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Abstract: In this paper, a general regression model with responses missing not at

random is considered. From a rank-based estimating equation, a rank-based esti-

mator of the regression parameter is derived. Based on this estimator’s asymptotic

normality property, a consistent sandwich estimator of its corresponding asymptotic

covariance matrix is obtained. In order to overcome the over-coverage issue of the

normal approximation procedure, the empirical likelihood based on the rank-based

gradient function is defined, and its asymptotic distribution is established. Ex-

tensive simulation experiments under different settings of error distributions with

different response probabilities are considered, and the simulation results show that

the proposed empirical likelihood approach has better performance in terms of cov-

erage probability and average length of confidence intervals for the regression pa-

rameters compared with the normal approximation approach and its least-squares

counterpart. A data example is provided to illustrate the proposed methods.

Key words and phrases: Empirical likelihood, imputation, non-ignorable missing,

rank-based estimator.

1. Introduction

Missing data have become unavoidable in the statistical community and

have garnered a lot of attention within the last few decades. The missingness

occurrence is subject to a number of common reasons, including equipment mal-

function, contamination of samples, manufacturing defects, drop out in clinical

trials, weather conditions, and incorrect data entry. For missing data problems,

the missing mechanism often encountered is known as missing at random (MAR).

This assumption asserts that the response probability can only depend on the val-

ues of those other variables that have been observed. It is a common assumption

for statistical analysis in the presence of missing data and has been determined to

be reasonable in many practical situations. In other situations, the missingness of

a response depends on the value of the unobserved outcome even after controlling
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for the covariates. This paper is concerned with the statistical inference of the

true parameters in a regression model from which responses are subject to the

missing not at random (MNAR) assumption discussed in Rubin (1976). Under

this assumption, the probability that a response variable is missing depends on

itself after controlling the predictors. As pointed out in Kim and Yu (2011), the

MNAR condition exists, for example, in surveys of income when the nonresponse

rates tend to be higher for low socio-economic groups, and this missingness type

is encountered in many fields of study. Here we consider the general regression

model

yi = g(xi,β0) + εi, 1 ≤ i ≤ n, (1.1)

where g : Rp ×B → R is fully specified, and β0 ∈ B ⊂ Rp is a vector of pa-

rameters with B compact, the xi’s are i.i.d. p-variable random covariate vectors

and, conditional on xi, the model errors εi are continuous, i.i.d. with cumulative

distribution F and corresponding density f , with E(ε2|x) > 0. Our interest is in

making inference about the true value β0 when there are responses missing.

There is much literature on handling model (1.1) in the complete case anal-

ysis, ignoring observations with missing responses: least squares (LS), least ab-

solute deviation (LAD), and maximum likelihood (ML), among others. Such es-

timates, their properties, and the necessary assumptions that bring them about

are well documented. Under the MAR assumption, as pointed out in Little and

Rubin (2002), the complete case analysis leads to an efficient ML estimator. Even

for the complete case analysis, the rank-based approach, introduced by Jaeckel

(1972), outperforms the aforementioned approaches in terms of robustness and

efficiency when dealing with heavy-tailed model errors and/or in the presence of

outliers; see Hettmansperger and McKean (2011) for linear models and Bindele

and Abebe (2012) for nonlinear models. Recently, for missing responses under the

MAR assumption, a rank-based approach has been proposed by Bindele (2015)

for model (1.1), and by Bindele and Abebe (2015) for the semiparametric linear

model.

Estimation under nonignorable missing responses is a challenging problem

that has captured a lot of attention in the last decade. Its difficulty is that the

mechanism causing missingness is unknown, and both the response probability

and the regression parameters need to be estimated. Some contributions here

are those of Greenlees, Reece and Zieschang (1982), Baker and Laird (1988),

Chambers and Welsh (1993), Diggle and Kenward (1994), Ibrahim, Lipsitz and

Chen (1999), and Ibrahim, Lipsitz and Horton (2001). These works provide an



RANK-BASED EMPIRICAL LIKELIHOOD WITH MISSING DATA 1789

estimation of parameters under nonignorable missing data based on the maxi-

mum likelihood approach. A review of some parametric approaches for handling

nonignorable missing data can be found in Molenberghs and Kenward (2007).

Motivated by the work of Rotnitzky, Robins and Scharfstein (1998), Kim and

Yu (2011) proposed an estimation procedure, where the response mechanism

is modeled using the logistic semi-parametric regression model. Another issue

that arises when considering regression models with nonignorable missing data is

model identifiability. Identification of graphical models for nonignorable nonre-

sponse of binary outcomes in longitudinal was investigated by Ma, Geng and Hu

(2003). Wang, Shao and Kim (2014) proposed an instrumental variable approach

for model identification and estimation, and more recently, Miao, Ding and Geng

(2016) proposed the identifiability of normal and normal mixture models with

nonignorable missing data. Other recent developments for estimation approaches

under nonignorable missing data include those of Zhao and Shao (2015), Shao

and Wang (2016), Tang et al. (2016) and Fang, Zhao and Shao (2018). Such

approaches rely on normal approximation as a way to handle statistical infer-

ence, but this requires estimating the estimator’s covariance matrix. This is not

known to be a simple task when considering a rank-based objective function,

mainly when dealing with dependent residuals; see Brunner and Denker (1994).

The empirical likelihood (EL) approach is a way of avoiding estimating such a

covariance matrix, conducting a direct inference about the true regression param-

eters, and overcoming the drawback of the normal approximation method (Owen

(1988) and Owen (1990)). Qin and Lawless (1994) developed the EL inference

procedure for general estimating equations for complete data, and Owen (2001)

gives an excellent summary about the theory and applications of the EL methods.

Recent progress in the EL method includes linear transformation models with

right censoring (Yu, Sun and Zheng (2011), Yang and Zhao (2012)), the jack-

knife EL procedure (Jing, Yuan and Zhou (2009), Gong, Peng and Qi (2010),

Zhang and Zhao (2013), Yang and Zhao (2013), and Yang and Zhao (2015)),

the high-dimensional EL method (Chen, Peng and Qin (2009), Hjort, McKeague

and Van Keilegom (2009), Tang and Leng (2010), Lahiri et al. (2012)), and the

signed-rank regression (Bindele and Zhao (2016)). In the context of missing re-

sponse under the MNAR assumption, empirical likelihood approaches have been

proposed by Niu et al. (2014) and Tang, Zhao and Zhu (2014). Their approaches

considered empirical likelihood functions based on the least-squares estimating

equation, which is non robust and less efficient in many scenarios.

In this paper, an empirical likelihood approach based on the general rank
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dispersion function proposed by Jaeckel (1972) is considered in an effort to con-

struct robust confidence regions for the true parameter in model (1.1), where some

responses are MNAR. We also investigate the adverse effects of heavy-tailed dis-

tributions on the least squares estimator of the regression parameter. Use of the

Jaeckel (1972) objective function is known to result in a robust and more efficient

estimator compared to many of the mentioned estimation methods such as LS,

ML, and LAD, and it does not require model errors’ distribution specification.

Similar to the LS approach, it has a simple geometric interpretability. For more

on these facts, see Hettmansperger and McKean (2011) and Bindele and Abebe

(2012).

The rest of the paper is organized as follows: A weighted empirical likeli-

hood based on the rank-based estimating equation is introduced in Section 2. We

also briefly discuss the estimation of the response probability model as proposed

by Kim and Yu (2011). In Section 3, we discuss the normal approximation ap-

proach as well as the empirical likelihood approach based on imputed residuals.

Based on their corresponding influence functions, the robustness of rank-based

estimators is discussed in Section 4. To evaluate the performance and the ef-

ficiency of the proposed methods, the results of an extensive simulation study

are provided in Section 5, and Section 6 gives an illustrative data example. In

Section 7, we provide a conclusion of our findings. In Section 8, assumptions used

in the theoretical development, lemmas, and proofs of some obtained results are

provided.

2. Weighted Empirical Likelihood Rank Based Inference

Consider a random sample of size n, {(xi, yi), i = 1, . . . , n}, from a random

vector (x, y) with distribution F (x, y), where x is fully observed but y is subject to

missingness. Also, suppose that x and y are related via the regression model (1.1).

Let δi be the indicator of yi being observed, and assume it to be Bernoulli with

parameter π(xi, yi) = P (δi = 1|xi, yi). As in Kim and Yu (2011), δi is assumed

to be independent of δj for all i 6= j, and we let fj(yi|xi) be the conditional

distribution of Yi given xi and δi = j, for j = 0, 1. When f0(yi|xi) = f1(yi|xi), we

recover the MAR assumption, that conditional on xi, δi and yi are independent.

To construct the weighted empirical likelihood function based on the rank-

based estimating equation, and from the inverse marginal probability weighting

method introduced by Wang, Linton and Härdle (2004), we consider the random

variable
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vi(β0) =
δi

π(xi, yi)
∇βg(xi,β0)ϕ

(
R(zi(β0))

n+ 1

)
,

where R(zi(β0)) =
∑n

j=1 I{zj(β0) ≤ zi(β0)}, ϕ : (0, 1) → R is a bounded,

nondecreasing and square integrable score function, and zi(β) = yi − g(xi,β).

The motivation for considering this variable comes from the rank-based objective

function

Dn(β) =
1

n

n∑
i=1

δi
π(xi, yi)

ϕ

(
R(zi(β))

n+ 1

)
zi(β).

The rank-based estimator, say, β̂n is obtained as β̂n = argminβ∈B Dn(β). The

corresponding estimating equation is then n−1
∑n

i=1 vi(β) = 0. Here π(xi, yi) is

considered given. When π(xi, yi) is unknown with yi assumed to be missing not at

random, the issue is handled and well discussed in Kim and Yu (2011), where the

response probability π(xi, yi) is assumed to follow the semi-parametric logistic

model π(xi, yi) = exp(h(xi) + γyi)/
{

1 + exp(h(xi) + γyi)
}

for some function h(·)
and parameter γ. This assumption reduces to the MAR assumption for γ = 0.

They demonstrated that π(xi, yi) can be consistently estimated by

π̂(xi, yi) = {1 + α̂(xi, γ) exp(−γyi)}−1, where

α̂(xi, γ) =

∑n
j=1(1− δi)Kh(xi,xj)∑n

j=1 δi exp(−γyj)Kh(xi,xj)
,

Kh(t,x) = h−pK((t − x)/hp), with K(·) being a kernel function defined on

Rp and h = hn a bandwith satisfying hn → 0 and nhpn → ∞ as n → ∞.

Under assumptions (I2)− (I4) given in the Appendix, π̂(x, y)→ π(x, y) a.s.; see

Einmahl and Mason (2005), Rao (2009) and Wied and Weißbach (2012). From

assumption (I5), we have, β0 = argminβ∈B limn→∞E{Dn(β)}. This implies

that n−1
∑n

i=1E{vi(β0)} → 0 as n → ∞. If (p1, . . . , pn)τ denote a vector of

probability values satisfying
∑n

i=1 pi = 1 and pi ≥ 0 for all i, the empirical

log-likelihood ratio function for β0 when γ is assumed known, is given by

L(β, γ) = −2 sup

{
n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1 and

n∑
i=1

pivi(β0) = 0

}
.

By the Lagrange multiplier method, pi = 1/[n{1 + ξτvi(β0)}], with ξ ∈ Rp the

Lagrange multiplier parameter. It can also be shown that

L(β0, γ) = 2

n∑
i=1

log(1 + ξτvi(β0)). (2.1)

We have the asymptotic normality of β̂n and the asymptotic distribution of the
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considered empirical log-likelihood ratio function.

