events is terminated at
calendar time C. In Figure 2, the individuals with dashed lines are excluded from
the prevalent cohort by the sampling recruiting criterion, and only those who ex-
perience the initiating event but not the first event at the sampling time, 0, are
recruited into the study. The observation of multiple events from the prevalent
cohort individuals 4, 5 and 6 is also terminated at calendar time C.
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Figure 1. Incident cohort.
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Figure 2. Prevalent cohort.

Assume that the initiating events occur at X with the bounded intensity
function φx(x). The intensity function φx can be interpreted as the disease
occurrence rate function for X. Let fy,z denote the joint density of (Y,Z), fy

the marginal density of Y , and fz the marginal density of Z. Let Sy and Sz

respectively denote the survival function of Y and Z. To reduce the mathematical
complexity in the discussion, assume the failure time Y has finite support and
let y∗ denote the supremum of the support of Y . In order to study the potential
bias in the prevalent cohort, we only consider the function φx(x) within the range
[−y∗, 0]. Let fx be the incident population density of X in the interval [−y∗, 0],
derived as the normalized φx:

fx(x) = φx(x)I(−y∗ ≤ x ≤ 0))/
∫ 0

−y∗
φx(u)du ;

and let Sx be the survival function of fx. In this paper the question of how to
estimate the survival function of the second gap time, Sz, will be studied and the
bias resulting from the standard methods in survival analysis will be explored.

Consider the following two stationarity conditions:
(S1) The joint distribution of (Y,Z) is independent of X.
(S2) The occurrences of the initiating events started in the distant past and the
rate of occurrence has been stabilized in the target population. Quantitatively,
assume that the intensity function φx(x) is constant for x ≥ −y∗.

The two stationarity conditions serve as the fundamental assumptions for
the estimation of distribution functions in one-sample models. The stationarity
condition (S1) holds when the bivariate disease distribution of (Y,Z) is indepen-
dent of when the disease is initiated. This condition will be assumed throughout
the paper. The condition (S2) holds typically for stable diseases, such as some
cancer and genetic diseases, where the number of the disease initiations remains
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constant over calendar time. Assumption (S2) will be assumed only when indi-
cated.

2. Bias in Cohorts

In studies of the natural history of a disease, both the incident and prevalent
sampling schemes can be adopted for the collection of data, although the prob-
ability structure of the incident population is the target interest. This section
studies the bias arising in these two different types of cohorts when estimating
the survival function Sz.

2.1. Bias in incident cohort data

The incident cohort is a sample selected from the incident population where
the individuals experience the initiating event within the fixed calendar time
interval [0, C]. Because of loss to follow-up or end-of-study, survival data from
the incident cohort are usually observed subject to right censoring. Let the
censoring variable V be the time from the initiating event to the (potential)
censoring point. Denote by G the survival function of V . The observed data
consist of information about the history of the multiple events occuring prior to
the minimum of the censoring time and the time of the second event. Suppose
the independent censoring condition holds: the censoring time V is independent
of (Y,Z). Note that this independent censoring condition is implied by (S1) if
the observation of multiple events is terminated only by the end of study at a
fixed calendar time, C, since V = C − X is independent of (Y,Z); see Figure 1.

The initial approach that one might use for estimating Sz(t) is the Kaplan-
Meier estimate (Kaplan and Meier (1958)) based on the observed gap times and
the corresponding censoring indicator, (min(zi, vi −yi), I(zi ≤ vi −yi)). When Y

and Z are not independent, this convenient estimate is generally inappropriate
because the failure time Z and the censoring time V − Y are correlated. When
(S1) holds, note that fz(z|X > 0) = fz(z), and the effect of the first bias can be
neglected. If we further assume the independent relationship of Y and Z, then
the Kaplan-Meier estimator is appropriate and it can be calculated simply from
{(min(zi, vi − yi), I(zi ≤ vi − yi)) : vi − yi ≥ 0}, an observable data set.

