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Abstract: Directed and undirected graphical models, also called Bayesian networks

and Markov random fields, respectively, are important statistical tools in a wide

variety of fields, ranging from computational biology to probabilistic artificial in-

telligence. We give an upper bound on the number of inference functions of any

graphical model. This bound is polynomial on the size of the model, for a fixed

number of parameters. We also show that our bound is tight up to a constant fac-

tor, by constructing a family of hidden Markov models whose number of inference

functions agrees asymptotically with the upper bound. This paper elaborates and

expands on results of the first author from Elizalde (2005).
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1. Introduction

Many statistical models seek, given a set of observed data, to find the hidden

(unobserved) data which best explains these observations. In this paper we

consider graphical models (both directed and undirected), a broad class that

includes many useful models, such as hidden Markov models (HMMs), pairwise-

hidden Markov models, hidden tree models, Markov random fields, and some

language models (background on graphical models will be given in Section 2.1).

These graphical models relate the hidden and observed data probabilistically,

and a natural problem is to determine, given a particular observation, what is

the most likely hidden data (which is called the explanation). These models rely

on parameters that are the probabilities relating the hidden and observed data.

Any fixed values of the parameters determine a way to assign an explanation to

each possible observation. This gives us a map, called an inference function, from

observations to explanations. We will define an “inference function” precisely in

Definition 8.

An example of an inference function is the popular “Did you mean” feature

from google1 which could be implemented as a hidden Markov model, where the

1For example, if we search for “grafical modl” (http://www.google.com/search?q=grafical+modl),
we are kindly asked “Did you mean: graphical model?”
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observed data is what we type into the computer, and the hidden data is what

we were meaning to type. Graphical models are frequently used in these sorts of

probabilistic approaches to machine learning, pattern recognition, and artificial

intelligence (see Jensen (2001) for an introduction).

Inference functions for graphical models are also important in computational

biology (Pachter and Sturmfels (2005, Sec. 1.5)), from which we originally drew

inspiration for this paper. For example, consider the gene-finding functions,

which were discussed in (Pachter and Sturmfels (2006, Sec. 5)). These infer-

ence functions (corresponding to a particular HMM) are used to identify gene

structures in DNA sequences. An observation in such a model is a sequence of

nucleotides in the alphabet Σ′ = {A, C, G, T}, and an explanation is a sequence

of 1’s and 0’s which indicate whether the particular nucleotide is in a gene or is

not. We seek to use the information in the observed data (which we can find via

DNA sequencing) to decide on the hidden information of which nucleotides are

part of genes (which is hard to figure out directly). Another class of examples is

that of sequence alignment models (Pachter and Sturmfels (2005, Sec. 2.2)). In

such models, an inference function is a map from a pair of DNA sequences to an

optimal alignment of those sequences. If we change the parameters of the model,

the alignments that are optimal may change, and so the inference functions may

change.

A surprising conclusion of this paper is that there cannot be too many dif-

ferent inference functions, though the parameters may vary continuously over all

possible choices. For example, in the homogeneous binary HMM of length 5 (see

Section 2.1 for some definitions; they are not important at the moment), the

observed data is a binary sequence of length 5, and the explanation will also be

a binary sequence of length 5. At first glance, there are 3232 possible maps from

observed sequences to explanations. In fact, Christophe Weibel has computed

that only 5, 266 of these possible maps are actually inference functions. Indeed,

for an arbitrary graphical model, the number of possible maps from observed

sequences to explanations is, at first glance, doubly exponential in the size of

the model. The following theorem, which we call the Few Inference Functions

Theorem, states that, if we fix the number of parameters, the number of inference

functions is actually bounded by a polynomial in the size of the model.

Theorem 1.(The Few Inference Functions Theorem) Let d be a fixed positive

integer. Consider a graphical model with d parameters (see Definitions 3 and 5

for directed and undirected graphs, respectively). Let M be the complexity of the

graphical model, where complexity is given by Definitions 4 and 6, respectively.

Then, the number of inference functions of the model is O(Md(d−1)).
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As we shall see, the complexity of a graphical model is often linear in the

number of vertices or edges of the underlying graph.

The Few Inference Functions Theorem for the particular case of undirected

graphical models appears in Elizalde (2005). Here we extend it to the case of

directed graphical models, and we prove that the bound is asymptotically sharp,

up to a constant factor.

Different inference functions represent different criteria to decide what is

the most likely explanation for each observation. A bound on the number of

inference functions is important because it indicates how badly a model may

respond to changes in the parameter values (which are generally known with

very little certainty and only guessed at). Also, the polynomial bound given

in Section 3 suggests that it might be feasible to precompute all the inference

functions of a given graphical model, which would yield an efficient way to provide

an explanation for each given observation.

This polynomial bound with exponent d(d− 1) is asymptotically sharp for a

sequence alignment model with 2 parameters that is actually used in computa-

tional biology. This example is given in (Elizalde (2005, Sec. 9.3)) and, in that

case, the bound is quadratic on the length of the input DNA sequences.

This paper is structured as follows. In Section 2 we introduce some pre-

liminaries about graphical models and inference functions, as well as some facts

about polytopes. In Section 3 we prove Theorem 1. The main ideas in that

section appeared in (Elizalde (2005)). In Section 4 we prove that our upper

bound on the number of inference functions of a graphical model is sharp, up to

a constant factor, by constructing a family of HMMs whose number of inference

functions asymptotically matches the bound. We conclude with a few remarks

and possible directions for further research.

