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SMOOTHING REGRESSION QUANTILE BY
COMBINING k-NN ESTIMATION WITH LOCAL
LINEAR KERNEL FITTING
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Abstract: A two-step nonparametric regression quantile smoothing technique is
presented here, combining a standard k-NN technique and a locally linear kernel
smoother. There are many advantages to this approach: an asymptotically optimal
mean square error (Fan, Hu and Truong (1995)), a ready-made bandwidth selection
rule (Yu and Jones (1998)), and simple computation and flexible estimation under
variable transformations and distributional assumptions. The method is tested on
a simulated example, and applied to data.
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1. Introduction

Quantile regression is widely used for screening some biometric measure-
ments (height, weight, circumferences and skinfold) against an appropriate co-
variate (age, time) (Healy, Rasbash and Yang (1988), Cole (1988), Goldstein and
Pan (1992), Royston and Altman (1994)). Some extreme (high or low) quantiles
of underlying distributions of measurements are particularly useful for indus-
trial applications (Magee, Burbidge and Robb (1991), Hendricks and Koenker
(1992)). In this area many advances in theory and application have been made
in the last few years, and some nonparametric and semi-parametric techniques
(Jones and Hall (1990), Bhattacharya and Gangopadhyay (1990), Cole and Green
(1992), Fan, Hu and Truong (1995), Yu and Jones (1998)) are particularly at-
tractive. Jones and Hall’s theoretical investigation based on the kernel fitting of
the “check-function” p,(t) = {|t| + (2p — 1)t}/2 of Koenker and Bassett (1978)
was extended by Fan, Hu and Truong with an advanced locally linear smoother.
The asymptotic mean square error (AMSE) for internal and boundary points is
given by
R(K)
nhg(z)’
where §,(x) is the estimator of the true pth (0 < p < 1) quantile function
gp(x) of response Y given covariate X = z, K is a symmetric function with

AMSE(Gy(2)) = p2(K)* (g ())*h* +
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po(K) = [u? K (u)du, R(K) = [ K*(u)du, g() is the density function of x, n
is the sample size, and h is the bandwidth. As in fitting a mean function, the
AMSE of the local linear kernel fitting quantile function depends only on the
second derivative of the quantile function and this approach has no boundary
modification. Thus the AMSE should be “optimal” under kernel fitting. A novel
bandwidth selection rule based on this optimal AMSE has been explored recently
by Yu and Jones (1998) and is given by

1
hp = hmean{ﬁ}l/a
where hpeqn is the bandwidth for the smoothing estimation of the regression
mean and ¢(-) and ®(-) are respectively the standard normal density and distri-
bution function.

Obviously, the “check function” based approach may need some specific algo-
rithms to perform practical calculations, whereas Bhattacharya and Gangopad-
hyay’s (1990) k-NN method is usually simple to calculate. The method is as
follows.

Let {(X;,Y:)}, i = 1,...,n be independent and identically distributed as
(X,Y), and given X = xg , define Z = | X — x¢|. Here {(Z;,Y;)},i=1,...,n, are
i.i.d. from (Z,Y"). The order statistics of Z are denoted by Z,1 < Zpo < -+ < Zpp
and the induced order statistics of Y by Yy,1,...,Yy,, ie., Yy, =Y; if Z,,; = Z;.

For any positive integer k < n, the k-NN estimator Gp(x) of the conditional
p-quantile ¢,(x) of Y given X = x is the p-quantile of the empirical distribution
of conditionally independent responses Y,1,...,Y,%. So

k
Gurly) = k7' 1Yy < y),
=1

is the c.d.f. and
Gp(w) =the [kplth order statistic of Yni,...,Yur,

where I (S) denotes the indicator of the event S.

This k-NN estimator has a Bahadur-type expression as the ordinary quantile
(Bahadur (1966)), but the practical performance of k-NN regression quantile es-
timation is not always satisfactory. A Monte Carlo example from Healy, Rasbash
and Yang (1988) throws some light on this problem.

The data {(X;,Y;)}}, n = 500, are simulated from the model

Y; = X2+ 10¢;, €~ N(0;1), X; ~U(0,10).