Let v∗ be the supremum of the possible values of V . The survival function
of Z can be expressed as

Sz(z) = Pr(Z > z)

= Pr(Z > z, Y + z ≤ v∗) + Pr(Z > z, Y + z > v∗). (2.1)

The second term in (2.1) is not estimable in the current nonparametric model.
In addition, it can be shown that the marginal survival function Sz(z) is non-
identifiable unless the second term in (2.1) equals 0. This constraint is satisfied
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when the supremum of the values of Y + z is not greater than v∗. Practically,
it means that the study period must be long enough to allow for the possibility
to observe all the values of Y + z. Such a constraint, nevertheless, may not hold
in many prospective follow-up studies. In the case that Sz(z) is not identifiable,
what can be estimated is restricted to, for example, the conditional distribution
function Pr(Z > z|Y ≤ y) where y + z < v∗; see Visser (1996), Lin, Sun and
Ying (1997), Wang and Wells (1998) for various nonparametric ways to estimate
the distribution functions.

2.2. Bias in prevalent cohort

Define the prevalent population as the class of individuals who have experi-
enced the initiating event and have not experienced the first event before calendar
time 0. A prevalent cohort is defined as a sample selected from the prevalent pop-
ulation. In an AIDS study, the prevalent cohort can be defined as a group of
patients who have been HIV-infected but have not been diagnosed with AIDS at
the time of recruitment (0).

Many articles consider that the observed y from a prevalent cohort can be
treated as left-truncated and right-censored data; see Wang, Brookmeyer and
Jewell (1993) and references therein. The presence of left truncation is due to
the prevalent sampling, which tends to over sample individuals with larger y,
and the presence of right censoring is due to the usual loss to follow-up or end of
study in prospective studies. In the prevalent population, under (S1), the density
of Y = y conditional on X = x, x ≤ 0, can be derived as

py|x(y|x) =
fy(y)I(x + y ≥ 0)

Sy(−x)
,

and the marginal density of Y can be expressed as

py(y) =
Sx(−y)fy(y)∫
Sx(−u)fy(u)du

;

see Wang (1991) for the derivation of py(y). Based on the above density, it is clear
that the distribution of Y systematically assigns more weight to larger values.

Although the bias associated with Y has been thoroughly studied (Brook-
meyer and Gail (1987)), the bias of Z in the prevalent cohort has never been
explored in the literature. Under assumption (S1), the joint density of (X,Y,Z)
in the prevalent population can be derived as the density of (X,Y,Z) conditional
on X ≤ 0 and X + Y ≥ 0:

px,y,z(x, y, z) =
fx(x)fy,z(y, z)I(−y∗ ≤ x ≤ 0, x + y ≥ 0)∫ ∫

Sx(−u)fy,z(u, v)dudv
.
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By integrating out x, the density of (Y,Z) is

py,z(y, z) =
Sx(−y)fy,z(y, z)∫ ∫

Sx(−u)fy,z(u, v)dudv
. (2.2)

Let τ denote the denominator of the right side of (2.2), which is the probability for
untruncated observation. The marginal density of Z in the prevalent population
is thus

pz(z) =
w(z)fz(z)

τ
, (2.3)

where w(z) represents a selection-bias function and

w(z) =
∫ y∗

0
Sx(−y)fy|z(y|z)dy.

In general, the prevalent population density pz is connected to the incident pop-
ulation density fz through (2.3), and the direction of bias can be identified from
(2.3). There are two special cases worth mentioning.

(i) Assume that Z is independent of Y . In this case, the two density functions
pz and fz coincide because w(z) = τ . Conditional on X ≤ 0 and X +Y ≥ 0,
it can be easily shown that the gap time Z is independent of X + Y (the
calendar time of the first event); thus Z is independent of X + Y in the
prevalent population. Let C be the calendar time of the censoring point,
defined subject to the prevalent population, and suppose C is independent
of Z for individuals in the prevalent population. Then, the censoring time
for the observation of Z is C − (X + Y ) which is independent of Z. It
is not hard to conclude that the usual approaches in survival analysis are
appropriate for deriving inferences associated with Z.

