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S1 Proof of Theorems

Before we prove Theorem 1, we first establish the consistence of 6. For simplicity, we consider
a two-threshold cointegration in a three-regime TVECM and the proof can be easily extended

to a multiple-regime case. Let
Azy = A' X, 1(8)+ D' Xe1(B)I(B,1) + E Xe a(B)I(B,72) +us,  t=1+1,...,n, (SL1)

where v1 < y2, I(8,71) = 1{z:—1(8) < 711} and I(B,72) = 1{z:—1(B) > 12}. The coefficients in
the three regimes are respectively A+ D, A and A+ E.

Lemma 1. Under Assumption 1, 6 — 6° is 0,(1), and furthermore, \/n(8 — °) is op(1).

Proof of Lemma 1 consists of two steps in the framework of the proof of Theorem 1 in Seo

2011). In ‘he ﬁISl ste we deﬁne a sequence ()f Tn and rove tha.l
( ) P, p
é é 0 P ( n ) . ( S 1 2)

In the second step, we show /n(3 — 8°) = O,(1) by Lemma 1 of Seo (2011) and further
obtain the consistency of 6 and /(8 — 8°) = 0,(1) by Theorem 1 of de Jong (2002). It is
obvious that the indicator function in model (S1.1) satisfies the assumption of Theorem 1 in
Seo (2011), so the second step can be proved in the same way as Seo (2011) and is omitted.
The proof of the first step can be demonstrated in similar way to Seo (2011), except that some
additional terms need to be taken care of.

Let 7, be a sequence of real numbers such that \/n > r, — oo and r,/y/n — 0 as n — oo.
Let ©,, 5 ={0 € ©:1r,|8 — 8° > 4} be a subspace of ©, we take all the following supremums

and infimums in this proof over ©,. s unless stated otherwise.

Tn

To prove (S1.2), it is sufficient to show that

Pr{inf (S.(0) 5. (6%) /n >0} — 1,¥5 > 0. (S1.3)

Let n = v/n(8 — B°), then || > 6y/n/rn — oo, and z:(8) = z + 2. For simplicity,
let X, =(X(8), X+, (8), X5, (8)) @ I, where X,,;(8) stacks Xi—1(8) I(ze-1(8),7), j = 1,2,
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X (B) stacks thl(ﬂ)/ and A = vec((A,7D,,El),) and \; = vec((A'mD;, E;),) Then

Su(0)/n = Su(0)/n = [y'y = Su(6°) = 2y XA+ X X, X0 /n

’
! X,B,’yXﬁa"/

yy—uu 1y Xp
= — 27 2
I

n nnl

1
T \|n| + |n|25,\ A (S1.4)
We analyze the three terms on the r.h.s of (S1.4) separately. Since u; is independent of X:_1(8),

based on (2) and standard arguments in linear regression analysis, we can show that ¥¥~**

n
converges in probability to the limit of z'x/n, where z = [(Xl(ﬂ,'y), . ,Xm(ﬁ,'y)) ® Ip] A
This limit is a positive constant in view of Assumptions 1.2 and 1.3. By similar argument of

’
y Xg

3’"’)\‘ = Op(1). Therefore, with |n| — oo, (S1.3) will

Seo (2011), it can be proved that sup ’% o
0

hold if we can prove

d

1 /XﬂﬁXg,,y)\ _d

inf=\ G, (S1.5)

where G is a random variable that is positive with probability 1.