2. Preliminaries

2.1. Graphical models

A statistical model is a family of joint probability distributions for a collection

of discrete random variables W = (W1, . . . ,Wm), where each Wi takes on values

in some finite state space Σi. A graphical model is represented by a graph where

each vertex vi corresponds to a random variable Wi. The edges of the graph

represent the dependencies between the variables. There are two major classes

of graphical models depending on whether G is a directed or an undirected graph.

We start by discussing directed graphical models, also called Bayesian net-

works, which are those represented by a finite directed acyclic graph G. Each
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vertex vi has an associated probability map

pi :

( ∏

j: vj a parent of vi

Σj

)
−→ [0, 1]|Σi|. (1)

Given the states of each Wj such that vj is a parent of vi, the probability that

vi has a given state is independent of all other vertices that are not descendants

of vi, and this map pi gives that probability. In particular, we have the equality

Prob(W = ρ) =
∏

i

Prob (Wi = ρi, given that Wj = ρj for all parents vj of vi)

=
∏

i

(
[pi (ρj1, . . . , ρjk

)]ρi

)
,

where vji
, . . . , vjk

are the parents of vi. Sources in the digraph (which have no

parents) are generally given the uniform probability distribution on their states,

though more general distributions are possible. See (Pachter and Sturmfels (2005,

Sec. 1.5)) for general background on graphical models.

Example 2. The hidden Markov model (HMM) is a model with random vari-

ables X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn). Edges go from Xi to Xi+1 and

from Xi to Yi.

X X X

Y Y Y

1 2 3

1 2 3

Figure 1. The graph of an HMM for n = 3.

Generally, each Xi has the same state space Σ and each Yi has the same state

space Σ′. An HMM is called homogeneous if the pXi
, for 1 ≤ i ≤ n, are identical

and the pYi
are identical. In this case, the pXi

each correspond to the same

|Σ|× |Σ| matrix T = (tij) (the transition matrix ) and the pYi
each correspond to

the same |Σ| × |Σ′| matrix S = (sij) (the emission matrix).

In the example, we have partitioned the variables into two sets. In gen-

eral graphical models, we also have two kinds of variables: observed variables

Y = (Y1, Y2, . . . , Yn) and hidden variables X = (X1,X2, . . . ,Xq). Generally, the

observed variables are the sinks of the directed graph, and the hidden variables

are the other vertices, but this does not need to be the case. To simplify the
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notation, we make the assumption, which is often the case in practice, that all
the observed variables take their values in the same finite alphabet Σ′, and that

all the hidden variables are on the finite alphabet Σ.
Notice that for given Σ and Σ′ the homogeneous HMMs in this example

depend only on a fixed set of parameters, tij and sij , even as n gets large. These
are the sorts of models we are interested in.

Definition 3. A directed graphical model with d parameters, θ1, . . . , θd, is a

directed graphical model such that each probability [pi (ρj1, . . . , ρjk
)]ρi

in (1) is
a monomial in θ1, . . . , θd.

In what follows we denote by E the number of edges of the underlying graph

of a graphical model, by n the number of observed random variables, and by q
the number of hidden random variables. The observations, then, are sequences

in (Σ′)n and the explanations are sequences in Σq. Let l = |Σ| and l′ = |Σ′|.
For each observation τ and hidden variables h, Prob (X = h, Y = τ) is a

monomial fh,τ in the parameters θ1, . . . , θd. Then for each observation τ ∈ (Σ′)n,
the observed probability Prob(Y = τ) is the sum over all hidden data h of

Prob (X = h, Y = τ), and so Prob(Y = τ) is the polynomial fτ =
∑

h
fh,τ in

the parameters θ1, . . . , θd.

Definition 4. The complexity, M , of a directed graphical model is the maximum,
over all τ , of the degree of the polynomial fτ .

In many graphical models, M will be a linear function of n, the number of

observed variables. For example, in the homogeneous HMM, M = E = 2n− 1.
Note that we have not assumed that the appropriate probabilities sum to

1. It turns out that the analysis is much easier if we do not place that restric-
tion on our probabilities. At the end of the analysis, these restrictions may be

added if desired (there are many models in use, however, which never place that
restriction; these can no longer be properly called “probabilistic” models, but in

fact belong to a more general class of “scoring” models which our analysis also
encompasses).

The other class of graphical models are those that are represented by an
undirected graph. They are called undirected graphical models and are also known

as Markov random fields. As for directed models, the vertices of the graph G
correspond to the random variables, but the joint probability is now represented

as a product of local functions defined on the maximal cliques of the graph,
instead of transition probabilities pi defined on the edges.

Recall that a clique of a graph is a set of vertices with the property that

there is an edge between any two of them. A clique is maximal if it cannot be
extended to include additional vertices without losing the property of being a

clique (see Figure 2).
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Figure 2. An undirected graph with maximal cliques {v1, v2}, {v2, v3},
{v2, v4, v5}, {v3, v6}, and {v5, v6}.