Figure 1 shows the median curve of the simulated data set based on the k-NN
method. Obviously it is prone to local noise for small k, while it has a heavy tail
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(right boundary here) for larger k. Moreover, it is almost impossible to find an
approximate “optimal” k for good fitting and smoothing in this case.
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Figure 1. Simulated data (n = 500), y = x? plus Gaussian errors with
standard deviation 10. Fitted median by k-NN method. (a) k = 20. (b)
k = 50. (c) k = 100. (d) k = 150. True median (dotted line) and fitted
curves (solid line).

The almost-interpolation feature of the k-NN method which comes from
selecting smaller k provides an “initial estimator” of the true quantile even if it
is prone either to large variance or boundary bias. One then combines this initial
estimator with advanced local linear fitting to get the updated smoothers. For
example, take the initial pth quantiles as new samples and smooth them again
by some other smoothing techniques. Among other smoothing techniques, the
local linear kernel fitting with no boundary modification is a good choice.

An obvious drawback is that the quality of the fitted curves depends on the
choice of initial samples, regardless of the smoothing technique applied, and di-
rectly smoothing the k-NN points seldom gives a good fit in terms of the quality
of k-NN estimators. Healy’s rule (Healy, Rasbash and Yang (1988)) for partition-
ing the covariate value range can help in this context, since this rule successively
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and repeatedly takes advantage of original sample information when partitioning
the covariate-range into boxes. This rule, called the HRY partition rule in this
paper, will be shown to be different from the general age-grouping and binning
of data that are usual in statistical analyses.

Section 2 describes this combining method, and Section 3 pcesents a theoret-
ical investigation, including the asymptotic optimal mean square error property.
Lastly, Section 4 addresses computational and practical performance issues, and
shows that the results are satisfactory and comparable to several existing meth-
ods.

2. The Method

The two-step regression quantile smoothing method may be described as fol-
lows. First produce a sample of initial quantiles by k-NN at each covariate point.
To do this, sort the data by X, denote it by {(X;,Y;)}} and the sorted {Y;}} can
be treated as conditionally independent for X = z. The k-NN estimator of the
p-quantile g,(x), for given p and k and for any X = z, is based on measurements
{(Xiyj—1,Yiyj—1)iq, j=1,...,n — k + 1}; that is, the HRY rule partitions the
covariate range into n — k + 1 boxes, where the first k points yield the initial
estimator at X = x in the first box. Then the procedure is repeated using points
2to (k+1), 3 to (k+2),..., until the entire covariate range has been covered.
In short, given p and k, a sample of size n produces n — k + 1 “initial quantile”
samples, but the sample quantiles arising from this first step are irregular and
are correlated with each other. Then a local linear kernel fitting based on the
n — k + 1 “initial sample” is used to give the final quantile estimator.

It should be stressed that the selection of k here does not have a big influence
on the smoothing results as long as k is not too large (n—k — oo when k,n — 00).

3. The Model and Asymptotic Mean Square Error

For fixed p, let the sequence {&,;,1p,i}it1, m = n—k+1, be the pth quantile
samples obtained from the k-NN method and HRY rule in the first step, which
gives a new set of observations for the p-quantile of the response Y and the
corresponding covariate X. The {n,;}i", are neither irregular nor smooth, but
it is reasonable to assume that they follow a regression model with true function
ap():

Y = qp(X) +e, (1)

where E(e) = 0 and {¢;}, ¢ > 1, are correlated errors.
Hérdle (1990) summarizes nonparametric regression models for correlated
data as follows.
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Model (S). There is a stationary sequence {(X;,Y;),7 > 1}, which may be
stochastically dependent, and interest is in estimation of E(Y|X = z).

Model (T). There is a time series {Z;,7 > 1} and interest is in predicting Z,, 11
by E(Zn+1|Zn = ."L‘)

Model (C). The observation errors {€;,} in the fixed design regression model
Yin = m(i/n) + €, form a sequence of correlated random variables.