/X/ X
Let 1) = n/|n|. We divide £\ ‘3]:]7‘2/“’)\ into two parts as:

1 /X5 X ,
A Bﬁ?i'f’u = A(Zn(B,7) ® I)Ax + Ru(0), (S1.6)
where ,
7712 Zt(x2,t717:/)2 Pi Py
En(ﬁ,q/) = Pl Pl 0 )

PQ’ 0 P2
with Py = % Z(x;7t_177)21t,1(5,71) and Po = 7712 Z(x;’t_lﬁf[t,l(ﬁ,vg). It can be proved
that sup|Rn(0)| = Op(\r—\/%b, because all the elements in Xg  are stationary except for z,—1(3)
0

and ﬁzt |zt_1(B)A:r;\ is Op(ﬁ). Since & — 0, the first part of r.h.s of (S1.6) is the

dominating one. Consequently, (S1.5) will hold if we can prove

Zn(8,7) 2 (7 0) M. (S1.7)
Herein
Jiw? [iwrw <oy [ WA{W > 0}
M= [JW*{W <0} [} W*L{W <0} 0 , (S1.8)
Jo WPL{W > 0} 0 JEwRiw > 0}

and fol W2 is short for fol W (s)%ds, where W is a standard Brownian motion. Notice that 7 Q1)
is a positive constant bounded away from zero by Assumption 1.2. Further, M is nonnegative
definite with a single zero eigenvalue, whose corresponding eigenvector is (¢, —¢, —c¢) for any
non-zero constant ¢. However, A\, = (¢, —¢, —c) means coefficients in front of z;—1(3) are (0,c,0)
in the three regimes, which is excluded by Assumption 1.3. Therefore, )\/Z (7‘7/ QM @ I\, is
positive with probability 1.

(S1.7) can be proved similar to Theorem 1 in Seo (2011), consequently, the proof of Lemma
1 is completed.
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Proof of Theorem 1.

Having proved Lemma 5, we only need to show the proof of this theorem on a subspace ©. =
{9 10— 0% < c} for some ¢ > 0. Notice that if the extremely fast convergence rates of § and
4 are proved, then the limiting distribution of N is easy to get: by following similar analysis as
in the ordinary LSE case, as argued in Seo (2011). Therefore, the proof of this part is omitted
and we focus on the convergence rate of ﬁ and 4.

We consider 7 instead of 8 and separate the parameters into two groups as 61 = (1,71 —
7,72 —9) and A, then the true value of §; is 0. Taking the same strategy used by Chan (1993)
and Seo (2011), it is sufficient to show that: for any € > 0, there exist ¢ > 0 and K > 0 such
that

lim inf Pr{ inf [Sn(6) — Sn(0,\)] > O} >1—c¢ (S1.9)

n— 00 0€O,. K

where O, x = 0.N{0: 16| > K/n}.
Let zi-1(8) = 2-1+7 xz\fﬁl S VL =T —7]/”%1 and y2,+ = 72 —7]%2‘%1 where 11 < 72,
and write the residual of model (S1.1) when 6 is plugged in as:

ut(0)

=ur — (A — Ao) Xi1
(D= DY Xy-11{zeo1 < s} — D° Xoor(Hzeor < ya} — Hzos <4201
—(E - EO)’Xt,11{zt71 > Yo} — EO,th(l{th >y} — Hzem1 > 98))

2,t—1

— (As + Dal{zim1 < 1} + Eo1{zem1 > 72 )0 “’ﬁ
=u1+(0) + u2:(0).
Where
ult(e)
=us — (A — AO),Xt—l
_ (D — DO)/Xt,11{Zt71 < ’yl,t} — DO Xt,l(l{zt,1 < ’Yl,t} — 1{Zt71 < ’Y?})

—(E— EO),thll{thl > 2.} — B Xeo1(1{ze—1 > 2.4} — 1{zem1 > 75}),

and ug(0) = —(A. + D 1{zi—1 < v} + E1{z—1 > "YQ,t})n, 12\}51.
In this way, %(SH(G) — 5,(0,)) = D1ip + D2, with

Din =% D lune(6) wae(8) = w12 (0, 1) wre (0, )],

Doy, :% 3 [z (60) uze (0) + 2u1e(6) uae(6)].

t

First analyze D2,,. We compare Dz, with the corresponding quantity appearing in a one

threshold cointegration and consider the additional terms arising in the two thresholds model
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as follows:

*Z|Xt 1(H{zem1 <714} — H{zem 1<’h})1{2’t 1>72t}D077 T2t 1|

NG
< sup $2z1 Z|X,‘ 1/2

1<t<n

1/2
1 .
(n >~ H{min{[77], [y} < |ze-1] < max{]47], Im,tl}}) O(|nl)

t

=0,(1)0p(c)O(Inl) = Op(cInl),

by the uniform law of large numbers and Assumption 2.1 that the density function of fz(z) is
bounded.