Each maximal clique C of the graph G has an associated potential function

ψC :

( ∏

j: vj∈C

Σj

)
−→ R. (2)

Given the states ρj of each Wj such that vj is a vertex in the clique C, if we

denote by ρC the vector of such states, then ψC(ρC) is a nonnegative real number.

We denote by C the set of all maximal cliques C.

Then, the joint probability distribution of all the variables Wi is given by

Prob(W = ρ) =
1

Z

∏

C∈C

ψC(ρC),

where Z is the normalization factor

Z =
∑

ρ

∏

C∈C

ψC(ρC),

obtained by summing over all assignments of values to the variables ρ.

The value of the function ψC(ρC) for each possible choice of the states ρi is

given by the parameters of the model. We will be interested in models in which

the set of parameters is fixed, even as the size of the graph gets large.

Definition 5. An undirected graphical model with d parameters, θ1, . . . , θd, is

an undirected graphical model such that each probability ψC(ρC) in (2) is a

monomial in θ1, . . . , θd.

As in the case of directed models, the variables can be partitioned into ob-

served variables Y = (Y1, Y2, . . . , Yn) (which can be assumed to take their values

in the same finite alphabet Σ′) and hidden variables X = (X1,X2, . . . ,Xq) (which

can be assumed to be on the finite alphabet Σ). For each observation τ and

hidden variables h, Z · Prob (X = h, Y = τ) is a monomial fh,τ in the param-

eters θ1, . . . , θd. Then for each observation τ ∈ (Σ′)n, the observed probability
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Prob(Y = τ) is the sum over all hidden data h of Prob (X = h, Y = τ), and so

Z · Prob(Y = τ) is the polynomial fτ =
∑

h
fh,τ in the parameters θ1, . . . , θd.

Definition 6. The complexity, M , of an undirected graphical model is the

maximum, over all τ , of the degree of the polynomial fτ .

It is usually the case for undirected models, as in directed, that M is a linear

function of n.

2.2. Inference functions

For fixed values of the parameters, the basic inference problem is to deter-

mine, for each given observation τ , a value h ∈ Σq of the hidden data that

maximizes Prob(X = h
∣∣ Y = τ). A solution to this optimization problem is

denoted ĥ and is called an explanation of the observation τ . Each choice of pa-

rameter values (θ1, θ2, . . . , θd) defines an inference function τ 7→ ĥ from the set

of observations (Σ′)n to the set of explanations Σq.

Example 7. Consider the binary homogeneous HMM with n=3 (see Example 2)

with hidden states Σ = {A,B} and observed states Σ′ = {0, 1}. Suppose the

transition matrix and emission matrix are
[

0.6 0.4

0.4 0.6

]
and

[
0.6 0.4

0.4 0.6

]
,

respectively, and that the source X1 has the uniform probability distribution.

If, for example, the string 010 is observed (Y1 = 0, Y2 = 1, Y3 = 0), then the

most likely values of the hidden variables are AAA, with

Prob(X = AAA,Y = 010) = 0.5 · 0.6 · 0.6 · 0.4 · 0.6 · 0.6 = 0.02592.

Therefore our inference function should map 010 to AAA. On the other hand,

if the string 011 is observed, then there are actually two possibilities for the

explanation: ABB and BBB are equally likely and are also more likely than

any other string of hidden variables. One possible solution is to say that the

inference function maps 011 to the set of all possible explanations, that is, 011 7→

{ABB,BBB}. Repeating this process for each possible string of observed values,

we get the inference function given by

000 7→ {AAA} 100 7→ {AAA,BAA}

001 7→ {AAA,AAB} 101 7→ {BBB}
010 7→ {AAA} 110 7→ {BBA,BBB}
011 7→ {ABB,BBB} 111 7→ {BBB}.
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For simplicity, we would like to pick only one such explanation for each

possible observed sequence, according to some consistent tie-breaking rule de-

cided ahead of time (this will not affect the results of the paper, merely ease

exposition). For example, we could pick the lexicographically first among the

possibilities. This would give us the inference function, Φ, mapping

000 7→ AAA 100 7→ AAA

001 7→ AAA 101 7→ BBB

010 7→ AAA 110 7→ BBA

011 7→ ABB 111 7→ BBB.

In general, we fix an order of the hidden states Σ, that is, if Σ = {σ1, . . . , σl},

we say that σ1 < σ2 < · · · < σl.

Definition 8.An inference function is a map Φ : (Σ′)n −→ Σq that assigns to

each observation τ ∈ (Σ′)n an explanation ĥ ∈ Σq that maximizes Prob(X =

h
∣∣Y = τ). For definiteness, if there is more than one such explanation, we define

Φ(τ) to be the minimum of all such ĥ in lexicographic order.

It is interesting to observe that the total number of maps (Σ′)n −→ Σq is

(lq)(l
′)n

= lq(l
′)n

, which is doubly-exponential in the length n of the observations.

However, the vast majority of these maps are not inference functions for any

values of the parameters. Before our results, the best upper bound in the liter-

ature is an exponential bound given in (Pachter and Sturmfels (2004, Cor. 10))

Theorem 1 gives a polynomial upper bound on the number of inference functions

of a graphical model.

2.3. Polytopes

Here we review some facts about convex polytopes, and we introduce some

notation. Recall that a polytope is a bounded intersection of finitely many closed

halfspaces, or equivalently, the convex hull of a finite set of points. For the basic

definitions about polytopes we refer the reader to (Ziegler (1995)).