Theorem 1. Under assumptions (I1)− (I6) in the Appendix,
√
n(β̂n − β0)

D−→ Np(0, γ
−2
ϕ W−1

β0
Aβ0

W−1
β0

), (2.2)

where Aβ0
= E

{
π−1(X, Y )∇βg(X,β0)∇τβg(X,β0)

}
and Wβ0

= E{∇βg(X,β0)

∇τβg(X,β0)}, and

γ−1ϕ =

∫ 1

0
ϕ(u)ϕf (u)du with ϕf (u) =

f ′(F−1(u))

f(F−1(u))
.

If β̃n = argminβ∈B D̃n(β), with D̃n(β) = (1/n)
∑n

i=1{δi/π̂(xi, yi)}ϕ(R(zi(β))/

(n+ 1))zi(β), then
√
n(β̃n − β0)

D−→ Np(0, γ
−2
ϕ W−1

β0
Bβ0

W−1
β0

),

where

Bβ0
= E

{
π−1(X, Y )∇τβg(X, β0)∇τβg(X,β0)ϕ

2(F (ε))
}

+E[1− π−1(X,Y )∇βg(X,β0)∇τβg(X,β0)E
2{ϕ(F (ε))|X, δ = 0}],

and, for a given γ

L(β0, γ)
D−→ χ2

p and L̃(β0, γ)
D−→

p∑
i=1

λiχ
2
1,i, (2.3)

where the λi are the eigenvalues of B
1/2
β0

A−1β0
B

1/2
β0

, the χ2
1,i are independent χ2

distributions with one degree of freedom, and

L̃(β0, γ) = 2

n∑
i=1

log(1 + ξτ ṽi(β0)) with

ṽi(β0) =
δi

π̂(xi, yi)
∇βg(xi,β0)ϕ

(
R(zi(β0))

(n+ 1)

)
.

The proof of this theorem relies on Lemma 1, given in the Appendix. The

strong consistency of β̃n can be established as in Bindele (2017), with slight

modifications.

Based on the empirical log-likelihood, a (1− α)× 100% confidence region for β0

is given by

R0 =
{
β : −2 logL(β, γ) ≤ χ2

p(α)
}

and

R1 =

{
β : −2 log L̃(β, γ) ≤

p∑
i=1

λiχ
2
1,i(α)

}
,

where χ2
p(α) is the (1 − α)th percentile of the χ2-distribution with p degrees of
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freedom, and the χ2
1,i(α) are the (1−α)th percentiles of the χ2-distribution with

one degree of freedom.

Remark 1. Following Niu et al. (2014), for the least squares objective function

in Theorem 1 under the model settings, it can be shown that
√
n
(
β̂LS − β0

)
converges in distribution to N(0, σ−2W−1

β0
Aβ0

W−1
β0

), where σ2 = E(ε2|x). This

results in a relative efficiency of σ2/γ2ϕ that is larger than 1 for many existing dis-

tributions, except for the normal error, where it is about 0.955 (Hettmansperger

and McKean (2011)). Thus, the rank-based approach is more efficient than the

least squares approach for heavy-tailed model error distributions, and/or for

contaminated data. Inference about β0 based on (2.2) requires a consistent esti-

mator of W−1
β0

Aβ0
W−1

β0
. Such an estimator can be obtained using sandwich type

estimators of Aβ0
and Wβ0

:

Â =
1

n

n∑
i=1

δi
π2(xi, yi)

∇βg(xi, β̃n)∇τβg(xi, β̃n),

Ŵ =
1

n

n∑
i=1

δi
π(xi, yi)

∇βg(xi, β̃n)∇τβg(xi, β̃n).

For W−1
β0

Bβ0
W−1

β0
, similar arguments can be used to estimate Bβ0

.

3. Empirical Likelihood Based on Imputed Residuals

The vector vi(β0) is defined on observed responses and its consideration

leads to the complete case analysis, so the information in the data might not

be fully explored. To complete the missing responses, we employ two regression

imputation methods: the regression simple imputation (j = 1) and the weighted

inverse marginal probability regression imputation (j = 2),

Zij =


δiyi + (1− δi)m0(xi), if j = 1;

δi
π(xi, yi)

yi +

{
1− δi

π(xi, yi)

}
m0(xi), if j = 2,

(3.1)

in which m0(x) = E(Y | x, δ = 0) is unknown and needs to be estimated. By

Bayes’ rule, we have for any Borel set B,

P (yi ∈ B | xi, δi = 0) = P (yi ∈ B | xi, δi = 1)× {1− π(xi, yi)}∆(xi)

{1−∆(xi)}π(xi, yi)
,

where ∆(xi) = P (δi = 1|xi). This implies that

f0(yi | xi) = f1(yi | xi)×
O(xi, yi)

E{O(Xi, Yi) | xi, δi = 1}
, (3.2)
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where O(xi, yi) = {1 − π(xi, yi)}/π(xi, yi). Assuming that the response proba-

bility model is a semiparametric logistic model, Kim and Yu (2011) show that

m0(x) can be estimated by

m̂0(x; γ) =

∑n
i=1 δiyiKh(xi,x)e−γyi∑n
i=1 δiKh(xi,x)e−γyi

. (3.3)

Theorem 2. Under assumptions (I2)− (I4) given in the Appendix, m̂0(x; γ)→
m0(x) a.s., as n→∞.

The proof of this result is based on the so-called conditional strong law of large

numbers (Rao (2009)). For sake of brevity, it is not included here. A weak

version of Theorem 2 and its corresponding proof can also be found in Kim and

Yu (2011). To this end, the imputed responses are

Z̃ijn =


δiyi +

(
1− δi

)
m̂0(xi; γ) j = 1

δi
π̂(xi, yi)

yi +

{
1− δi

π̂(xi, yi)

}
m̂0(xi; γ) j = 2.

(3.4)

With residuals as νij(β) = Z̃ijn − g(xi,β), the rank-based objective function is

Dj
n(β) =

1

n

n∑
i=1

ϕ

(
R

(νij(β))

n+ 1

)
νij(β),

where R(νij(β)) =
∑n

k=1 I{νkj(β) ≤ νij(β)} is the rank of νij(β) among ν1j(β),

. . . , νnj(β), j = 1, 2. The rank-based estimator of β0, say β̂jn, is β̂jn = argminβ∈B

Dj
n(β).

Remark 2. While γ is assumed to be known in some cases such as sensitivity

analysis or planned missingness, this is not the case in many other scenarios, and

therefore it needs to be estimated. This is an important issue as γ determines

the degree to which the MNAR assumption is satisfied. Based on either an

independent survey or a follow-up sample, Kim and Yu (2011) proposed finding

γ that solves the estimating equation
n∑
i=1

(1− δi)ri{yi − m̂0(xi; γ)} = 0,

where ri = 1, if unit i is in the sample and ri = 0, otherwise. For situations

where there are outliers in the response space, this equation leads to a non-

robust estimator of γ. We also consider either an independent survey or a follow-

up sample but, for robustness purposes, we propose to estimate γ by solving the

estimating equation
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n∑
i=1

(1− δi) ri
∂m̂0(xi; γ)

∂γ
ϕ

(
R(`i(γ))

n0 + 1

)
= 0, (3.5)

where `i(γ) = yi − m̂0(xi; γ) and n0 is the number of nonrespondents. It is

obtained by taking the negative gradient with respect to γ of

Q(γ) =

n∑
i=1

(1− δi) riϕ
(
R(`i(γ))

n0 + 1

)
`i(γ).

Letting γ̂ = argminγ Q(γ) and, following arguments similar to those in Theo-

rem 1, its asymptotic properties can be obtained in a straightforward manner.

As our interest is on inference about β0, asymptotic properties of γ̂ are not

included here.

3.1. Normal approximation of the rank estimator based on imputed

residuals

The normal approximation-based inference focuses on the asymptotic distribu-

tion of β̂jn. If Sjn(β) is the negative gradient function of Dj
n(β), β̂jn is a zero of

Sjn(β) = 0. As in the linear model case (Hettmansperger and McKean (2011)),

the distribution of β̂jn is strongly related to that of Sjn(β0).

Theorem 3. Under assumptions (I1)− (I6) in the Appendix,
√
nSjn(β0)

D−→ Np(0,Σ
j
β0

) for j = 1, 2,

where 0 is a p-vector of zeros, and Σj
β0

= limn→∞ n
−1ΣjnΣ

τ
jn, with Σjn defined

in Lemma 2 of the Appendix. Further,
√
n(β̂jn − β0)

D−→ Np(0,Mj),

where Mj = V−1j Σj
β0

V−1j , with

Vj = E
{
∇βg(X,β0)∇τβg(X,β0)h

j(ζj(β0))ϕ
′(Hj(ζj(β0))

)}
+ E{∇2

βg(X,β0)ϕ
(
Hj(ζj(β0))

)
},

Hj
i (s) is the distribution of i.i.d. ζij(β0) = Zij − g(xi;β0), and hj(s) the corre-

sponding common density for j = 1, 2.

The imputation procedure introduces a dependence structure among the residu-

als, those given in (3.4) are dependent random variables, and the proof of The-

orem 3 relies on Lemma 2, which establishes the asymptotic normality property

of a statistic defined on dependent random variables.

3.1.1. Estimating the covariance matrix Mj

The normal approximation approach uses the estimated covariance matrix of
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the rank estimator obtained by minimizing Dj
n(β). It depends on Σj

β0
which is a

function of the true parameter β0, and therefore needs to be estimated. Putting

Hj
in(s) = P (νij(β0) ≤ s), it can be shown, under the assumptions of Theorem 2,

that Hj
in(s) → Hj

i (s) a.s. and by the continuity of ϕ, we have ϕ(Hj
in(s)) →

ϕ(Hj
i (s)) a.s. In the proof of Theorem 3, it is shown that nΣ−1jn S

j
n(β0) follows a

standard multivariate normal distribution, from which we have Var
(√
nSjn(β0)

)
=

n−1ΣjnΣ
τ
jn. In matrix form, Sjn(β0) can be rewritten as Sjn(β0) = n−1∇βg(x,β0)

ϕ(R(νj(β0))), where ϕ(R(νi(β0))) is a vector with entries ϕ(R(νij(β0))/(n+ 1)),

i = 1, . . . , n. Conditioning on xi, one has

Var
(√
nSjn(β0)

)
= n−1∇βg(x,β0)Var

(
ϕ(R(ζj(β0))))∇τβg(x,β0),

for j = 1, 2. Thus, the variance of
√
nSjn(β0) differs for j = 1 and j = 2 only

through the distribution inferred by the two imputation procedures. To this end,

as in Brunner and Denker (1994), set λi = ∇βg(xi,β0) and put

Jjn(s) =
1

n

n∑
i=1

Hj
in(s), Ĵjn(s) =

1

n

n∑
i=1

I(νij(β0) ≤ s),

Fjn(s) =
1

n

n∑
i=1

λiH
j
in(s), F̂jn(s) =

1

n

n∑
i=1

λiI(νij(β0) ≤ s),

Γjn(β0) = Sjn(β0)− E
{
Sjn(β0)

}
.

Following Bindele and Abebe (2015), set

Âjn =
1

n

n∑
i=1

λiϕ
′
(
R(νij(β̂

j
ϕ))

n+ 1

)
R(νij(β̂

j
ϕ)) and Σ̂jn = Âjn − E(Aj), (3.6)

where

Aj = n

∫
ϕ(Jjn(t))F̂jn(dt) +

∫
ϕ′(Jjn(t))Ĵjn(t)Fjn(dt)

= nSjn(β0) +
1

n

n∑
i=1

λiϕ
′
(
R(νij(β0))

n+ 1

)
R(νij(β0)).

They demonstrate that E[Aj ] = nλ̄n{ϕ(1) − ϕ(0)}, where λ̄n = n−1
∑n

i=1 λi.

This is used in (3.6) to approximate Σ̂jn, from which the consistency follows.