The remaining terms can be analyzed by the same reasoning as in the proof of Theorem 2
of Seo (2011). As a result,

\*Zuzt "u2e(8)] = Op(cln]),
I*ZUH "z (0)]] < op([nl) + Op(cln])-
and we conclude that: for any m1,e > 0, there is ¢ > 0 such that:

lim inf Pr{ sup [|D2n(0)] — m1]61]] < O} >1-—e (S1.10)

n—roo CISSH
Next, we prove: V € > 0 and ¢ > 0, there exists K > 0, if n is large enough, there exists some
constant ms such that,

Pr{Dln(G) > m2|491|} >1-— E,Ve S @c,K- (Sl.ll)

Since m1 in (S1.10) is arbitrary, we can decrease mi such that mi < mg, in which case, ¢ will
be smaller and (S1.11) still hold. Therefore, the combination of (S1.10) and (S1.11) completes
the proof of Theorem 1.

We now prove (S1.10). We compare D1, with the corresponding quantity appearing in a
one threshold cointegration model and denote the difference as tr(Add), then,

1 ’ /
Add = Z[(D — DO) Xeoil{zeo1 <} — D° Xi—1(H{ztm1 <mpe}— Nz < ’Y?})]

t

(B = E°) Xe11{ze-1 > 72,0} — E” X1 (H{zem1 > 72,0} — 1{zem1 > 72})]

1 ’ ’
=- Z[(D = D% X a)l{zi1 < 1,0} Xe B (H{zo1 > 2,4} — Hzr > 2))
¢
1 ’ ’
- Z[(E — EO) Xi—1|{ze-1 > ’Yz,t}Xz—1D0(1{Zt—1 <A1t — Nz < ’Y?})
¢

1 / / /
+ - Z[DO Xi-1] E° Xe—1(M{ze—1 > v2,6} — H{ze—1 > 7(2)})
¢
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(H{ze—1 < — Nz < ’Y?})
The first and second terms in Add are

1 ’
Op(c)g ZXt—lXt—ll{lyg < o1 < Y2 OF Y2 < 21 < Y9 HEC
t

and
1 ’
Op(c)g ZXt—1X1711{’y? < zi—1 <vip0r Y1 < 21 < 7?}D0-
t

Since (1{zt—1 > Y2,e} — Hzee1 > WP (1{zem1 < Y16} — H{zem1 < 41}) is always negative or

zero, the third term satisfies

(D% X, ] [ Xoa](1{zem1 > 724} — 1{zeo1 > 12))
(H{zt—1 <1 — Uz < ’Y?})

<1/2 {XHDOD0 X1 (1Y < 21 < y10 ot y10 < ze-1 < A0))

+X; 1 E°E® X1 (1{78 < ze-1 < Y20 oF Y2 < ze-1 < ’Yg})}v
because of Assumption 1.3. Therefore, D1, becomes:
Dln

=tr (( D" + Op( ZXt 1Xt 119 < z1 <yaeor yae <z 1<71})D0>

+tr ((EO + Op( ZXt IXt 1(1{72 < zi—1 < 7Y2,t OF Y2t < Zt— 1<72})E0>
ESY
e

(Hze1 <ma}— Yz <1))

D% X 1] E® X1 (M{ze-1 > 2,6} — Hzem1 > 7))

+tr (( 0 + O(c ZXt 1’ut(1{’}/1 < zg—1 <716 OF V1,6 < Z¢— 1<’Y1}))
+tr ((EO +O(c ZXt 1ut(1{72<zt 1 < 72,6 OF Y2,¢6 < Z¢— 1<’Y2})>
+tr (0p(c?)) . (S1.12)