Given a polynomial f(θ) =
∑N

i=1 θ
a1,i

1 θ
a2,i

2 · · · θ
ad,i

d , its Newton polytope, de-

noted by NP(f), is defined as the convex hull in R
d of the set of points {(a1,i, a2,i,

. . . , ad,i) : i = 1, . . . , N}.

For example, if f(θ1, θ2) = 2θ3
1 + 3θ2

1θ
2
2 + θ1θ

2
2 + 3θ1 + 5θ4

2, then its Newton

polytope NP(f) is given in Figure 3.
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Figure 3. The Newton polytope of f(θ1, θ2) = 2θ31 +3θ21θ
2
2 +θ1θ

2
2 +3θ1+5θ42.

Given a polytope P ⊂ R
d and a vector w ∈ R

d, the set of all points in P at

which the linear functional x 7→ x ·w attains its maximum determines a face of

P . It is denoted

facew(P ) =
{
x ∈ P : x · w ≥ y · w for all y ∈ P

}
. (3)

Faces of dimension 0 (consisting of a single point) are called vertices, and faces

of dimension 1 are called edges. If d is the dimension of the polytope, then faces

of dimension d− 1 are called facets.

Let P be a polytope and F a face of P . The normal cone of P at F is

NP (F ) =
{
w ∈ R

d : facew(P ) = F
}
.

The collection of all cones NP (F ) as F runs over all faces of P is denoted

N (P ) and is called the normal fan of P . Thus the normal fan N (P ) is a partition

of R
d into cones. The cones in N (P ) are in bijection with the faces of P , and if

w ∈ NP (F ), then the linear functional x · w is maximized on F . Figure 4 shows

the normal fan of the polytope from Figure 3.
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Figure 4. The normal fan of a polytope.

The Minkowski sum of two polytopes P and P ′ is defined as

P + P ′ := {x + x′ : x ∈ P, x′ ∈ P ′}.
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Figure 5 shows an example in 2 dimensions. The Newton polytope of the map

f : R
d −→ R

(l′)n

is defined as the Minkowski sum of the individual Newton

polytopes of its coordinates, namely NP(f) :=
∑

τ∈(Σ′)n NP(fτ ).

P + P’

P

P’

Figure 5. Two polytopes and their Minkowski sum.

The common refinement of two or more normal fans is the collection of

cones obtained as the intersection of a cone from each of the individual fans.

For polytopes P1, P2, . . . , Pk, the common refinement of their normal fans is de-

noted N (P1) ∧ · · · ∧ N (Pk). Figure 6 shows the normal fans for the polytopes

P and P ′ from Figure 5, together with the common refinement. Comparing

N (P ) ∧ N (P ′) to the polytope P + P ′ in Figure 5, we see an illustration of the

well-known fact that the normal fan of a Minkowski sum of polytopes is the com-

mon refinement of their individual fans (see Ziegler (1995), Proposition 7.12, or

Gritzmann and Sturmfels (1993), Lemma 2.1.5). To be precise:

Lemma 9. N (P1 + · · · + Pk) = N (P1) ∧ · · · ∧ N (Pk).

N(P)

N(P’)

N(P) N(P’)

Figure 6. The normal fans of the polytopes in Figure 5 and their common

refinement.
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We finish with a result of Gritzmann and Sturmfels (1993) that will be useful

later. It gives a bound on the number of vertices of a Minkowski sum of polytopes.

Theorem 10. Let P1, . . . , Pk be polytopes in R
d, and let m denote the number

of non-parallel edges of P1, . . . , Pk. Then the number of vertices of P1 + · · ·+ Pk

is at most

2

d−1∑

j=0

(
m− 1

j

)
.

Note that this bound is independent of the number k of polytopes.

3. An upper Bound on the Number of Inference Functions

For fixed parameters, the inference problem of finding the explanation ĥ

that maximizes Prob(X = h|Y = τ) is equivalent to identifying the mono-

mial fbh,τ
= θ

a1,i

1 θ
a2,i

2 · · · θ
ad,i

d of fτ with maximum value. Since the logarithm is

a monotonically increasing function, the desired monomial also maximizes the

quantity

log(θ
a1,i

1 θ
a2,i

2 · · · θ
ad,i

d ) = a1,i log(θ1) + a2,i log(θ2) + · · · + ad,i log(θd)

= a1,iv1 + a2,iv2 + · · · + ad,ivd,

where we replace log(θi) with vi. This is equivalent to the fact that the corre-

sponding point (a1,i, a2,i, . . . , ad,i) maximizes the linear expression v1x1 + · · · +
vdxd on the Newton polytope NP(fτ ). Thus, the inference problem for fixed

parameters becomes a linear programming problem.

Each choice of the parameters θ = (θ1, θ2, . . . , θd) determines an inference

function. If v = (v1, v2, . . . , vd) is the vector in R
d with coordinates vi = log(θi),

then we denote the corresponding inference function by

Φv : (Σ′)n −→ Σq.