Theorem 4. Letting ςjn be the minimum eigenvalue of Σjn and assuming that

limn→∞ n/ςnj = 0, we have ‖Σ̂jn −Σjn‖ → 0 in the L2-norm as n→∞. More-

over, from Brunner and Denker (1994), we have ‖n−1Σ̂jnΣ̂
τ
jn−Σj

β0
‖ → 0 in the

L2-norm as n→∞.

The proof of this theorem is a direct consequence of Theorem 3 and is obtained
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by observing that ςnj ≥ cn2 for some positive constant c. On the other hand,

Vj depends on β0, and one can estimate Vj by a sandwich estimator, say V̂j =

∇βT
j
n(β̂jn), where T jn(β) =

∑n
i=1 λiϕ

(
Hj
i (ζij(β))

)
. From this, the estimated

covariance matrix can be then as M̂j = V̂−1j {n−1Σ̂jnΣ̂
τ
jn}V̂

−1
j . Combining

Theorem 4 with the fact that ‖V̂j − Vj‖ → 0 a.s., it can be shown that

M̂j → Mj as n → ∞ a.s. Hence, a (1 − α) × 100% normal approximation

confidence region for β0 with nominal confidence level 1− α, is given by

Rj3 =
{
β : (β̂jn − β)M̂−1

j (β̂jn − β) ≤ χ2
p(α)

}
.

3.2. Empirical likelihood on imputed residuals

In this section, we adopt the empirical likelihood approach for inference

about the true regression parameters. We have

Sjn(β) =
1

n

n∑
i=1

ϕ

(
R(νij(β))

n+ 1

)
∇βg(xi,β), j = 1, 2.

From this, take ηij(β) as ηij(β) = ϕ
(
R(νij(β))/(n + 1)

)
∇βg(xi,β), and recall

that the rank-based estimator is obtained by solving the estimation equation

Sjn(β) = 0. Under (I5), β0 = argminβ∈B limn→∞E{Dj
n(β)} which, with prob-

ability 1, implies that E{Sjn(β0)} → 0 as n→∞. Therefore, the estimating

equation Sjn(β) = 0 is asymptotically unbiased. Letting (p1j , . . . , pnj)
τ be a vec-

tor of probabilities satisfying
∑n

i=1 pij = 1, with pij ≥ 0, j = 1, 2, and using the

definition of ηij(β), the empirical likelihood ratio at β0 is given by

Rjn(β0) = sup
(p1j ,...,pnj)∈(0,1)n

{ n∏
i=1

(npij) :

n∑
i=1

pij = 1, pij ≥ 0,

n∑
i=1

pijηij(β0) = 0

}
.

(3.7)

Using Lagrange multipliers, it can be shown that Rjn(β0) is maximized when the

pij =
1

n{1 + ξτηij(β0)}
with ξ ∈ Rd

satisfy the nonlinear equation:

h(ξ) =
1

n

n∑
i=1

ηij(β0)

1 + ξτηij(β0)
= 0. (3.8)

Combining (3.7) and (3.8) gives,

− 2 logRjn(β0) = −2 log

n∏
i=1

{
1 + ξτηij(β0)

}−1
= 2

n∑
i=1

log
(
1 + ξτηij(β0)

)
. (3.9)
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Theorem 5. Under (I1)− (I6) in the Appendix, one has

−2 logRjn(β0)
D−→ χ2

p as n→∞.

The empirical likelihood (EL) confidence region for β0 with nominal confidence

level 1− α, is given by Rj4 = {β : −2 logRjn(β) ≤ χ2
p(α)}.

4. Robustness

To access the robustness of the rank-based approach, we derive the influence

functions that result from our objective functions. From Theorems 1 and 3,

√
n(β̂n − β0) = (γϕWβ0

)−1
1√
n

n∑
i=1

δi
π(xi, yi)

∇βg(xi,β0)ϕ

(
R(zi(β0))

n+ 1

)
+ op(1)

and, similarly,

√
n(β̂jn − β0) = V−1j

1√
n

n∑
i=1

∇βg(xi,β0)ϕ

(
R(νij(β0))

n+ 1

)
+ op(1).

Following Bindele and Abebe (2012), the influence functions of β̂n and β̂jn are

obtained as

IF(x, y) =
δ(γϕWβ0

)−1

π(x, y)
∇βg(x,β0)ϕ (F (ε)) and

IFj(x, y) = V−1j ∇βg(x,β0)ϕ(Hj(ζj(β0))),

respectively. From (I1), (I2), (I4) and (I6) in the Appendix, it can be shown that

IF(x, y) and IFj(x, y) are bounded in the y-space, and almost surely bounded in

the x-space. Thus, the corresponding estimators are robust to outlying observa-

tions in the response space.

Remark 3. From the LS objective function, just considering the weighted ver-

sion as discussed in Remark 1, one obtains

√
n(β̂LS − β0) = (σWβ0

)−1
1√
n

n∑
i=1

δi
π(xi, yi)

∇βg(xi,β0){yi − g(xi,β0)}+ op(1),

and following similar arguments in Bindele and Abebe (2012), results in

IFLS(x, y) = (σWβ0
)−1

δ

π(x, y)
∇βg(x,β0){y − g(x,β0)}.

Under the assumptions, while this influence function is almost surely bounded in

the x-space, it is unbounded in the y-space. Thus, β̂LS is not robust to outlying

observations in the y-space.
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5. Simulation Study

5.1. Simulation settings

In order to confirm the validity of our theoretical findings and to show the

performance of the empirical likelihood rank-based approach compared to the

normal approximation approach, an extensive simulation under different settings

was conducted from which coverage probabilities (CP) and average lengths (AL)

of confidence intervals/regions of the true regression coefficients were calculated.

In model (1.1), we considered the simple regression function g(x,β) = β1 +

β2x with β = (β1, β2) = (1.7, 0.7). The random errors ε were generated from

the contaminated normal distribution CN (ε, σ) = (1− ε)N(0, 1) + εN(1, σ2) for

different rates of contamination (ε = 0, 0.3, 0.5) with σ = 2, the t-distribution

with various degrees of freedom (df = 5, 15, 25, 40, 50) with sample size n = 200,

and the Laplace distributions with different sample sizes (n = 15, 50, 100, 250).

These distributions were chosen to study the effect of contamination and tail

thickness, respectively. The Laplace distribution allows us to study the effect of

the sample size on coverage probabilities and average lengths of the confidence

intervals of β2. The covariate x was generated from N(1, 1) and δ was Bernoulli

with response probability π(x, y). To acomodate the nonlinear case we also

considered the Micheaelis-Menten function defined as g(x, β) = x/(β+x), where

the true β = 1, x generated from an exponential distribution, and the random

errors generated from CN (0.9, 2) and t3, for the sake of brevity. We investigated

five response probability cases.

Case 1: π(x, y) = 1/
{

1 + exp(0.35− x− 0.8y − 0.1y2)
}

.

Case 2: π(x, y) = 1/
{

1 + exp(0.15− 0.1x− 0.6y + 0.9xy)
}

.

Case 3: π(x, y) = 1/
{

1 + exp(−0.3 exp(x)− 0.1y)
}

.

Case 4: π(x, y) = exp(−0.5x+ 0.4x2 + 0.3y)/
{

1 + exp(−0.5x+ 0.4x2 + 0.3y)
}

.

Case 5: π(x, y) = exp(−0.8 sinx+ 0.6y)/
{

1 + exp(−0.8 sinx+ 0.6y)
}

.

While Cases 3–5 satisfy the assumed response probability assumption with γ set

at 0.1, 0.3, and 0.6, respectively, Cases 1–2, which do not satisfy such an as-

sumption, are used to examine the robustness of the proposed estimator against

departure from the assumed missing assumption. Cases 1, 2, 4, and 5 give on

average a response probability of roughly about 70%, while Case 3 gives on

average a response probability of about 60%. As in data situations γ is un-

specified, we estimated γ by solving (3.5) via either the Newton-Raphson or
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the Bisection approaches, where the follow-up rate used was 30%. The corre-

sponding estimates (γ̂) was 0.098, 0.307, and 0.598. The choice of the kernel

function having less importance (Einmahl and Mason (2005)), we considered the

Epanechnikov kernel function K(u) = 0.75(1 − u2)I(|u| ≤ 1). As the estima-

tion of π(x, y) and m0(x, γ) involve selecting a bandwidth, similar to Delecroix,

Hristache and Patilea (2006), we considered a joint minimization of Dj
n(β, h),

where the starting value of h ∈ {h : c1n
−α1 < h < c2n

−α2}, for some c1, c2 > 0,

1/8 < α1 < α2 < 1/4. The score function ϕ used here is the Wilcoxon score

function ϕ(u) =
√

12(u− 1/2).

From 5,000 replications, coverage probabilities (CP) and average lengths

(AL) of the true slope β2 based on the EL approach are reported and compared

with those based on the normal approximation (NA) approach. The approaches

we considered were the least squares (LS) based on the normal approximation

under regression simple imputation (SI-NALS) and the weighted inverse marginal

probability regression imputation (IP-NALS), the corresponding rank-based ap-

proaches (SI-NAR and IP-NAR), those of the empirical likelihood based on the

LS estimating equation (SI-ELLS and IP-ELLS), and those of empirical likeli-

hood based on the rank estimating equation (SI-ELR and IP-ELR). Also, the

weighted rank-based normal approximation (WNAR) and the weighted empirical

likelihood based on the weighted rank-based estimating equation (WELR) using

R1 were considered. The CP and AL based on the EL approach for both the LS

and the R were obtained with respect to their corresponding objective functions,

while those based on the NA approach were based on the estimated covariance

matrices from the LS and the R estimators. The results of the simulation study

are displayed in Tables 1–8.

5.2. Discussion

From Tables 1 and 2, while SI-ELLS and IP-ELLS provide better coverage

probabilities compared to SI-NALS and IP-NALS , they have a similar perfor-

mance as SI-NAR and IP-NAR. The same holds true when it comes to aver-

age lengths of confidence intervals, but with the EL based on the LS providing

slightly shorter average lengths compared to the rank-based normal approxima-

tion. These methods give larger coverage probabilities for small degrees of free-

dom, and such coverage probabilities converge to the nominal confidence level

as the degrees of freedom increase. On the other hand, the EL rank-based ap-

proaches SI-ELR, IP-ELR and WELR give consistent coverage probabilities that

are closer to the nominal confidence level than do SI-NAR, IP-NAR and WNAR.
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Table 1. 95% coverage probabilities (average lengths of 95% confidence intervals) of β2
for the linear model under tdf with n = 200 and regression simple imputation (SI).