(ii) Assume that both (S1) and (S2) hold. The validity of (S2) implies Sx(−y) =
y/y∗, where 0 ≤ y ≤ y∗. Thus, the weight function w(z) can be expressed as
w(z) = E(Y |z)/y∗ and the marginal density of Z in the prevalent population
can be written as

pz(z) =
E(Y |z)fz(z)∫
E(Y |v)fz(v)dv

.

In this case, the direction of bias in Z from the prevalent population is determined
by the conditional mean of Y given Z = z.

3. Estimation from Combined Cohort Data

Given the presence of bias from both the incident and prevalent cohorts, a
question of interest is the appropriateness of the use of combined cohort data for
the estimation of Sz. In this section, based on the combined data, we study the
probability structure of the second gap time and explore the conditions under
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which the gap time data remain a representative sample from the target pop-
ulation. For simplicity of discussion, assume that the incident cohort recruits
individuals who experience the initiating event within a calendar time interval
[0, C], where C > 0 is a constant calendar time. The prevalent cohort is a sam-
ple selected from the prevalent population defined at calendar time 0. We first
consider the case that the observation of multiple events from the incident and
prevalent cohorts ends at calendar time C, and thus the constant C serves as the
censoring time for the combined data. This simple censoring mechanism can be
replaced by random censoring and we do so later in this section. The combined
cohort includes the following four types of study individuals:

(i) those prevalent individuals who have experienced the initiating event before
calendar time 0, and the first event is observed in the calendar time interval
[0, C];

(ii) those prevalent individuals who have experienced the initiating event before
calendar time 0, but the first event occurs after the calendar time C;

(iii) those incident individuals who experience both the initiating and first events
in [0, C];

(iv) those incident individuals who experience the initiating event during the
time interval [0, C], but the first event occurs after the calendar time C.
With Z as the focused variable, the sub-cohorts (i) and (iii) together form

the cohort for observing the second gap times, termed the Z-cohort. Clearly, the
population for the Z-cohort is a sub-population of the combined incident and
prevalent population, termed the Z-population. The Z-population is essentially
the population of those who develop the first event in the calendar interval [0, C].
In the Z-population, let W = X + Y denote the calendar time when the first
event occurs. Let {min(Z,C − W ), I(Z ≤ C − W )) : C ≥ W} be the observed
second gap times and the corresponding censoring indicators, considered as the
survival data from the Z-cohort for estimating Sz. A question of interest now is
whether it is appropriate to apply standard methods to these survival data. In
general, the appropriateness depends not only on the stationarity condition (S1)
but also on (S2), as discussed below.

The fundamental requirement for the validity of the usual survival analysis
is the independence between Z and C − W . This requirement is essential for
both one-sample models and, conditional on covariates, testing and regression
models. Given that C is a constant, independent censoring is equivalent to the
independence of Z and W , or that the distribution of Z is independent of the
calendar time of the first event in the Z-population. When (S1) holds, note that
the density of Z conditional on W = w is

p(z|w) =

∫ w
w−y∗ fy,z(w − x, z)φx(x)dx∫ ∫ w
w−y∗ fy,z(w − x, v)φx(x)dxdv
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= fz(z)

[ ∫ w
w−y∗ fy|z(w − x|z)φx(x)dx∫ ∫ w
w−y∗ fy,z(w − x, v)φx(x)dxdv

]
. (3.1)

Also note that, for each z, ∫ w

w−y∗
fy|z(w − x|z)dx = 1

and ∫ ∫ w

w−y∗
fy,z(w − x, v)dxdv = 1.

The bracketed term in (3.1) equals 1 when φx(x) is constant for x ≥ −y∗. Thus,
when both (S1) and (S2) hold, the density p(z|w) in the Z-cohort is independent
of w and equals the population density fz(z) in the Z-population. It is important
to note that the equality p(z|w) = fz(z) does not generally hold if only (S1) is
valid.