For each observation τ ∈ (Σ′)n, its explanation Φv(τ) is given by the vertex of

NP(fτ ) that is maximal in the direction of the vector v. Note that for certain

values of the parameters (if v is perpendicular to a positive-dimensional face

of NP(fτ )) there may be more than one vertex attaining the maximum. It is

also possible that a single point (a1,i, a2,i, . . . , ad,i) in the polytope corresponds
to several different values of the hidden data. In both cases, when there is more

than one possible explanation attaining the maximal probability, we pick the

explanation according to Definition 8. This simplification does not affect the

asymptotic number of inference functions.

Different values of θ yield different directions v, which can result in distinct

inference functions. We are interested in bounding the number of different infer-

ence functions that a graphical model can have. Theorem 1 gives an upper bound
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which is polynomial in the size of the graphical model. In other words, extremely

few of the lq(l
′)n

functions (Σ′)n −→ Σq are actually inference functions.

Before proving Theorem 1, observe that usually M , the complexity of the

graphical model, is linear in n. For example, in the case of directed models,

consider the common situation where M is bounded by E, the number of edges

of the underlying graph (this happens when each edge “contributes” at most

degree 1 to the monomials fh,τ , as in the homogeneous HMM). In most graphical

models of interest, E is a linear function of n, so the bound becomes O(nd(d−1)).

For example, the homogeneous HMM has M = E = 2n− 1.

Also, in the case of undirected models, if each ψC(ρC) is a parameter of the

model, then fh,τ = Z · Prob (X = h, Y = τ) is a product of potential functions

for each maximal clique of the graph, so M is bounded by the number of maximal

cliques, which in many cases is also a linear function of the number of vertices

of the graph. For example, this is the situation in language models where each

word depends on a fixed number of previous words in the sentence.

Proof of Theorem 1. In the first part of the proof we reduce the problem

of counting inference functions to the enumeration of the vertices of a certain

polytope. We have seen that an inference function is specified by a choice of the

parameters, which is equivalent to choosing a vector v ∈ R
d. The function is

denoted Φv : (Σ′)n −→ Σq, and the explanation Φv(τ) of a given observation τ is

determined by the vertex of NP(fτ ) that is maximal in the direction of v. Thus,

cones of the normal fan N (NP(fτ )) correspond to sets of vectors v that give rise

to the same explanation for the observation τ . Non-maximal cones (i.e., those

contained in another cone of higher dimension) correspond to directions v for

which more than one vertex is maximal. Since ties are broken using a consistent

rule, we disregard this case for simplicity. Thus, in what follows we consider only

maximal cones of the normal fan.

Let v′ = (v′1, . . . , v
′
d) be another vector corresponding to a different choice

of parameters (see Figure 7). By the above reasoning, Φv(τ) = Φv′(τ) if and

only if v and v′ belong to the same cone of N (NP(fτ )). Thus, Φv and Φv′ are

the same inference function if and only if v and v′ belong to the same cone of

N (NP(fτ )) for all observations τ ∈ (Σ′)n. Consider the common refinement of all

these normal fans,
∧

τ∈(Σ′)n N (NP(fτ )). Then, Φv and Φv′ are the same function

exactly when v and v′ lie in the same cone of this common refinement.

This implies that the number of inference functions equals the number of

cones in ∧

τ∈(Σ′)n

N (NP(fτ )).

By Lemma 9, this common refinement is the normal fan of NP(f) =
∑

τ∈(Σ′)n

NP(fτ ), the Minkowski sum of the polytopes NP(fτ ) for all observations τ . It
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follows that enumerating inference functions is equivalent to counting vertices of

NP(f). In the remaining part of the proof we give an upper bound on the number

of vertices of NP(f).
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Figure 7. Two different inference functions, Φv (left column) and Φv′ (right

column). Each row corresponds to a different observation. The respective expla-

nations are given by the marked vertices in each Newton polytope.

Note that for each τ , the polytope NP(fτ ) is contained in the hypercube

[0,M ]d, since by definition of M , each parameter θi appears in fτ with exponent

at most M . Also, the vertices of NP(fτ ) have integral coordinates, because

they are exponent vectors. Polytopes whose vertices have integral coordinates

are called lattice polytopes. It follows that the edges of NP(fτ ) are given by

vectors where each coordinate is an integer between −M and M . There are only

(2M + 1)d such vectors, so this is an upper bound on the number of different

directions that the edges of the polytopes NP(fτ ) can have.

This property of the Newton polytopes of the coordinates of the model will

allow us to give an upper bound on the number of vertices of their Minkowski

sum NP(f). The last ingredient that we need is Theorem 10. In our case we

have a sum of polytopes NP(fτ ), one for each observation τ ∈ (Σ′)n, having at

most (2M + 1)d non-parallel edges in total. Hence, by Theorem 10, the number

of vertices of NP(f) is at most

2

d−1∑

j=0

(
(2M + 1)d − 1

j

)
.
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As M goes to infinity, the dominant term of this expression is

2d2−d+1

(d− 1)!
Md(d−1).

Thus, we get an O(Md(d−1)) upper bound on the number of inference functions

of the graphical model.

In the next section we show that the bound given in Theorem 1 is tight up

to a constant factor.

4. A Lower Bound

As before, we fix d, the number of parameters in our model. The Few

Inferences Function Theorem tells us that the number of inference functions is

bounded from above by some function cMd(d−1), where c is a constant (depending

only on d) and M is the complexity of the model. Here we show that that bound

is tight up to a constant, by constructing a family of graphical models whose

number of inference functions is at least c′Md(d−1), where c′ is another constant.