Cases df SI-NALS SI-ELLS SI-NAR SI-ELR WNAR WELR

5 96.76% (0.92) 96.06% (0.68) 96.16% (0.78) 95.09% (0.43) 95.98% (0.73) 94.99% (0.39)

15 95.95% (0.90) 95.67% (0.62) 95.69% (0.71) 95.05% (0.37) 95.59% (0.65) 94.97% (0.33)

Case 1 25 95.78% (0.87) 95.48% (0.57) 95.51% (0.68) 95.00% (0.32) 95.51% (0.61) 95.01% (0.27)

40 95.68% (0.77) 95.35% (0.53) 95.18% (0.64) 95.01% (0.28) 95.34% (0.55) 94.98% (0.25)

50 95.13% (0.63) 95.08% (0.44) 95.10% (0.56) 94.99% (0.24) 95.05% (0.51) 94.94% (0.20)

5 96.86% (0.97) 96.10% (0.70) 96.21% (0.77) 95.06% (0.45) 95.96% (0.72) 95.08% (0.40)

15 95.93% (0.93) 95.91% (0.63) 95.78% (0.72) 95.04% (0.41) 95.73% (0.66) 95.00% (0.35)

Case 2 25 95.57% (0.85) 95.43% (0.59) 95.53% (0.65) 95.00% (0.36) 95.49% (0.58) 94.97% (0.30)

40 95.38% (0.78) 95.22% (0.54) 95.31% (0.61) 94.99% (0.32) 95.29% (0.53) 94.95% (0.26)

50 95.27% (0.69) 95.14% (0.46) 95.18% (0.57) 95.01% (0.27) 95.16% (0.50) 94.94% (0.21)

5 96.96% (1.22) 96.16% (0.90) 96.27% (0.97) 95.13% (0.79) 96.08% (0.93) 95.17% (0.74)

15 96.31% (0.97) 95.97% (0.77) 95.89% (0.85) 95.06% (0.73) 95.97% (0.81) 95.01% (0.63)

Case 3 25 95.86% (0.89) 95.72% (0.68) 95.68% (0.73) 95.01% (0.68) 95.81% (0.69) 94.99% (0.60)

40 95.57% (0.81) 95.43% (0.61) 95.51% (0.69) 94.97% (0.54) 95.42% (0.64) 94.97% (0.48)

50 95.41% (0.76) 95.25% (0.57) 95.29% (0.64) 95.00% (0.49) 95.23% (0.60) 95.02% (0.40)

5 96.49% (0.94) 96.03% (0.73) 96.07% (0.78) 95.07% (0.44) 95.94% (0.75) 95.31% (0.43)

15 95.87% (0.87) 95.66% (0.65) 95.72% (0.70) 95.06% (0.39) 95.63% (0.64) 95.07% (0.38)

Case 4 25 95.69% (0.75) 95.28% (0.59) 95.34% (0.67) 95.01% (0.34) 95.28% (0.60) 95.01% (0.32)

40 95.23% (0.64) 95.17% (0.56) 95.21% (0.64) 94.97% (0.30) 95.14% (0.52) 94.98% (0.28)

50 95.13% (0.62) 95.05% (0.47) 95.08% (0.57) 94.99% (0.25) 95.03% (0.49) 94.93% (0.22)

5 96.47% (0.91) 96.08% (0.71) 96.09% (0.75) 94.99% (0.45) 95.97% (0.71) 95.04% (0.39)

15 95.76% (0.83) 95.57% (0.67) 95.97% (0.72) 95.02% (0.41) 96.82% (0.64) 94.99% (0.34)

Case 5 25 95.46% (0.79) 95.28% (0.60) 95.46% (0.67) 94.88% (0.39) 95.30% (0.60) 95.00% (0.29)

40 95.33% (0.61) 95.12% (0.55) 95.13% (0.61) 95.00% (0.34) 95.10% (0.54) 95.01% (0.25)

50 95.07% (0.56) 95.03% (0.48) 95.04% (0.54) 94.98% (0.28) 95.03% (0.50) 94.98% (0.21)

Except for the WELR approach, the SI-ELR and IP-ELR remain superior to

all, both in terms of coverage probabilities and average lengths of confidence

intervals.

Considering the contaminated normal distribution model error (Tables 3

and 4), based either on SI or IP, once again, SI-ELLS and IP-ELLS provide

better coverage probabilities than do SI-NALS and IP-NALS . Their performance

is comparable to that of SI-NAR and IP-NAR. At ε = 0, all standard normal

errors, all methods provide coverage probabilities close to the nominal confidence

level and smaller average lengths. The rank-based empirical likelihood methods

SI-ELR, IP-ELR and WELR show their superiority by giving consistent coverage

probabilities close to the nominal confidence level and shorter average lengths.

Generally, average lengths increase as the rate of contamination increases.

With the Laplace distribution model error for the five cases, and based ei-
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Table 2. 95% coverage probabilities (average lengths of 95% confidence intervals) of β2
for the linear model under tdf with n = 200 and the weighted inverse marginal probability
regression imputation (IP).

Cases df IP-NALS IP-ELLS IP-NAR IP-ELR WNAR WELR

5 96.78% (0.85) 96.01% (0.61) 96.04% (0.70) 95.03% (0.33) 95.76% (0.69) 95.00% (0.27)

15 95.75% (0.78) 95.37% (0.56) 95.51% (0.62) 95.01% (0.24) 95.43% (0.60) 94.99% (0.24)

Case 1 25 95.48% (0.71) 95.23% (0.51) 95.25% (0.56) 94.98% (0.22) 95.31% (0.55) 94.96% (0.19)

40 95.27% (0.58) 95.14% (0.45) 95.15% (0.51) 94.99% (0.20) 95.22% (0.49) 95.01% (0.17)

50 95.12% (0.49) 95.07% (0.39) 95.10% (0.47) 95.02% (0.18) 95.11% (0.43) 94.98% (0.14)

5 96.76% (0.87) 96.03% (0.69) 96.08% (0.72) 95.13% (0.31) 95.85% (0.67) 95.04% (0.30)

15 95.84% (0.76) 95.35% (0.52) 95.63% (0.64) 95.06% (0.27) 95.59% (0.56) 95.02% (0.25)

Case 2 25 95.57% (0.70) 95.21% (0.43) 95.29% (0.53) 94.94% (0.24) 95.37% (0.44) 94.99% (0.21)

40 95.23% (0.53) 95.11% (0.40) 95.20% (0.48) 94.97% (0.21) 95.24% (0.41) 94.99% (0.19)

50 95.08% (0.46) 95.05% (0.35) 95.09% (0.43) 95.03% (0.19) 95.12% (0.38) 95.01% (0.16)

5 96.86% (0.98) 96.09% (0.87) 96.24% (0.94) 95.37% (0.70) 95.98% (0.83) 95.09% (0.61)

15 96.21% (0.87) 95.77% (0.79) 95.83% (0.83) 95.02% (0.63) 95.70% (0.74) 95.00% (0.55)

Case 3 25 95.67% (0.80) 95.27% (0.71) 95.35% (0.76) 94.96% (0.59) 95.41% (0.65) 94.98% (0.48)

40 95.29% (0.73) 95.18% (0.60) 95.23% (0.68) 94.89% (0.51) 95.32% (0.61) 94.99% (0.42)

50 95.18% (0.65) 95.12% (0.55) 95.15% (0.62) 95.01% (0.43) 95.09% (0.57) 95.03% (0.35)

5 96.52% (0.82) 96.07% (0.61) 96.03% (0.69) 95.08% (0.32) 95.83% (0.63) 95.03% (0.28)

15 95.79% (0.75) 95.69% (0.52) 95.62% (0.60) 94.98% (0.29) 95.61% (0.54) 95.00% (0.26)

Case 4 25 95.46% (0.68) 95.33% (0.42) 95.41% (0.53) 95.02% (0.23) 95.39% (0.46) 94.99% (0.22)

40 95.19% (0.51) 95.13% (0.40) 95.20% (0.49) 94.94% (0.19) 95.20% (0.43) 95.01% (0.19)

50 95.04% (0.45) 94.99% (0.36) 95.07% (0.43) 94.99% (0.17) 95.07% (0.39) 94.98% (0.17)

5 96.68% (0.84) 96.04% (0.65) 96.14% (0.71) 95.05% (0.33) 95.87% (0.64) 94.99% (0.29)

15 95.66% (0.73) 95.33% (0.59) 95.71% (0.69) 95.01% (0.28) 95.52% (0.59) 95.02% (0.25)

Case 5 25 95.37% (0.67) 95.24% (0.50) 95.39% (0.57) 94.97% (0.24) 95.25% (0.51) 95.04% (0.23)

40 95.20% (0.50) 95.14% (0.44) 95.25% (0.51) 94.98% (0.20) 95.13% (0.45) 95.01% (0.18)

50 95.06% (0.43) 95.03% (0.38) 95.10% (0.47) 95.03% (0.18) 95.04% (0.41) 94.95% (0.16)

ther on SI or IP, results can be seen in Tables 5 and 6. Similar observations

are made as in the previous two distributions model error. As the sample size

increases, coverage probabilities converge to the nominal confidence level and

average lengths decrease, as expected, with the rank-based empirical likelihood

showing its dominance over all the other approaches.

Similar observations can be made for the nonlinear Micheaelis-Menten model

under the considered model error distributions, as can be seen in Tables 7 and 8.

Generally, the contaminated normal distribution provides shorter average

lengths compared to the other distributions considered, and the IP provides

shorter average lengths compared to the SI. Average lengths obtained based on

the weighted EL are slightly shorter compared to those obtained via the imputed

EL. As the imputed approaches explore the entire data, with performance similar



RANK-BASED EMPIRICAL LIKELIHOOD WITH MISSING DATA 1803

Table 3. 95% coverage probabilities (average lengths of 95% confidence intervals) of β2
for the linear model under CN (ε) with n = 200 and regression simple imputation (SI).

Cases ε SI-NALS SI-ELLS SI-NAR SI-ELR WNAR WELR

0.00 95.06% (0.164) 94.98% (0.133) 95.12% (0.145) 95.07% (0.134) 95.03% (0.142) 95.02% (0.121)

Case 1 0.30 95.52% (0.253) 95.28% (0.209) 95.36% (0.215) 95.03% (0.168) 95.54% (0.204) 94.89% (0.152)

0.50 95.76% (0.318) 95.46% (0.291) 95.47% (0.301) 95.05% (0.218) 95.75% (0.292) 94.94% (0.205)

0.00 95.03% (0.163) 95.01% (0.131) 95.09% (0.146) 95.07% (0.137) 95.09% (0.143) 95.03% (0.123)

Case 2 0.30 95.61% (0.249) 95.24% (0.203) 95.33% (0.211) 94.99% (0.159) 95.37% (0.207) 95.01% (0.155)

0.50 95.87% (0.313) 95.69% (0.279) 95.73% (0.307) 95.03% (0.227) 95.78% (0.301) 94.99% (0.209)

0.00 95.09% (0.203) 95.04% (0.197) 95.23% (0.199) 95.03% (0.189) 95.11% (0.203) 95.02% (0.181)

Case 3 0.30 95.73% (0.298) 95.55% (0.231) 95.44% (0.238) 94.93% (0.207) 95.42% (0.232) 95.05% (0.201)

0.50 95.99% (0.389) 95.61% (0.347) 95.49% (0.353) 95.02% (0.277) 95.50% (0.343) 94.97% (0.271)

0.00 95.07% (0.161) 95.02% (0.130) 95.11% (0.142) 95.05% (0.135) 95.08% (0.140) 95.01% (0.119)

Case 4 0.30 95.56% (0.236) 95.21% (0.200) 95.32% (0.208) 95.00% (0.153) 95.28% (0.201) 94.98% (0.143)

0.50 95.73% (0.319) 95.56% (0.278) 95.38% (0.285) 94.98% (0.224) 95.52% (0.277) 95.00% (0.207)

0.00 95.05% (0.167) 94.99% (0.134) 95.11% (0.151) 95.06% (0.131) 95.09% (0.146) 95.04% (0.127)

Case 5 0.30 95.67% (0.254) 95.29% (0.213) 95.44% (0.215) 95.04% (0.169) 95.43% (0.205) 95.01% (0.163)

0.50 95.78% (0.328) 95.60% (0.301) 95.68% (0.316) 94.99% (0.229) 95.62% (0.304) 94.98% (0.213)

Table 4. 95% coverage probabilities (average lengths of 95% confidence intervals) of
β2 for the linear model under CN (ε) with n = 200 and the weighted inverse marginal
probability regression imputation (IP).