By the same reasoning as in Seo (2011), the last three quantities on the r.h.s of (S1.12) have

the same conclusion of (S1.10) as Da,. Further,
tr[(D° + Op( ZXt 1 X, (7] < 21 < or e < 21 < W HD°

+(E O + Op( ZXt 1Xt 1(1{’72<2t 1 <72t 0r y2 1 < 24— 1<72})E0
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1 ’ , ’
+ n Z[DO Xt—l] E° Xt—l(l{zt—l > ’Yz,t} — 1{Zt—1 > 73})
t

(H{zt—1 <16} — 1{Zt—1 < '7(1)})]

>1§7"[(1/2D0 + Oy ( th 1Xt 1(1{71 < zpm1 <, Or Vi < zZp—1 < 'yl})DO

4 (1/2E° + 0,( ZXt 1 X0 1 (1A < zim1 < yze 0oF Y20 < ze-1 <ASNEC], (S1.13)

and we can analyze the r.h.s of (S1.13) with the same reasoning as in Seo (2011) and conclude
that (S1.11) hold. Therefore, the proof is completed.

Proof of Theorem 3.
We demonstrate the proof based on a general m-regime TVECM:

Az = ZA Xe—1(B)H{vj—1 < za(B) <yt +w, t=I1+1,...,n (S1.14)

0* = argminS;;. As pointed out in Section 3.3, by Taylor expansion, we have:
6co

V(DnQn(0)|gDn) Dyt (6% — 0°) = —/nDn T (6°).

As a result, the proof completes if (D, Qn(0)|;Dx) and /nD,, T, (6°) are proved to converge to
the corresponding matrix and vector present in Theorem 3.
We first prove that,

_de Z] 1 UU]
ov, Wi(1)

d UU2W2(1)
VnD, T, (6°) == . . (S1.15)

Ovs Wm-1(1)
0

Let e¢(0) be the residual of model (S1.14) when 6 is plugged in, then

€t (9)

=u— Y (A = AN Xl = > ATX (K1 (0, 75-1,75) — Lio1,y)

Jj=1 Jj=1

m ’
! To,t—17
— E A Ko (n,vj—1,75)—
JsZ 1] v 1] I
j=1 v

where 1,1, = 1{vj—1 < ze—1(8) < v} and Ki—1(n,vi-1,7;)=Ki—1,n(8, vj—1,7;) are defined

90
in Section 3. Denote ¢,7, f‘gjf)et(eo) for j =1,2,...,m — 1, then W' =150 0
J
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*Zt 1
h

For simplicity, let Dx r; = K(%
that

) — 1{zi-1 < 4y}. From Assumption 3.1, it is obvious

Kio1(n,vi-1,75) = /C(’Yj — Z}i_l(ﬂ)) _ K(’Yj—l _;t—l(ﬁ)).

. B , , ey Vi —zt—1(8)
Further, since e;(6°) = uy—3_7"5" (A)—A%,1) X;-1Dx 1,5, and 8?77(79) =—(4;—-A;41) Xt—l¥_

i—Z4_ !
/ K(1>(W+1<‘”>1“71,,

A, W o we have

VnhE(6),)

n,t
0 _
—VnhE [—Xt_l(Ag — A% kW (%) /h}

’C(l)( 7;t 1 )

+VRRE | X, (A — A% )(A9 — A%41) Xe1Dier W

IC(U( :f 1)

+vn Z E X, (AR — AR )(Af — A?+1)/Xt—1D/<,I k W

k=1,k#j

The third term is 0,(1), as a result of |y —~p| being bounded away form 0 and the property of K
(Assumption 3.3), Assumption 1.3 and Assumpitons 3. The first term is 0, (1) because E(u;)=0
and independence between u; and X;_1. The second term has limit 0 because ffooo(l{s >