Next we study the case that the censoring time C is random. Assume that
C is independent of (W,Z); that is, the censoring is independent of when the
first event occurs and the second gap time. In the preceding discussion, when C

is a positive constant, it is seen that Z is independent of W . When both (S1)
and (S2) hold, note that the Z-cohort is a random sample from the Z-population
conditional on C ≥ W . Let pc(z|w) be the density of Z conditional on W = w

and C ≥ W ; then clearly, pc(z|w) = p(z|w) because C is independent of (W,Z).
Thus, when both (S1) and (S2) hold, the density pc(z|w) in the Z-cohort equals
fz(z) and is independent of w. Further, the gap time Z is independent of the
induced censoring time C − W because Z is independent of both W and C in
the Z-cohort. Let z∗i = min(zi, ci − wi) and δ∗i = I(zi ≤ ci − wi). The survival
data (z∗i , δ∗i ) from the Z-cohort, which are observable only for those satisfying
ci − wi ≥ 0, can be treated as the usual right-censored data for inferences of
Z. The estimation or testing results based on such survival data can thus be
equivalently derived from the class of observation {(z∗i , δ∗i ) : ci − wi ≥ 0}.

An interesting question raised by a reviewer concerns the directions of inci-
dent and prevalent data bias in the probability structure of Z. As an example,
suppose Y and Z are positively correlated. In an incident cohort the larger values
of Z are likely to be censored because the corresponding censoring times V − Y

tend to be small, while in a prevalent cohort the larger values of Z are likely to be
included. Essentially, in the combined cohort, the different directions of bias are
cancelled out under assumptions (S1) and (S2). The assumption (S2) does play
an important role in the balance of two kinds of bias: for the subjects whose first
event occurs in the calendar time interval [0, C], the failure time Y is subject to
left and right-truncation (i.e., double truncation). The left and right-truncation
cannot be cancelled out when (S2) is violated but can be cancelled out when
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both (S1) and (S2) are satisfied. This phenomenon was studied by Wang and
Lu (1998). The balance of incident and prevalent data bias for the second gap
time, Z, is achieved when study subjects in the combined cohort are sampled
with both (S1) and (S2) satisfied.

4. An Example: The MACS Study

In this section we present an example to illustrate the problems arising in
the analysis of gap time data.

The Multicenter AIDS Cohort Study (MACS) is a cohort study of HIV-1
infection and AIDS among homosexual men. The study recruited 4,954 homo-
sexual men without prior diagnosis of AIDS during an approximate one-year
period from 1984 to 1985. Among the homosexual men, there were 1,745 HIV-1-
infected individuals; the rest were not infected with HIV-1 virus. The data pro-
vide a source of laboratory measurements, AIDS medication, sociodemographic,
behavioral and psychological information (Kaslow, Ostrow, Detels, Phair, Polk
and Rinaldo (1987)).

Suppose the outcomes of interest are the chronologically-ordered events
(HIV-1 infection, AIDS, death). Those homosexual men who were identified as
infected with HIV-1 at entry are classified as the prevalent cohort. The incident
cohort is formed by those who entered the study with sero-negative tests but
became HIV-1-infected before the end of follow-up. In the literature, a consider-
able amount of statistical work has been conducted surrounding problems related
to the analysis of the time from HIV-1 infection to the diagnosis of AIDS from
the prevalent cohort. The observed data are recognized as survival data subject
to left truncation and right censoring, where the left truncation time may not
be observable. With the presence of left truncation in the data, the analysis
of the time from AIDS to death — a gap time — is apparently non-trivial, as
discussed earlier in this paper. The rate of the incidences of HIV-1 infections
before the recruitment (1984-1985) is generally believed to be increasing over
time (Brookmeyer and Gail (1994)). The incidence rate of HIV-1 infections after
the recruitment (1984-1985) may not follow the same pattern of the population
incidence rate because of the (potential) effect of prevention in a cohort study.