Cases ε IP-NALS IP-ELLS IP-NAR IP-ELR WNAR WELR

0.00 95.03% (0.113) 94.98% (0.098) 95.08% (0.111) 95.04% (0.071) 95.07% (0.103) 95.01% (0.065)

Case 1 0.30 95.25% (0.163) 95.16% (0.127) 96.19% (0.157) 94.97% (0.117) 95.19% (0.150) 94.99% (0.109)

0.50 95.49% (0.198) 95.23% (0.143) 95.32% (0.166) 95.05% (0.125) 95.41% (0.159) 95.02% (0.119)

0.00 94.94% (0.112) 95.01% (0.096) 95.12% (0.110) 95.01% (0.069) 95.10% (0.105) 94.99% (0.067)

Case 2 0.30 95.37% (0.171) 95.21% (0.136) 95.29% (0.162) 95.00% (0.124) 95.21% (0.156) 94.95% (0.117)

0.50 95.68% (0.201) 95.49% (0.177) 95.59% (0.198) 95.03% (0.133) 95.52% (0.184) 94.98% (0.123)

0.00 95.14% (0.171) 95.06% (0.126) 95.13% (0.135) 95.05% (0.113) 95.12% (0.134) 95.01% (0.108)

Case 3 0.30 95.63% (0.204) 95.34% (0.179) 95.46% (0.187) 95.03% (0.128) 95.53% (0.181) 94.98% (0.122)

0.50 95.87% (0.245) 95.56% (0.195) 95.67% (0.212) 94.99% (0.143) 95.61% (0.209) 95.03% (0.139)

0.00 95.06% (0.111) 94.99% (0.093) 95.11% (0.102) 95.00% (0.067) 95.08% (0.101) 95.06% (0.062)

Case 4 0.30 95.23% (0.155) 95.10% (0.123) 95.18% (0.131) 95.08% (0.109) 95.23% (0.129) 95.01% (0.105)

0.50 95.47% (0.183) 95.27% (0.134) 95.39% (0.157) 94.97% (0.121) 95.36% (0.148) 95.02% (0.117)

0.00 95.03% (0.116) 95.01% (0.097) 96.07% (0.113) 95.04% (0.073) 95.07% (0.106) 95.00% (0.067)

Case 5 0.30 95.28% (0.175) 95.19% (0.143) 95.23% (0.169) 95.07% (0.129) 95.21% (0.159) 94.93% (0.121)

0.50 95.65% (0.200) 95.42% (0.151) 95.53% (0.186) 95.01% (0.135) 95.48% (0.173) 95.02% (0.132)

to the weighted empirical likelihood, in practice, it would be preferable to use

the imputed rank-based empirical likelihood.

6. Data Example

We considered data from a statistical consulting center project at the Depart-

ment of Mathematics and Statistics of the University of South Alabama. These
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Table 5. 95% coverage probabilities (average lengths of 95% confidence intervals) of β2
for the linear model under the Laplace distribution and regression simple imputation
(SI).

Cases n SI-NALS SI-ELLS SI-NAR SI-ELR WNAR WELR

15 96.17% (1.305) 95.98% (1.008) 96.09% (1.115) 95.16% (0.897) 95.97% (1.006) 95.07% (0.881)

Case 1 50 95.83% (0.997) 95.45% (0.899) 95.57% (0.912) 95.08% (0.789) 95.83% (0.901) 95.03% (0.754)

100 95.59% (0.791) 95.28% (0.513) 95.46% (0.553) 95.01% (0.376) 95.43% (0.542) 94.98% (0.354)

250 95.01% (0.221) 94.98% (0.187) 95.03% (0.195) 94.99% (0.133) 95.01% (0.189) 94.97% (0.125)

15 96.28% (1.312) 96.01% (1.083) 96.13% (1.128) 95.13% (0.889) 95.95% (1.004) 95.02% (0.877)

Case 2 50 95.91% (1.064) 95.67% (0.937) 95.78% (0.997) 94.99% (0.827) 95.71% (0.978) 94.97% (0.819)

100 95.73% (0.887) 95.39% (0.752) 95.51% (0.831) 95.05% (0.387) 95.47% (0.816) 95.01% (0.379)

250 94.97% (0.237) 95.03% (0.198) 94.96% (0.205) 95.00% (0.148) 95.02% (0.199) 95.01% (0.135)

15 96.49% (1.433) 96.16% (1.119) 96.27% (1.217) 95.11% (1.091) 96.02% (1.108) 95.07% (1.009)

Case 3 50 96.07% (1.202) 95.87% (1.007) 95.94% (1.098) 95.08% (0.913) 95.91% (1.003) 95.03% (0.904)

100 95.58% (0.989) 95.37% (0.863) 95.42% (0.873) 94.98% (0.718) 95.32% (0.856) 94.99% (0.708)

250 95.13% (0.803) 94.89% (0.721) 95.08% (0.735) 95.01% (0.505) 95.05% (0.723) 94.95% (0.499)

15 96.13% (1.267) 95.75% (0.995) 96.04% (1.102) 95.14% (0.846) 95.97% (1.095) 95.02% (0.839)

Case 4 50 95.79% (0.953) 95.38% (0.872) 95.53% (0.901) 94.99% (0.752) 95.46% (0.899) 95.00% (0.738)

100 95.47% (0.725) 95.21% (0.501) 95.29% (0.698) 95.03% (0.302) 95.22% (0.637) 94.98% (0.298)

250 94.88% (0.202) 94.96% (0.173) 95.00% (0.187) 94.99% (0.125) 95.03% (0.181) 94.97% (0.121)

15 96.15% (1.299) 95.88% (1.003) 96.05% (1.103) 95.10% (0.837) 95.98% (1.003) 95.04% (0.825)

Case 5 50 95.74% (0.913) 95.44% (0.855) 95.62% (0.879) 95.04% (0.748) 95.51% (0.867) 95.02% (0.733)

100 95.21% (0.778) 95.13% (0.503) 95.18% (0.688) 95.02% (0.295) 95.13% (0.678) 94.99% (0.275)

250 95.03% (0.199) 94.97% (0.175) 94.99% (0.191) 95.01% (0.123) 95.03% (0.183) 94.97% (0.117)

Table 6. 95% coverage probabilities (average lengths of 95% confidence intervals) of β2
for the linear model under the Laplace distribution and the weighted inverse marginal
probability regression imputation (IP).

Cases n IP-NALS IP-ELLS IP-NAR IP-ELR WNAR WELR

15 96.05% (1.041) 95.65% (0.916) 96.03% (0.989) 95.05% (0.725) 95.92% (0.975) 95.01% (0.698)

Case 1 50 95.55% (0.872) 95.24% (0.742) 95.29% (0.796) 95.02% (0.521) 95.23% (0.783) 94.99% (0.487)

100 95.24% (0.725) 95.13% (0.621) 95.17% (0.684) 95.01% (0.225) 95.12% (0.667) 95.02% (0.214)

250 95.04% (0.184) 95.00% (0.131) 94.91% (0.148) 95.03% (0.096) 95.01% (0.139) 94.97% (0.088)

15 96.08% (1.078) 95.71% (0.923) 96.04% (0.999) 95.09% (0.755) 95.95% (0.969) 95.03% (0.702)

Case 2 50 95.63% (0.894) 95.31% (0.802) 95.41% (0.832) 95.07% (0.601) 95.31% (0.787) 94.98% (0.493)

100 95.33% (0.746) 95.09% (0.695) 95.19% (0.709) 95.02% (0.279) 95.17% (0.671) 95.01% (0.225)

250 94.88% (0.215) 94.90% (0.162) 94.98% (0.173) 95.02% (0.111) 94.99% (0.145) 95.05% (0.093)

15 96.38% (1.223) 95.88% (1.009) 96.12% (1.111) 95.01% (0.967) 96.01% (1.081) 95.04% (0.959)

Case 3 50 95.83% (0.989) 95.47% (0.836) 95.61% (0.857) 95.02% (0.773) 95.49% (0.833) 95.00% (0.764)

100 95.51% (0.876) 95.26% (0.735) 95.31% (0.768) 94.99% (0.612) 95.25% (0.737) 94.96% (0.609)

250 95.15% (0.559) 95.06% (0.478) 94.94% (0.483) 94.98% (0.309) 95.03% (0.473) 94.97% (0.301)

15 96.09% (1.005) 95.84% (0.926) 96.05% (0.939) 94.98% (0.727) 95.93% (0.967) 95.03% (0.722)

Case 4 50 95.65% (0.901) 95.23% (0.731) 95.38% (0.747) 95.00% (0.502) 95.30% (0.742) 95.01% (0.497)

100 95.19% (0.692) 95.07% (0.491) 95.16% (0.503) 95.01% (0.267) 95.09% (0.489) 94.99% (0.263)

250 94.92% (0.187) 94.99% (0.128) 94.93% (0.131) 94.95% (0.087) 94.98% (0.124) 95.01% (0.082)

15 96.03% (0.999) 95.73% (0.912) 96.05% (0.925) 95.09% (0.743) 95.91% (0.969) 95.02% (0.734)

Case 5 50 95.57% (0.875) 95.28% (0.738) 95.43% (0.761) 95.02% (0.501) 95.32% (0.745) 95.00% (0.499)

100 95.18% (0.655) 95.10% (0.484) 95.14% (0.495) 95.00% (0.278) 95.10% (0.469) 95.01% (0.258)

250 94.97% (0.183) 95.03% (0.119) 94.96% (0.125) 94.78% (0.083) 94.96% (0.119) 94.88% (0.0.79)
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Table 7. 95% coverage probabilities (average lengths of 95% confidence intervals) of β
for the nonlinear Micheaelis-Menten model under t3 and CN (0.9) with n = 150 and
regression simple imputation (SI).

Cases SI-NALS SI-ELLS SI-NAR SI-ELR

Case 1 CN (0.9) 97.13% (3.76) 95.57% (2.19) 96.32% (2.78) 95.20% (1.43)
t3 97.35% (3.93) 95.43% (2.33) 96.67% (2.84) 95.15% (1.55)

Case 2 CN (0.9) 97.17% (3.73) 95.46% (2.16) 96.26% (2.67) 95.13% (1.37)
t3 97.26% (3.88) 95.47% (2.27) 96.51% (2.71) 95.11% (1.47)

Case 3 CN (0.9) 97.96% (4.12) 95.78% (3.05) 96.38% (3.47) 95.39% (2.23)
t3 97.98% (4.17) 95.69% (3.16) 96.29% (3.51) 95.27% (2.27)

Case 4 CN (0.9) 97.24% (3.72) 95.66% (2.28) 96.25% (2.81) 95.16% (1.51)
t3 97.38% (3.79) 95.72% (2.31) 96.33% (2.87) 95.21% (1.67)

Case 5 CN (0.9) 97.16% (3.52) 95.36% (2.11) 96.16% (2.61) 95.09% (134)
t3 97.23% (3.65) 95.41% (2.24) 95.69% (2.73) 95.05% (1.42)

Table 8. 95% coverage probabilities (average lengths of 95% confidence intervals) of β
for the nonlinear Micheaelis-Menten model under t3 and CN (0.9) with n = 150 and the
weighted inverse marginal probability regression imputation (IP).