0} — ’C(S))’C,(S) ds =0 and

/ 0 _ 4 KO =z
E Xt,1Xt—1 (K(%) — 1{Zt—1 < ’Y?}) %

—/X/X(’C( ) = Hs > 0NK () f21x, (7] — hslaa) d(—s)dFx, (x2)

,h/x X(K(s) = 1{s > 0DKD (s) (=5 f71x, (10 |z2) + O(s*h?) + - ) d(—s) dFx, (x2).
(S1.16)

Hence, under Assumption 3.3, the r.h.s of (51.16) is O(h) and further the second term of
VnhE(¢ njt) is O(v/'nhh). Therefore, by Assumption 3.4,

lim FEaet( ) e:(6°) = 0. (S1.17)

n— oo ’YJ

Further,

hE[$)7,(6°)7]
IC(U(%) ?

=hE thl(A?' - A?H)uz 7

(A18—1)

2
m—1 o , ’C(l)( *Zt 1 )
+ Xt 1 Ak: - Ak+l)(A - AjJrl) Xt—lDIC,I kTh

k=1

(A.18 —2)
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! 0 0 ’C(l)(iiif 1)
+2 Z Xo1(Aj, = AG, 1)(A] AJ+1) Xi-1Dk, LT
J1#G2#]

0 0y K(l)(L_Zt_l)
Xi-1 (A, — A%, )(AS — A1) X1 Dicg gy ——— 2

h
m_l ’ ’ ’ !
+2 Z thl(Angl - Ag)(AJH - A?) Xt—lut(A?+1 - A?) Xi—1Dk 1.k
k=1
KM (9 - h
( (7 - z-1)/h) 2 | (S1.18)

We now analyze the r.h.s of (S1.18), we can prove that the quantity in (A.18-1) converges

| (0245 = A5 )un)? e = 5] F200),
by similar analysis as in (S1.16).
Let ’61 =

to

(K(s) —1{s > 0}) K1) (s), then similarly, the quantity in (A.18-2) converges to

B | (X0 = A5 (4 = A0) i) s =02 £259)

and the third and fourth terms of the r.h.s of (S1.18) converge to zero by Assumptions 1 and
* (00 ;
3. Consequently, lim Var ( nhM(i)) = lim Var(vhe,?,) = 057.
n— oo 5 n— oo ’

il

2n0 :
By a similar reasoning, we prove lim hcov [¢,%,(6°), ¢)t,(6°)] = 0. Further, by Lemmas in
n—00 ’ ’
Horowitz (1992) and Theorem 2 in de Jong (1997),

VahT — N(0,V),

where T} stands for derivatives with respect to vy, V = diag(agl, B Ufm ) and

-1

2 ’
o2 =E {HK“)H (X7 (A9 — A% ue)?

+Hzc1 (X1 (A9 — A% (A% — A% ) X 1)z = 12| f2(49).
Further,
de, (6°
o)

K o= zt L)
(AO - Ak+1) Xi1 (

|§
B
3

m—1 0
/ — Zt—
Z AD L — A ) (AL

k=1 =1 h
m—1 0
(w S (A - AL X (K(%) S < %‘3})) .
k=1
Let
m—1 0
ve= 3 (A — A, L) w2

’ h
k=1
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0
;L o— Zt—
Vit = (A Ag+1 ) ’C(%)

m—1 0__Z
(AY — AD 1) Xema <K(%) - Haa < 72}) ;
k=1
L@ R R
I/Jt—(AO A]+1) %
m—1 0__Z
< =) (A} - ARp) ) X4 (K(Lh“) = Hz-1 < 72})> :
k=1

then
aet 0
Vi Z «(6")

m—1 m—1
1 ~
:E ;:1 T2,t-1 (\/Eljt + E \/El/]'yt + E \/El/j7t> . (81.19)

j=1 j=1

It can be shown that the terms of the form

(@) (20 =z o
\/Z (= - ) (IC(%“ th)_ 1{z 1 < 7,2}> La=0,1, (S1.20)