In fact, we will construct a family of hidden Markov models with this property.

To be precise, we have the following theorem.

Theorem 11. Fix d. There is a constant c′ = c′(d) such that, given n ∈ Z+,

there exists an HMM of length n, with d parameters, 4d+ 4 hidden states, and 2

observed states, such that there are at least c′nd(d−1) distinct inference functions.

(For this HMM, M is a linear function of n, so this also gives us the lower bound

in terms of M).

In Section 4.1 we prove Theorem 11. This proof requires several lemmas that

will be proved in Section 4.2. Lemma 15, which is interesting in its own right as a

statement in the geometry of numbers, is proved in Elizalde and Woods (2006).

4.1. Proof of Theorem 11

Given n, we first construct the appropriate HMM, Mn, using the following

lemma.

Lemma 12. Given n ∈ Z+, there is an HMM, Mn, of length n, with d param-

eters, 4d+ 4 hidden states, and 2 observed states, such that for any a ∈ Z
d
+ with∑

i ai < n, there is an observed sequence which has one explanation if a1 log(θ1)+

· · · + ad log(θd) > 0 and another explanation if a1 log(θ1) + · · · + ad log(θd) < 0.

This means that, for the HMM Mn, the decomposition of (log-)parameter

space into inference cones includes all of the hyperplanes {x : 〈a, x〉 = 0} such

that a ∈ Z
d
+ with

∑
i ai < n. Call the arrangement of these hyperplanes Hn. It
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suffices to show that the arrangement Hn consists of at least c′nd(d−1) chambers

(full dimensional cones determined by the arrangement). There are c1n
d ways to

choose one of the hyperplanes from Hn, for some constant c1. Therefore there

are cd−1
1 nd(d−1) ways to choose d− 1 of the hyperplanes; their intersection is, in

general, a 1-dimensional face of Hn (that is, the intersection is a ray which is

an extreme ray for the cones it is contained in). It is quite possible that two

different ways of choosing d − 1 hyperplanes give the same extreme ray. The

following lemma says that some constant fraction of these choices of extreme

rays are actually distinct.

Lemma 13. Fix d. Given n, let Hn be the hyperplane arrangement consisting of

the hyperplanes of the form {x : 〈a, x〉 = 0} with a ∈ Z
d
+ and

∑
i ai < n. Then

the number of 1-dimensional faces of Hn is at least c2n
d(d−1), for some constant

c2.

Each chamber will have a number of these extreme rays on its boundary.

The following lemma gives a constant bound on this number.

Lemma 14. Fix d. Given n, define Hn as above. Each chamber of Hn has at

most 2d(d−1) extreme rays.

Conversely, each ray is an extreme ray for at least 1 chamber. Therefore

there are at least (c2/2
d(d−1))nd(d−1) chambers, and Theorem 11 is proved.

In proving Lemma 13, we will need one more lemma. This lemma is inter-

esting in its own right as a probabilistic statement about integer lattices, and

so is proved in the companion paper Elizalde and Woods (2006). Given a set

S ⊂ Z
d of integer vectors, spanR(S) is a linear subspace of R

d and spanR(S)∩Z
d

is a sublattice of Z
d. We say that S is primitive if S is a Z-basis for the lattice

spanR(S)∩Z
d. Equivalently, a set S is primitive if and only if it may be extended

to a Z-basis of all of Z
d (see Lekkerkerker (1969)).

We imagine picking each vector in S uniformly at random from some large

box in R
d. As the size of the box approaches infinity, the following lemma will

tell us that the probability that S is primitive approaches

1

ζ(d)ζ(d− 1) · · · ζ(d−m+ 1)
,

where |S| = m and ζ(a) is the Riemann Zeta function
∑∞

i=1 1/ia.

Lemma 15. Let d and m be given, with m < d. For n ∈ Z+, 1 ≤ k ≤ m,

and 1 ≤ i ≤ d, let bn,k,i ∈ Z. For a given n, choose integers ski uniformly

(and independently) at random from the set bn,k,i ≤ ski ≤ bn,k,i + n. Let sk =

(sk1, . . . , skd) and let S = {s1, s2, . . . , sm}.
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If |bn,k,i| is bounded by a polynomial in n, then, as n approaches infinity, the

probability that S is a primitive set approaches

1

ζ(d)ζ(d− 1) · · · ζ(d−m+ 1)
,

where ζ(a) is the Riemann Zeta function
∑∞

i=1 1/ia.

When m = 1, this lemma gives the probability that a d-tuple of integers are

relatively prime as 1/ζ(d). For m = 1, d = 2, this is a classic result in number

theory (see Apostol (1976)), and for m = 1, d > 2, this was proven in Nyman

(1972). Note also that, if m = d and we choose S of size m, then the probability

that S is primitive (i.e., that it is a basis for Z
d) approaches zero. This agrees

with the lemma in the sense that we would expect the probability to be

1

ζ(d)ζ(d− 1) · · · ζ(1)
,

but ζ(1) does not converge.