Cases IP-NALS IP-ELLS IP-NAR IP-ELR WNAR WELR

Case 1 CN (0.9) 96.96% (2.92) 95.16% (1.98) 95.97% (2.03) 95.09% (1.13) 95.43% (2.01) 94.99% (1.08)

t3 97.05% (2.98) 95.23% (2.02) 95.99% (2.07) 95.05% (1.17) 95.64% (2.04) 94.97% (1.10)

Case 2 CN (0.9) 96.93% (2.89) 95.09% (1.93) 95.86% (1.99) 95.03% (1.09) 95.37% (1.87) 95.02% (1.04)

t3 96.97% (2.95) 95.17% (1.99) 95.91% (2.01) 95.06% (1.13) 95.55% (1.92) 94.97% (1.07)

Case 3 CN (0.9) 97.16% (3.25) 95.36% (2.68) 96.23% (2.78) 95.13% (1.73) 95.87% (2.71) 95.07% (1.41)

t3 97.24% (3.33) 95.47% (2.73) 96.39% (2.81) 95.17% (1.87) 95.94% (2.79) 95.11% (1.53)

Case 4 CN (0.9) 96.89% (2.88) 95.10% (1.89) 95.76% (1.97) 95.05% (1.06) 95.29% (1.91) 95.05% (1.03)

t3 96.94% (2.93) 95.12% (1.92) 95.89% (1.99) 95.08% (1.11) 95.47% (1.96) 94.95% (1.05)

Case 5 CN (0.9) 96.86% (2.85) 95.06% (1.78) 95.68% (1.89) 95.02% (1.04) 95.53% (1.85) 94.98% (1.01)

t3 96.93% (2.91) 95.08% (1.87) 95.73% (1.96) 95.05% (1.09) 95.67% (1.92) 95.02% (1.03)

data came from the Cobb County, GA, Women, Infants, and Children (WIC)

program and is used here with permission of the investigators. The data consists

of about 2,500 observations on six variables: neonatal baby weight (y), age (x1),

body mass index (BMI, x2), smoking status (x3), and indicators for race (x4) and

Hispanic ethnicity (x5). The purpose of the study is to investigate how accurately

neonatal baby weight can be predicted based on body mass index, smoking sta-

tus (yes or no), race (white or black) and Hispanic (yes or no) of the mother

by fitting a linear model. We look to using our approach comes as the response

of interest (neonatal baby weight) contains approximately 43% of missing data,

and one might except that mothers with premature babies would be less likely

to disclose their baby’s weight. From the nonrespondents, 25% were randomly
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Table 9. lengths of 95% confidence intervals for the regression parameters for the Baby
Weights data with missing rate 43%.

CC WCC IP SI
Method Variable NA EL NA EL NA EL NA EL

LS

BMI 0.127 0.075 0.070 0.031 0.073 0.034 0.099 0.051
Hispanic 0.093 0.036 0.039 0.015 0.046 0.023 0.063 0.038
Smoke 3.583 1.716 1.980 1.270 2.080 1.321 2.838 1.769
Race 1.970 0.973 1.050 0.789 1.150 0.873 1.569 0.974
Age 1.942 0.867 1.007 0.701 1.131 0.771 1.544 0.783

R

BMI 0.135 0.034 0.045 0.013 0.048 0.014 0.051 0.029
Hispanic 0.099 0.021 0.019 0.009 0.025 0.013 0.037 0.021
Smoke 3.834 1.145 1.305 0.963 1.335 1.073 1.817 1.176
Race 2.108 0.685 0.829 0.498 0.928 0.547 1.075 0.655
Race 2.078 0.546 0.817 0.393 0.926 0.436 1.062 0.447

−

− − −

−

− −

Figure 1. Studentized Residuals plots and Residuals Q-Q plots of the LS (CC) and Rank
(CC).

selected for follow-up samples. This represents about 1,450 respondents from the

original data, and about 269 who responded to the follow-up. The parameter

γ was estimated by (3.5) using the 269 observations from the follow-up sample.

The outputs of the analysis are displayed in Table 9 and Figure 1 below.

From the studentized residuals plots and the residuals Q-Q plots (Figure 1)

of the LS and rank-based (R) on the complete case (CC) analysis, there exist a
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few outliers, and the model error might be approximated by a normal distribu-

tion, which would make the LS more appropriate for the NA approach. This is

confirmed from the output in Table 9, as in the CC case, the NALS performs

slightly better than the NAR, but the ELR outperforms the ELLS . The estimates

obtained from the CC analysis may be biased because of the missingness. The

bias is reduced when adjustment is made considering the response probability, as

can be seen from the weighted complete case (WCC) analysis. With such an ad-

justment the rank-based approach outperforms the LS in terms of lengths of the

confidence intervals using either the NA approach or the EL approach, with the

latter having a better performance. When the missing responses are imputed us-

ing either the SI or the IP, the EL based on both the LS and rank-based provides

smaller lengths of confidence intervals compared to their normal approximation

counterpart, with a better performance for the EL based on the rank-based esti-

mating equation. Also, the EL based on IP provided smaller lengths compared

to that based on SI, as noticed in the simulation study.

7. Conclusion

Overall, it is not surprising that for heavy-tailed model errors and con-

taminated data such as in the presence of outliers, the rank-based approach

provides robust and more efficient estimators than its least-squares counterpart

(Hettmansperger and McKean (2011), Bindele and Abebe (2012)) for the com-

plete case analysis. When it comes to direct statistical inference (confidence

intervals/regions) about the true regression coefficients from model (1.1) with

responses missing not at random, our simulation study and the data example

suggest that the empirical likelihood based on the rank-based estimating equa-

tion is a more appealing approach than its normal approximation and using least

squares. For future work, it is of interest to generalize these methods to longitu-

dinal data models with MNAR.
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Appendix

This Appendix provides assumptions used in the development of theoretical
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results, lemmas and proofs of some of the results.

A.1. Assumptions

(I1) ϕ is a nondecreasing, bounded and twice continuously differentiable score

function on (0, 1) that can be standardized as:∫ 1

0
ϕ(u)du = 0 and

∫ 1

0
ϕ2(u)du = 1,

and the model error conditional on the covariates has a distribution with a

finite Fisher information.

(I2) For g(·) a function of x and β, g has continuous derivatives with respect to β

that are bounded up to order 3 by p-integrable functions of x, independent

of β, p ≥ 1.

(I3) K(·) is a bounded variation smooth kernel function with bandwidth hn
satisfying nh4rn → 0, where r is the order of smoothness of K(·). Also, there

exists c > 0 such that

c

(
log n

n

)1−2/p
< hn, with p > 2 and hn → 0 as n→∞.

(I4) sup
x
E(|Y |p|X = x) <∞, for p ≥ 1. There exists a positive constant c such

that

π(x, y) ≥ c > 0 and E{π(X, Y )|X} 6= 1, for all x, y.

Also, E{exp(2γY )} <∞ and E{exp(λX)} <∞, for some λ.

(I5) For fixed n, β0,n,β
j
0,n ∈ Int(B) are the unique minimizers of E{Dn(β)} and

E{Dj
n(β)}, respectively, such that limn→∞ β0,n = β0 and limn→∞ β

j
0,n =

β0, for j = 1, 2.

(I6) Aβ0
, Bβ0

, Wβ0
, Σj

β0
, and Vj , for j = 1, 2, are positive definite.

Assumption (I1) is a regular assumption in the rank-based framework; see

Hettmansperger and McKean (2011) and Bindele and Abebe (2012). Assump-

tions (I2) − (I4) are necessary to ensure the result in Theorem 2; see Einmahl

and Mason (2005), Rao (2009) and Wied and Weißbach (2012). The identifia-

bility condition (I5) ensures the strong consistency of the rank-based estimator;

see Bindele (2017), while (I6), together with other assumptions, is needed to

establish the
√
n− asymptotic normality of the proposed estimators.

Lemma 1. Under (I1)− (I6), we have
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(i) n−1
∑n

i=1{ṽi(β0)− vi(β0)} → 0 a.s.

(ii) n−1/2
∑n

i=1 vi(β0)
D−→ Np(0,Aβ0

) and n−1
∑n

i=1 vi(β0)v
τ
i (β0)

P−→Aβ0
.

(iii) n−1/2
∑n

i=1 ṽi(β0)
D−→ Np(0,Bβ0

) and n−1
∑n

i=1 ṽi(β0)ṽ
τ
i (β0)

P−→Aβ0
.

The following lemma establishes the asymptotic normality of a statistic defined

on dependent random variables.

Lemma 2 (Brunner and Denker (1994)). Let ςjn be the minimum eigenvalue of

Σjn = V ar(Ujn) with Ujn given by

Ujn =

∫
ϕ(Jjn(s))(F̂jn − Fjn)(ds) +

∫
ϕ′(Jjn(s))(Ĵjn(s)− Jjn(s))Fjn(ds).

Suppose ςjn ≥ cna for some constants c, a ∈ R and m(n) so that M0n
α ≤ m(n) ≤

M1n
α, for some constants 0 < M0 ≤ M1 < ∞ and 0 < α < (a + 1)/2. Then

m(n)Σ−1jn Γjn(β0) is asymptotically standard multivariate normal, if ϕ is twice

continuously differentiable with bounded second derivative.

The proof of this lemma can be constructed along the lines of that of Theorem

3.1 in Brunner and Denker (1994), and is not included here.

A.2. Proofs

Proof of Lemma 1. Set S̃n(β0) = n−1
∑n

i=1 ṽi(β0), Sn(β0) = n−1
∑n

i=1 vi(β0),

and put ani = R(zi(β0))/(n+ 1).

(i) We have S̃n(β0) − Sn(β0) = (1/n)
∑n

i=1 δi∇βg(xi,β0)ϕ(ani){1/π̂(xi, yi) −
1/π(xi, yi)}, and

‖S̃n(β0)− Sn(β0)‖ ≤
1

n

n∑
i=1

δi‖∇βg(xi,β0
)‖|ϕ(ani)|

∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣ .
From the boundedness of ϕ, there exists a positive constant c0 such that |ϕ(t)| ≤
c0 for all t ∈ (0, 1). Thus,

‖S̃n(β0)− Sn(β0)‖ ≤
c0
n

n∑
i=1

‖∇βg(xi,β0)‖
∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣ .
Applying the Cauchy-Schwarz inequality to the right side of this inequality gives

‖S̃n(β0)− Sn(β0)‖

≤ c0

{
1

n

n∑
i=1

‖∇βg(xi,β0)‖2
}1/2{

1

n

n∑
i=1

∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣2
}1/2

≤ c0

{
1

n

n∑
i=1

‖∇βg(xi,β0)‖2
}1/2{

max
1≤i≤n

∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣2
}1/2

.
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By the Strong Law of Large Numbers (SLLN),

1

n

n∑
i=1

‖∇βg(xi,β0)‖2
a.s.−−→ E{‖∇βg(Xi,β0)‖2} <∞

by assumption (I2). Then, from the fact that π̂(xi, yi) → π(xi, yi) a.s., for each

i, under (I2) − (I4) (Einmahl and Mason (2005), Rao (2009), and Wied and

Weißbach (2012)), we have

max
1≤i≤n

∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣2 a.s.−−→ 0. (A.1)

As π̂(xi, yi) → π(xi, yi) a.s. and π(xi, yi) ≥ c > 0 for all i, by (I2) − (I4), with

probability 1 given ε? = c/2 > 0, there exists an integer N(ε?) > 0 such that

|π̂(xi, yi) − π(xi, yi)| < ε?, for all n ≥ N(ε?). Moreover, with probability 1, we

have

||π̂(xi, yi)| − |π(xi, yi)|| ≤ |π̂(xi, yi)− π(xi, yi)| < ε?

so that |π̂(xi, yi)| > c − ε? = c/2, for all n ≥ N(ε?) and for each i. For ε >

0 arbitrary, with probability 1, there exists N(ε) such that for all n ≥ N(ε),

|π̂(xi, yi) − π(xi, yi)| < εc2/2, for all i. Setting N = max{N(ε?), N(ε)}, with

probability 1 we have for all n ≥ N ,∣∣∣∣ 1

π̂(xi, yi)
− 1

π(xi, yi)

∣∣∣∣ =
|π̂(xi, yi)− π(xi, yi)|
|π̂(xi, yi)|π(xi, yi)

= |π̂(xi, yi)− π(xi, yi)|
1

|π̂(xi, yi)|
1

π(xi, yi)
<
ε

2
c2 · 2

c2
= ε,

for all i. Thus, max1≤i≤n |1/π̂(xi, yi) − 1/π(xi, yi)| → 0 a.s., and therefore,

S̃n(β0)− Sn(β0)
a.s.−−→ 0.