converges to zero by Assumption 3, for k # j. Using (S1.20) and the arguments in Seo (2011), we
study the quantity on the r.h.s. of (S1.19) as follows. First, the term = 3" | 5,1 Z;’;l hivj
dominates the r.h.s of (S1.19) and converges to — fol B (Z;’:ll O'Udej(S)) , where W; are
independent standard Brownian motions. Consequently, the first p — 1 entries of /nD, T, (6°),
Vh/nS7 86’ G )et(eo) converges to — fo B (Z;ﬂ Loy, dW(s )) Moreover, it can be shown
that the p— 1+] -th entry of /nD, T, (6") converges to ., W;(1) using the preceding established
properties of qﬁl{t. Finally, the convergence of the remaining entries of \/nD,, T}, (6°),

to

.08
2n8A’
zero in probability is standard and can be proved with similar arguments as in Seo and Hansen

(2007). Therefore, The proof of the convergence of /nD,T,(6°) is completed.

Next we prove the convergence of D, Qn (60 )D Since

D Qu(@)D, = {D z<aa;;<0>> 0)Dy + Dn Zaet ) oken(0) Dn]

0=0
A

A [DnQn(e)“Dn + D,Qn(0) Dn] s’

we need to prove that D,Q5(0)D, and DnQn(G)bDn converge in distribution to the following

random matrices in a small enough neighborhood of 6°:

DnQn(0)"D,,
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&2 01 B(S)B(;s)/ds O'ql 01 B(s)ds e Gg fol B(s)ds 0
Ga fol B(s) ds 5o, e 0 0
el 5 I S
2 ’
52, [y B(s)ds 0 52 0
0 0 0 N/ HIC(1>H2
(S1.21)
where &g, = BX, 1 (A) = A1) (AT = A)0) Xooa)|zi-1 = 291 f2(19), 65 = 7o 04, and
—1
Ii 0 0
0 I 0 0 ,
N=|E 2 @ Xi1 Xy, @ 3.
0 O Im
nQn( ) n
3 fo / ds aql 01 B(s)ds --- &5, fol B(s)ds 0
) G2, 01 B(s) ds G2, e 0 0
= [ Rs)as : : : |, s
52, [y B(s)ds 0 52 0
0 0 0 0 0

~ 2 =
where K = =K@ (s)(K(s) + [ K =KM(0).
2
To prove the convergences of D,Q(0)* D, and DnQn(H)me we only need to prove con-

vergence of the elements that have non-zero limits. The convergence of these elements can be

proved similarly, so we show the proof of the following quantity as an example,

o? et d /: ~2/1
0)|; = | Kdsao B(s)B(s) ds
Z 87]67] ( )‘9 q 0 ( )

Since
826t(9) T X2-1 33,2,15-1 - (2) Zt 1(77)
anom’ e (0) = Jih ih g (Aj — Aj+1) Xe1(mK (T)
m—1 o, ( )
=3 (Aje = Ajr) KV (%) h) e(0),
=1

and with similar reasoning as in Lemma 2 of Seo (2011), we obtain h™*(3* — %) = 0,(1) and
hY(B* — B°) = 0,(1), the dominating part of 882:5;?) e:(0) is

’

—T2,t— 1$2t

Vvnh +/nh _:1

J

m—1
1

Ajr) X K (w) e:(0). (S1.23)
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0
Then, with the same reasoning as the proof of convergence of 8537(:)61& (6°), we obtain

8%es (0 h <& =
nQZ 8555 EZ 877877 75(9):d>/lC( dsaq/ B(s ds,

Oet(0) Oer(8)
ox o

Notice that B, Wi,...,Wy,—1 are all symmetric, —D, T, (0°) has the same limit as D, T, (6°),

therefore, the proof of this theorem is completed.

when 6 is in between 6° and *. The convergence of 9 is standard and is omitted.