4.2. Proofs of Lemmas

Proof of Lemma 12. Given d and n, define a length n HMM with parameters

θ1, . . . , θd, as follows. The observed states will be S and C (for “start of block,”

and “continuing block,” respectively). The hidden states will be si, s
′
i, ci, and

c′i, for 1 ≤ i ≤ d+ 1 (think of si and s′i as “start of the ith block” and ci and c′i
as “continuing the ith block”).

Here is the idea of what we want this HMM to do: if the observed sequence

has S’s in position 1, a1+1, a1+a2+1, . . ., and a1+· · ·+ad+1 and C’s elsewhere,

then there will be only two possibilities for the sequence of hidden states, either

t = s1 c1 · · · c1︸ ︷︷ ︸
a1−1

s2 c2 · · · c2︸ ︷︷ ︸
a2−1

· · · sd cd · · · cd︸ ︷︷ ︸
ad−1

sd+1 cd+1 · · · cd+1︸ ︷︷ ︸
n−a1−···−ad−1

or

t′ = s′1 c
′
1 · · · c

′
1︸ ︷︷ ︸

a1−1

s′2 c
′
2 · · · c

′
2︸ ︷︷ ︸

a2−1

· · · s′d c
′
d · · · c

′
d︸ ︷︷ ︸

ad−1

s′d+1 c
′
d+1 · · · c

′
d+1︸ ︷︷ ︸

n−a1−···−ad−1

.

We also make sure that t has a priori probability θa1

1 · · · θad

d and t′ has a priori

probability 1. Then t is the explanation if a1 log(θ1) + · · · + ad log(θd) > 0 and

t′ is the explanation if a1 log(θ1) + · · · + ad log(θd) < 0. Remember that we are

not constraining our probability sums to be 1. A very similar HMM could be

constructed that obeys that constraint, if desired. To simplify notation it will

be more convenient to treat the transition probabilities as parameters that do
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not necessarily sum to one at each vertex, even if this forces us to use the term

“probability” somewhat loosely.

Here is how we set up the transitions/emmisions. Let si and s′i, for 1 ≤ i ≤
d+ 1, all emit S with probability 1 and C with probability 0. Let ci and c′i emit

C with probability 1 and S with probability 0. Let si, for 1 ≤ i ≤ d, transition

to ci with probability θi, transition to si+1 with probability θi, and transition to

everything else with probability 0. Let sd+1 transition to cd+1 with probability

1 and to everything else with probability 0. Let s′i, for 1 ≤ i ≤ d, transition

to c′i with probability 1, to s′i+1 with probability 1, and to everything else with

probability 0. Let s′d+1 transition to c′d+1 with probability 1 and to everything

else with probability 0. Let ci, for 1 ≤ i ≤ d, transition to ci with probability θi,

to si+1 with probability θi, and to everything else with probability 0. Let cd+1

transition to cd+1 with probability 1 and to everything else with probability 0.

Let c′i, for 1 ≤ i ≤ d, transition to c′i with probability 1, to si+1 with probability

1, and to everything else with probability 0. Let c′d+1 transition to c′d+1 with

probability 1 and to everything else with probability 0.

Starting with the uniform probability distribution on the first hidden state,

this does exactly what we want it to: given the correct observed sequence, t and

t′ are the only explanations, with the correct probabilities.

Proof of Lemma 13. We are going to pick d− 1 vectors a(1), . . . , a(d−1) which

correspond to the d− 1 hyperplanes {x : 〈a(i), x〉 = 0} that will intersect to give

us extreme rays of our chambers. We will restrict the region from which we pick

each a(i) ∈ Z
d. Let

b(i) = (1, 1, . . . , 1) −
1

2
ei,

for 1 ≤ i ≤ d − 1, where ei is the ith standard basis vector. Let s = 1/(4d + 4).

For 1 ≤ i ≤ d− 1, we choose a(i) ∈ Z
d such that

∥∥∥
n

d
b(i) − a(i)

∥∥∥
∞
<
n

d
s.

(4)

Note that
∑

j a
(i)
j < n, so there are observed sequences which give us the hyper-

planes {x : 〈a(i), x〉 = 0}. Note also that there are (2s/d)d(d−1)nd(d−1) choices

for the (d − 1)-tuple of vectors (a(1), . . . , a(d−1)). To prove this lemma, we must

then show that a positive fraction of these actually give rise to distinct extreme

rays
⋂d−1

i=1 {x : 〈a(i), x〉 = 0}.
First, we imagine choosing the a(i) uniformly at random in the range given by

(4), this probability distribution meets the condition in the statement of Lemma

15, as n approaches infinity. Therefore, there is a positive probability that

{a(i) : 1≤ i≤d−1} form a basis for the lattice Z
d ∩ span{a(i) : 1≤ i≤d−1}, (5)
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and this probability approaches

1

ζ(d)ζ(d− 1) · · · ζ(2)
.

Second, we look at all choices of a(i) ∈ Z
d such that (4) and (5) hold. There

are c2n
d(d−1) of these, for some constant c2. We claim that these give distinct

extreme rays
⋂d−1

i=1 {x : 〈a(i), x〉 = 0}. Indeed, say that a(i) and c(i) are both

chosen such that (4) and (5) hold and such that

d−1⋂

i=1

{x : 〈a(i), x〉 = 0} =

d−1⋂

i=1

{x : 〈c(i), x〉 = 0}.