(ii) We have E
{
ϕ(R(zi(β0))/(n + 1))

}
= n−1

∑n
i=1 ϕ(i/(n + 1)) →

∫ 1
0 ϕ(t)dt =

0 as n → ∞, by assumption (I1). This, together with the fact that β0 =

argminβ∈B limn→∞E{Dn(β)} implies that E{Sn(β0)} → 0 as n→∞. It can be

shown under (I1) that Var
(
ϕ(R(zi(β0))/(n+1))

)
= n−1

∑n
i=1 ϕ

2{i/(n+1)} → 1

as n→∞, so, following Hettmansperger and McKean (2011),

cov

{
ϕ

(
R(zi(β0))

n+ 1

)
, ϕ

(
R(zj(β0))

n+ 1

)}
=

1

n(n− 1)

n∑
i=1

∑
j=1

i 6=j

ϕ

(
i

n+ 1

)
ϕ

(
j

n+ 1

)

= − 1

n(n− 1)

n∑
i=1

ϕ2

(
i

n+ 1

)
→ 0 as n→∞
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as n−1
∑n

i=1 ϕ
2
(
i/(n+ 1)

)
→
∫ 1
0 ϕ

2(t)dt = 1, by (I1). Thus, conditional on xi,

Var
{√

nSn(β0)
}

=
1

n

n∑
i=1

δi
π2(xi, yi)

∇βg(xi,β0)∇τβg(xi,β0)Var

(
ϕ

(
R

(zi(β0))

n+ 1

))

+
2

n(n−1)

n∑
i=1

n∑
j=1

i 6=j

δiδj∇βg(xi,β0)∇τβg(xj ,β0)

π(xi, yi)π(xj , yj)
cov

(
ϕ

(
R(zi(β0))

n+ 1

)
, ϕ

(
R(zj(β0))

n+ 1

))

=
1

n

n∑
i=1

δi
π2(xi, yi)

∇βg(xi,β0)∇τβg(xi,β0) + o(1) with probability 1.

Thus, Var
(√
nSn(β0)

) a.s.−−→ Aβ0
= E

{
π−1(X, Y )∇βg(X,β0)∇τβg(X,β0)

}
and,

with

Tn(β0) =
1

n

n∑
i=1

δi
π(xi, yi)

∇βg(xi,β0)ϕ(F (zi(β0))), (A.2)

as in the proof of Theorem 3.5.2 in Hettmansperger and McKean (2011), one

can obtain that
√
n
{
Sn(β0) − Tn(β0)

} P−→ 0. From a direct application of the

Central Limit Theorem, we have
√
nTn(β0)

D−→ Np(0,Aβ0
). Thus,

√
nSn(β0)

D−→
Np(0,Aβ0

). On the other hand,

1

n

n∑
i=1

vi(β0)v
τ
i (β0)

=
1

n

n∑
i=1

δi
π2(xi, yi)

{ϕ2(ain)− ϕ2(F (zi(β0)))}∇βg(xi,β0)∇τβg(xi,β0)

+
1

n

n∑
i=1

δi
π2(xi, yi)

ϕ2(F (zi(β0)))∇βg(xi,β0)∇τβg(xi,β0) = J1n + J2n,

where

J1n =
1

n

n∑
i=1

δi
π2(xi, yi)

{ϕ2(ain)− ϕ2(F (zi(β0)))}∇βg(xi,β0)∇τβg(xi,β0),

J2n =
1

n

n∑
i=1

δi
π2(xi, yi)

ϕ2(F (zi(β0)))∇βg(xi,β0)∇τβg(xi,β0).

Since

‖J1n‖

≤ 1

n

n∑
i=1

|π−2(xi, yi)|‖∇βg(xi,β0)‖2|ϕ2(ain)− ϕ2(F (zi(β0)))|
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≤

{
1

n

n∑
i=1

|π−4(xi, yi)|‖∇βg(xi,β0)‖4
}1/2{

max
1≤i≤n

|ϕ2(ain)− ϕ2(F (zi(β0)))|2
}1/2

,

the continuity of ϕ and the fact that ain
a.s.−−→ F (zi(β0)) for all i (Hájek and Šidák

(1967)), we have

max
1≤i≤n

|ϕ2(ain)− ϕ2(F (zi(β0)))|2
a.s.−−→ 0.

Also, from the SLLN, we have

1

n

n∑
i=1

|π−4(xi, yi)|‖∇βg(xi,β0)‖4
a.s.−−→ E

{
π−4(X, Y )‖∇βg(X,β0)‖4

}
<∞,

by (I2). Hence, J1n = o(1) with probability 1. As for J2n, a direct application of

the SLLN yields

J2n
a.s.−−→ E

{
π−1(X, Y )∇βg(X,β0)∇τβg(X,β0)ϕ

2(F (ε))
}

= Aβ0
by (I1),

as E{ϕ2(F (ε))|X} =
∫ 1
0 ϕ

2(t)dt = 1. Thus, n−1
∑n

i=1 vi(β0)v
τ
i (β0)

a.s.−−→ Aβ0
.

(iii) We can write

√
nS̃n(β0) =

√
nSn(β0) +

1√
n

n∑
i=1

{
δi

π̂(xi, yi)
− δi
π(xi, yi)

}
∇βg(xi,β0)ϕ

(
R(zi(β0))

(n+ 1)

)
=
√
nSn(β0) + J3n.

Following the argument in Niu et al. (2014),

J3n =
1√
n

n∑
i=1

{
1− δi

π(xi, yi)

}
∇βg(xi,β0)E{ϕ(F (ε))| X, δ = 0}+ op(1).

Similar arguments as in the proof of (i) give E{
√
nS̃n(β0)} → 0 as n → ∞.

Putting X? = ∇βg(X, β0) and

B̃β0
= E

{
π−1(X, Y )X?X?τϕ2(F (ε))

}
+ E{(π−1(X, Y )− 1)X?X?τE2{ϕ(F (ε))|X, δ = 0}},

we have

Var{
√
nS̃n(β0)}

= B̃β0
+ 2E

{
δ

π(X, Y )

{
1− δ

π(X, Y )

}
X?X?τϕ(F (ε))E{ϕ(F (ε))|X, δ = 0}

}
= B̃β0

+ 2E[(1− π−1(X, Y ))X?X?τE2{ϕ(F (ε))|X, δ = 0}] = Bβ0
.

From this, applying the argument in the proof of (ii), we have,
√
nS̃n(β0)

D−→
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Np(0,Bβ0
). As well,

1

n

n∑
i=1

ṽi(β0)ṽi(β0)
τ

=
1

n

n∑
i=1

(
δi

π̂2(xi, yi)
− δi
π2(xi, yi)

)
∇βg(xi,β0)∇τβg(xi,β0)ϕ

(
R(zi(β0)

n+ 1

)

+
1

n

n∑
i=1

δi
π2(xi, yi)

∇βg(xi,β0)∇τβg(xi,β0)ϕ
2

(
R(zi(β0)

n+ 1

)
= J4n + J5n.

From the consistency of π̂(x, y), J4n = o(1) a.s. and by the SLLN, J5n = Aβ0
+

o(1) a.s. Thus, n−1
∑n

i=1 ṽi(β0)ṽi(β0)
τ → Aβ0

a.s.

Proof of Theorem 1. With Tn(β) as in (A.2), and following the arguments in the

proof of Lemma 1, we have limn→∞ supβ∈Bn
‖Sn(β)−Tn(β)‖ = 0 a.s. Thus, with

probability 1, Sn(β) = Tn(β) + o(1/
√
n). As F is almost surely differentiable, so

is Tn(β). A Taylor expansion of Tn(β) up to order 2 around β0 gives

Tn(β) = Tn(β0) + {∇βTn(β0)}(β − β0) +
1

2
(β − β0)

τ∇2
βTn(ξ)(β − β0), (A.3)

where ξ = λβ0 + (1 − λ)β, for some λ ∈ (0, 1). With β̂n the solution of the

estimation Sn(β) = 0,

0 = Tn(β0)+{∇βTn(β0)}(β̂n−β0)+
1

2
(β̂n−β0)

τ∇2
βTn(ξ̂n)(β̂n−β0)+o(1/

√
n),

(A.4)

where ξ̂n = λβ0 + (1 − λ)β̂n, for some λ ∈ (0, 1). From the boundedness of ϕ

and derivatives of g by integrable functions independent of ξ̃n,
√
n∇2

βTn(ξ̃n) is

almost surely bounded. Thus, from the strong consistency of β̂n, we have
√
n(β̂n − β0) = {∇βTn(β0)}−1

√
nTn(β0) + o(1). (A.5)

On the other hand,

∇βTn(β0) = − 1

n

n∑
i=1

δi
π(xi, yi)

∇τβg(x,β0)∇βg(x,β0)f(zi(β0))ϕ
′(F (zi(β0))

)
+

1

n

n∑
i=1

δi
π(xi, yi)

∇2
βg(x,β0)ϕ

(
F (zi(β0))

)
,

where ∇2
βg(xi,β0) is the Hessian matrix. We have

E

{
δi

π(Xi, Yi)
∇2

βg(Xi,β0)ϕ
(
F (zi(β0))

)}
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= E

[
E

{
δi

π(Xi, Yi)
∇2

βg(Xi,β0)ϕ
(
F (zi(β0))

)∣∣∣∣Xi

}]
= E

[
δi

π(Xi, Yi)
∇2

βg(Xi,β0)E
{
ϕ
(
F (zi(β0))

)
|Xi

}]
By (I1), E

{
ϕ
(
F (zi(β0))

)
|Xi

}
=
∫ 1
0 ϕ(t)dt = 0. The SLLN gives

1

n

n∑
i=1

(
δi

π(xi, yi)

)
∇2

βg(x,β0)ϕ
(
F (zi(β0))

) a.s.−−→ E{∇2
βg(X,β0)ϕ(F (ε))} = 0.

Furthermore,

E{f(ε)ϕ′(F (ε))} =

∫ ∞
−∞

f(ε)ϕ′(F (ε))dF (ε) = −
∫ ∞
−∞

f ′(ε)ϕ(F (ε))dε,

from integration by parts, since f(ε)ϕ(F (ε)) → 0 as ε → ±∞. Now, putting

u = F (ε), we have∫ ∞
−∞

f ′(ε)ϕ(F (ε))dε = −
∫ 1

0
ϕ(u)ϕf (u)du = −γ−1ϕ ,

as defined in Theorem 1. Applying the SLLN to ∇βTn(β) gives ∇βTn(β) →
γ−1ϕ Wβ0

a.s., where Wβ0
= E{∇βg(X,β0)∇τβg(X,β0)}. This, together with

(A.5), leads to
√
n(β̂n − β0)

D−→ Np(0, γ
−2
ϕ W−1

β0
Aβ0

W−1
β0

).

Similarly, one can show that
√
n(β̃n − β0)

D−→ Np(0, γ
−2
ϕ W−1

β0
Bβ0

W−1
β0

). From

the right side of (2.1), performing the Taylor expansion of log(·) around 1 and

substituting this one-term expansion into L(β0, γ), there exists some ωi between

1 and 1 + ξτvi(β0) such that

L(β0, γ) = 2

n∑
i=1

log
(
1 + ξτvi(β0)

)
= 2

n∑
i=1

[
ξτvi(β0)−

1

2

(
ξτvi(β0)

)2
+

1

3

{
ξτvi(β0)

}3
(1 + ωi)3

]

= 2ξτ
n∑
i=1

vi(β0)− ξτ
{

n∑
i=1

vi(β0)v
τ
i (β0)

}
ξ +Op(n

−1/2).