The density function corresponding to the incidence rate can be estimated
using the observed right censored data. In Figure 3, a plot of the discrete version
of the density function for the time to HIV-1 infections is presented. Given
that the recruitment period is short, this density plot reveals the pattern of the
incidence rate of HIV-1 infections, for the incident cohort, since 1984: the rate
was low at entry to study, became high in a year, and gradually decreased over
time. A possible explanation for such a pattern is that the cohort individuals
were cautious at the beginning of the study, but reverted to their previous social
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and sexual behaviors within a year after entering the study, and gradually learned
or accepted methods to prevent infection through programs offered in the study.
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Clearly the stationarity condition (S2) is seriously violated with the AIDS
disease; thus the application of the usual methods in survival analysis might
lead to biased results. In Figure 4, the Kaplan-Meier estimates for early AIDS
cases (April 1, 1984 – March 31, 1989) and for later cases (April 1, 1989 –
March 31, 1995) are calculated for the estimation of the survival function for
the time from AIDS to death. It is seen, surprisingly and unexpectedly, that
the early AIDS cases have a better chance for longer survival. The overall log
relative hazard of the late v.s. early AIDS-onset indicator in the proportional
hazards model λ0(z) exp{xβ} (Cox (1972)) is β̂ = 0.6180 (s.e.= 0.0805). To
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adjust for possible confounding factors, a few covariates enter the proportional
hazards model for further regression analysis. The covariates used in the model
include the late v.s. early AIDS-onset indicator (x1), baseline age at the time
of AIDS-onset (x2), and baseline CD4 count at the time of AIDS-onset (x3).
When the model is adjusted for age (x2), the partial likelihood estimates re-
port (β̂1, β̂2) = (0.5946, 0.0126) (s.e.= (0.0810, 0.0046)); the model adjusted for
CD4 count (x3) reports (β̂1, β̂3) = (0.5268,−0.0014) (s.e.= (0.0817, 0.0002)); the
model adjusted for both age (x2) and CD4 count (x3) reports (β̂1, β̂2, β̂3) =
(0.4961, 0.0136,−0.0014) (s.e.= (0.0826, 0.0050, 0.0002)). The simple regression
results suggest that the direction of hazards for the late v.s. early AIDS-onset
indicator (x1) is not changed by adjusting for baseline age and CD4 count. To
conduct a more satisfactory regression analysis, other potentially interesting co-
variates such as the incubation time from HIV infection to AIDS, or various
treatment plans, could enter the model for adjustment. Nevertheless, these co-
variates may or may not be available in a study and, even if they enter the model,
it is still questionable if the corresponding regression analysis can adjust the gap
time bias.

In this section we emphasize that the analytical results presented could be
misleading because of many complicated factors. One important factor might
be that the early and late AIDS cohorts are in fact not comparable because the
distributions of the time from AIDS to death defined at different calendar times
are affected by the distribution of HIV-1 infection, as well as the distribution of
the time from HIV-1 infection to AIDS. Statistical methods have thus far not
been developed for analyzing the described data. The future development of such
methods will be important for AIDS-related studies as well as for other multiple
event problems.

5. Concluding Remarks

In this paper the gap time bias arising from the incident and prevalent co-
horts is studied. For the incident cohort, the population probability structure
of gap times is unbiased but the second gap time is observed subject to induced
informative censoring. In contrast with the bias in the incident data, the gap
time bias is present in the prevalent population since the cohort tends to recruit
individuals with longer first gap time. The combined cohort data can be treated
as standard right-censored data only when the stationarity conditions (S1) and
(S2) hold. For future research, it will be interesting to explore statistical meth-
ods for gap times based solely on the incident data, solely on the prevalent data,
or on the combined data with less restrictive model assumptions. Research in
these directions remains relatively unreported in the literature. Related statisti-
cal methods will be important for the analysis of multiple event data where the
gap times serve as the outcome variables of interest.
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