We argue that a(i) and c(i) are “so close” that they must actually be the same.

Let j, for 1 ≤ j ≤ d− 1 be given. We prove that a(j) = c(j). Since

d−1⋂

i=1

{x : 〈a(i), x〉 = 0} ⊂ {x : 〈c(j), x〉 = 0},

we know that c(j) is in span{a(i) : 1 ≤ i ≤ d− 1}, and therefore

c(j) ∈ Z
d ∩ span{a(i) : 1 ≤ i ≤ d}.

Let g = c(j) − a(j). Then ‖g‖∞ < 2(n/d)s, by Condition (4) for a(i) and c(i),

and g = α1a
(1) + · · · + αd−1a

(d−1), for some αi ∈ Z, by Condition (5) for a(i).

We must show that g = 0. By reordering indices and possibly considering −g,

we may assume that α1, . . . , αk ≥ 0, for some k, αk+1, . . . , αd−1 ≤ 0, and |α1| is

maximal over all |αi|, 1 ≤ i ≤ d− 1.

Examining the first coordinate of g, we have that

−2
n

d
s < g1

= α1a
(1)
1 + · · · + αd−1a

(d−1)
1

< α1
n

d
(b

(1)
1 + s) + · · · + αk

n

d
(b

(k)
1 + s) + αk+1

n

d
(b

(k+1)
1 − s) + · · ·

+ αd−1
n

d
(b

(d−1)
1 − s)

=
n

d

[
α1 + · · · + αd−1 −

1

2
α1 + s(|α1| + · · · + |αd−1|)

]

(using b(i) = (1, . . . , 1) −
1

2
ei)

≤
n

d

[
α1 + · · · + αd−1 −

1

2
α1 + (d− 1)sα1

]
.
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Negating and dividing by n
d
,

−(α1 + · · · + αd−1) +
1

2
α1 − (d− 1)sα1 < 2s. (6)

Similarly, examining the (k + 1)-st coordinate of g, we have

2
n

d
s > gk+1

= α1a
(1)
k+1 + · · · + αd−1a

(d−1)
k+1

> α1
n

d
(b

(1)
k+1 − s) + · · · + αk

n

d
(b

(k)
k+1 − s) + αk+1

n

d
(b

(k+1)
k+1 + s) + · · ·

+ αd−1
n

d
(b

(d−1)
k+1 + s)

=
n

d

[
α1 + · · · + αd−1 −

1

2
αk+1 − s(|α1| + · · · + |αd−1|)

]

≥
n

d

[
α1 + · · · + αd−1 −

1

2
αk+1 − (d− 1)sα1

]
,

and so

(α1 + · · · + αd−1) −
1

2
αk+1 − (d− 1)sα1 < 2s. (7)

Adding the equations (6) and (7),

1

2
α1 −

1

2
αk+1 − 2(d− 1)sα1 < 4s,

and so, since s = 1/(4d + 4),

1

d+ 1
α1 −

1

2
αk+1 <

1

d+ 1
.

Therefore, since αk+1 ≤ 0, we have that α1 < 1 and so α1 = 0. Since |α1| was

maximal over all |αi|, we have that g = 0. Therefore a(j) = c(j), and the lemma
follows.

Proof of Lemma 14. Suppose N > 2d(d−1), and suppose a(i,j), for 1 ≤ i ≤ N
and 1 ≤ j ≤ d− 1, are such that a(i,j) ∈ Z

d
+,

∑d
k=1 a

(i,j)
k < n, and the N rays

r(i) =
d−1⋂

j=1

{x : 〈a(i,j), x〉 = 0}

are the extreme rays for some chamber. Then, since N > 2d(d−1), there are some

i and i′ such that a
(i,j)
k ≡ a

(i′,j)
k mod 2, for 1 ≤ j ≤ d− 1 and 1 ≤ k ≤ d (i.e., all

of the coordinates in all of the vectors have the same parity). Then let

c(j) =
a(i,j) + a(i′,j)

2
,
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for 1 ≤ j ≤ d− 1. Then c(j) ∈ Z
d
+ and

∑d
k=1 c

(j)
k < n, and the ray

r =

d−1⋂

j=1

{x : 〈c(j), x〉 = 0} =
r(i) + r(i

′)

2

is in the chamber, which is a contradiction.

5. Final remarks

An interpretation of Theorem 1 is that the ability to change the values of

the parameters of a graphical model does not give as much freedom as it may

appear. There is a very large number of possible ways to assign an explanation

to each observation. However, only a tiny proportion of these come from a

consistent method for choosing the most probable explanation for a certain choice

of parameters. Even though the parameters can vary continuously, the number

of different inference functions that can be obtained is at most polynomial in the

number of edges of the model, assuming that the number of parameters is fixed.

Having shown that the number of inference functions of a graphical model

is polynomial in the size of the model, an interesting next step would be to find

an efficient way to precompute all the inference functions for given models. This

would allow us to give the answer (the explanation) to a query (an observa-

tion) very quickly. It follows from this paper that it is computationally feasible

to precompute the polytope NP(f), whose vertices correspond to the inference

functions. However, the difficulty arises when we try to describe a particular

inference function efficiently. The problem is that the characterization of an

inference function involves an exponential number of observations.
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