Taking the derivative with respect to ξ and setting it to 0, results in

ξ =

{
1

n

n∑
i=1

vi(β0)v
τ
i (β0)

}−1{
1

n

n∑
i=1

vi(β0)

}
+ op(1),
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L(β0, γ) =

{
1√
n

n∑
i=1

vi(β0)

}τ {
1

n

n∑
i=1

vi(β0)v
τ
i (β0)

}−1{
1√
n

n∑
i=1

vi(β0)

}
+ op(1)

=
{√

nSn(β0)
}τ { 1

n

n∑
i=1

vi(β0)v
τ
i (β0)

}−1 {√
nSn(β0)

}
+ op(1)

=
{√

nSn(β0)
}τ

A−1β0

{√
nSn(β0)

}
+ op(1).

By Lemma 1 (ii), we have
√
nSn(β0)

D−→ Np(0,Aβ0
) as n → ∞. Aβ0

being

positive definite by (I6), we have {
√
nSn(β0)}τ A−1β0

{
√
nSn(β0)}

D−→ χ2
p.

Similar arguments give

L̃(β0, γ) =

{
1√
n

n∑
i=1

ṽi(β0)

}τ {
1

n

n∑
i=1

ṽi(β0)ṽ
τ
i (β0)

}−1{
1√
n

n∑
i=1

ṽi(β0)

}
+ op(1)

=
{√

nSn(β0)
}τ { 1

n

n∑
i=1

ṽi(β0)ṽ
τ
i (β0)

}−1 {√
nS̃n(β0)

}
+ op(1)

=
{√

nS̃n(β0)
}τ

A−1β0

{√
nS̃n(β0)

}
+ op(1).

By Lemma 1 (iii), we have
√
nSn(β0)

D−→ Np(0,Bβ0
) as n→∞. Putting

√
nSn(β0) =

B
1/2
β0

Z, with Z a the standard normal random p –vector, we have{√
nSn(β0)

}τ
A−1β0

{√
nSn(β0)

}
= ZτB

1/2
β0

A−1β0
B

1/2
β0

Z
D−→

p∑
i=1

λiχ
2
1,i,

where the λi are the eigenvalues of B
1/2
β0

A−1β0
B

1/2
β0

and the χ2
1,i are i.i.d. χ2

1 random

variables with one degree of freedom. Thus, the proof is complete.

Proof of Theorem 3. Putting

Bjn = −
∫

(F̂jn − Fjn)dϕ(Jjn) +

∫
(Ĵjn − Jjn)

dFjn
dJjn

dϕ(Jjn),

Brunner and Denker (1994) show that Σjn = n2Var(Bjn), as Ujn = nBjn in

Lemma 2. Thus, our case corresponds to setting M0 = M1 = 1, α = 1, and

m(n) = n. By definition,

Sjn(β0) =
1

n

n∑
i=1

λiϕ

(
R(νij(β0))

n+ 1

)
=

∫
ϕ

(
n

n+ 1
Ĵjn

)
dFjn.

From σ2(ε|x) > 0 and (I6), there exists a positive constant c such that ςjn ≥ cn2

satisfies the assumptions of Lemma 2, as ϕ is twice continuously differentiable

with bounded derivatives, and α < (a + 1)/2 with a = 2. By (I5), we have
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E{Sjn(β0)} → 0 as n → ∞. Then, nΣ−1jn Γjn(β0) = nΣ−1jn S
j
n(β0) + op(1). By

Lemma 2, nΣ−1jn Γjn(β0) is asymptotically multivariate standard normal. Thus,

we obtain
√
nSjn(β0)

D−→ Np(0,Σ
j
β0

), where Σj
β0

= lim
n→∞

n−1ΣjnΣ
τ
jn, j = 1, 2.

With T jn(β) =
∑n

i=1 λiϕ
(
Hj
i (ζij(β))

)
, as in the proof of Theorem 1, taking into

account the consistency of π̂(x, y) and m̂0(x, γ), we have limn→∞ supβ∈Bn
‖Sjn(β)−

T jn(β)‖ = 0 a.s. Hence, with probability 1, Sjn(β) = T jn(β) + o(1/
√
n). A Taylor

expansion of T jn(β) up to order 2 around β0 gives

T jn(β) = T jn(β0) + {∇βT
j
n(β0)}(β − β0) +

1

2
(β − β0)

τ∇2
βT

j
n(ξ)(β − β0), (A.6)

where ξ = λβ0 + (1− λ)β, for λ ∈ (0, 1). As β̂jn is a zero Sjn(β) and plugging β̂jn
in (A.6), we get

0 = Sjn(β0)+{∇βT
j
n(β0)}(β̂jn−β0)+

1

2
(β̂jn−β0)

τ∇2
βT

j
n(ξ̂jn)(β̂jn−β0)+o(1/

√
n),

(A.7)

where ξ̂jn = λβ0 + (1 − λ)β̂jn, for λ ∈ (0, 1). From the strong consistency of β̂jn,

and using (I1)− (I6), the third term on the right side of (A.7) converges to 0 in

probability. Therefore,
√
n(β̂jn − β0) = {∇βT

j
n(β0)}−1

√
nSjn(β0) + op(1).

To this end,

∇βT
j
n(β0) =

1

n

n∑
i=1

λiλ
τ
i h

j
i (ζij(β0))ϕ

′(Hj
i (ζij(β0))

)
+

1

n

n∑
i=1

∇2
βg(xi,β0)ϕ

(
Hj
i (ζij(β0))

)
.

From the Strong Law of Large Numbers, n−1
∑n

i=1 λiλ
τ
i h

j
i (ζij(β0))ϕ

′(Hj
i (ζij(β0))

)
converges almost surely to E{∇βg(X,β0)∇τβg(X,β0)h

j(ζj(β0))ϕ
′(Hj(ζj(β0))

)
},

and

1

n

n∑
i=1

∇2
βg(xi,β0)ϕ

(
Hj
i (ζij(β0))

)
→ E{∇2

βg(X,β0)ϕ
(
Hj(ζj(β0))

)
} a.s.

Thus, with probability 1, lim
n→∞

∇βT
j
n(β0) = Vj . From

√
nSjn(β0)

D−→ Np(0,Σ
j
β0

),

we have √
n(β̂ − β0)

D−→ Np(0,Mj), where Mj = V−1j Σj
β0

V−1j .

Proof of Theorem 5. Here M is taken to be a positive constant, not necessarily
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the same at each appearance. From (3.9), the log likelihood ratio of β0 is given

by

−2 logRjn(β0) = −2 log

n∏
i=1

{
1 + ξτηij(β0)

}−1
= 2

n∑
i=1

log
(
1 + ξτηij(β0)

)
.

By (I1) − (I4), there exist a positive constant M and a function h ∈ Lp, p ≥ 1

such that |ϕ(t)| ≤ M for all t ∈ (0, 1), and ‖∇βg(xi,β0)‖ ≤ h(xi), where

‖ · ‖ stands for the L2-norm. Since E{|h(xi)|p} < ∞ for p ≥ 1, we have

max
1≤i≤n

‖∇βg(xi,β0)‖ = op(n
1/2). Also, ‖ηij(β0)‖ ≤M × max

1≤i≤n
h(xi), which im-

plies that

max
1≤i≤n

‖ηij(β0)‖ = op(n
1/2) and

1

n

n∑
i=1

‖ηij(β0)‖3 = op(n
1/2). (A.8)

Putting Λnj = Var(
√
nSjn(β0)), we have Λnj = Σj

β0
+ op(1), in which Σj

β0
is

assumed to be positive definite. We can show that n−1
∑n

i=1 ηij(β0)η
τ
ij(β0) −

Λnj = op(1) for j = 1, 2. Since
√
nSjn(β0)

D−→ N(0,Σj
β0

), we have ‖Sjn(β0)‖ =

Op(n
−1/2). From (A.8), using the argument in Owen (1990), ‖ξ‖ = Op(n

−1/2).

With arguments as in the proof of Theorem 1,

−2 logRjn(β0) =

n∑
i=1

ξτηij(β0) + op(1)

=

{
1

n

n∑
i=1

ηij(β0)

}τ
(nΛnj)

−1

{
1

n

n∑
i=1

ηij(β0)

}
+ op(1)

=
{√

nΛ
−1/2
nj Sjn(β0)

}τ {√
nΛ
−1/2
nj Sjn(β0)

}
+ op(1).

Using Slutsky’s lemma, we have
√
nΛ
−1/2
nj Sjn(β0)

D−→ Np(0, Ip) as n → ∞, and

therefore,

−2 logRjn(β0)
D−→ χ2

p.
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Hájek, J. and Šidák, Z. (1967). Theory of Rank Tests. Academic Press, New York.

Hettmansperger, T. P. and McKean, J. W. (2011). Robust Nonparametric Statistical Methods,

volume 119 of Monographs on Statistics and Applied Probability, second edition. CRC

Press, Boca Raton, FL.

Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2009). Extending the scope of empirical

likelihood. The Annals of Statistics 37, 1079–1111.

Ibrahim, J. G., Lipsitz, S. R. and Chen, M.-H. (1999). Missing covariates in generalized linear

models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 61, 173–190.

Ibrahim, J. G., Lipsitz, S. R. and Horton, N. (2001). Using auxiliary data for parameter estima-

tion with non-ignorably missing outcomes. Journal of the Royal Statistical Society: Series

C (Applied Statistics) 50, 361–373.

Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion of the

residuals. The Annals of Mathematical Statistics 43, 1449–1458.

Jing, B.-Y., Yuan, J. and Zhou, W. (2009). Jackknife empirical likelihood. Journal of the Amer-

ican Statistical Association 104, 1224–1232.

Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonig-

norable missing data. Journal of the American Statistical Association 106, 157–165.



RANK-BASED EMPIRICAL LIKELIHOOD WITH MISSING DATA 1819

Lahiri, S. N., Mukhopadhyay, S. (2012). A penalized empirical likelihood method in high di-

mensions. The Annals of Statistics 40, 2511–2540.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, second edi-

tion. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons],

Hoboken, NJ.

Ma, W. Q., Geng, Z. and Hu, Y. H. (2003). Identification of graphical models for nonignorable

nonresponse of binary outcomes in longitudinal studies. Journal of Multivariate Analysis

87(1): 24–45.

Miao, W., Ding, P. and Geng, Z. (2016). Identifiability of normal and normal mixture models

with nonignorable missing data. Journal of the American Statistical Association., In Press.

Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies, volume 61. John

Wiley & Sons.

Niu, C., Guo, X., Xu, W. and Zhu, L. (2014). Empirical likelihood inference in linear regression

with nonignorable missing response. Computational Statistics & Data Analysis 79, 91–112.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.

Biometrika 75, 237–249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics 18,

90–120.

Owen, A. B. (2001). Empirical Likelihood. Chapman & Hall/CRC Monographs on Statistics &

Applied Probability. CRC Press.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. The

Annals of Statistics 22, 300–325.

Rao, B. P. (2009). Conditional independence, conditional mixing and conditional association.

Annals of the Institute of Statistical Mathematics 61, 441–460.

Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998). Semiparametric regression for

repeated outcomes with nonignorable nonresponse. Journal of the American Statistical

Association 93, 1321–1339.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.

Shao, J. and Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable

missing data. Biometrika 103, 175–187.

Tang, C. Y. and Leng, C. (2010). Penalized high-dimensional empirical likelihood. Biometrika

97, 905–920.

Tang, N., Zhao, P., Qu, A. and Jiang, D. (2016). Semiparametric estimating equations inference

with nonignorable nonresponse. Statistica Sinica. 27, 89–113.

Tang, N., Zhao, P. and Zhu, H. (2014). Empirical likelihood for estimating equations with

nonignorably missing data. Statistica Sinica 24, 723.
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