Obviously, Model (1) can be approximated by Model (C), but it is not nec-
essarily limited to a fixed design. Among several popular kernel estimators for
treating this model, Gasser and Miiller’s estimator and Priestly and Chao’s es-
timator were investigated respectively by Hart and Wehrly (1986), Hart (1991)
and Altman (1990), but neither the Nadaraya and Waston estimator, nor current
local polynomial kernel estimators have been analysed so far. Our investigation
is restricted to local linear kernel estimators that do not require boundary mod-
ification.

For a random vector (X,Y"), let g denote the density of X and f(.|z) the
conditional density of Y given X = x, with corresponding conditional distribution
F(.|z). Then

Flgy(a)]a) = p.
Given k, for fixed i (i € {1,...,m}), let Y3 ;,..., Yy itr—1 be the induced order
statistics of (Z;,Y;),...,(Zizk—1,Yitx—1). Then the conditional empirical distri-

bution of Y based on Yy ;, ..., Yy iyx—1 is
k
Firly) = 1/EY I(Vijpio1 < ).
j=1

Note that the ith p-quantile sample 7, ;, as defined in model (1), is obtained
from k conditionally independent samples {Y;,...,Y;1x_1} which are part of the
original sample Y1,...,Y,, k4+m —1 =n. Then 7,; is the [kp|th order statistic
of Ykﬂ;, e aYk,i—i-k—l and

Npi = infly: Fix(y) > [kpl/k}, i=1,...,m.

Obviously, if ¢« = 1, both 1,1 and 7,14, for j = 1,...,k — 1 are related to
{Yl}f:jﬂ, and for any u > k, 1,1 and 7, , are independent.

On the other hand, from Theorem N1 of Bahattacharya and Ganaopadhyay
(1990), 1p,i, 1 < i < m, has a Bahadur-type representation as a sum of k£ inde-
pendent error random variables.

Write

Npi — @p() = B(gp(T) + e
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where
f(2) P20 gp(x)|z) + 2f () F1° (gp()|2)
24f3(x)g(qp(x))

Blap(x)) = —

with

r

FrO(gy(2)]2) = 2

aer(y‘x)‘x:x,y:qp(x), T = 1’2

Then asymptotically
mazkeN|Rk| = O(n_3/5logn),

and for each k, the {WV; (l‘o)}é-—;];_l are independent random variables with mean
0 and variance p(1 — p).
Now define
1 itk—1

“ e =

Then clearly

p(1 —p)
Var (¢;) = ————
)= h g @)
and, for any v = 0,1, ..., the covariance of ¢; and ¢;1,, depends only on v . In

fact when ¢ = 1,

k292 (qp(z)|x

(k—v)p(1—p) _ _
COV(61,61+V):{0 )x)? Z;Z,,k‘ 17

For any k, and sufficiently large n,

. R= _ (k=1)p(1-p)
Z Cov (€1, €140) = Z Cov (€1, €14) = W'

v=1 v=1
This completes the proof of Theorem 1 below.

Theorem 1. Let the sample {&pi,mpitie, of model (1) be generated from a
random sample of n ordered pairs {(X;,Y;)}! by the HRY partition rule and the
k-NN method. Then the model random errors constitute a stationary process with
covariance function

E{ei e} = o*()p(li = 1), (2)
where o%(z) is given by % and
kv, v=0,...,k—1,
Pv =
0, v>k.

Further, we have
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Theorem 2. Given i.i.d. observations {(X;,Y:)}}, under the conditions of The-
orem 1, if h — 0 and nh — oo, the local linear kernel estimator Gy(x) of qp(x)
based on regression model (1) with 2nd order symmetric kernel K satisfies the

following.
(i) Interior property:
o) o)~ G+ RO IUP) a5
RUK)p(1 1)

= 1/4(qy (2))*u3 (K)h* + (3)

mhg(qp(z)|z)?’
where pa(K) = [u?K (u)du, R(K) = [ K*(u)du
(ii) Boundary behavior: Assume x € [0,1], then for left-boundary points x = ch
with ¢ > 0,
- 2 " 2 S%C 51,e83,c49, 4
E(gp(z) — qp(2))” = 1/4(q, (0+)) { ———7"}h
52,¢50,¢ 51 c
JC 82,6 — us1 )P K2 (u)du 1—
[ 2 12 ( A +2 ZP
52,650, — 57, c] kg(Qp(0+ |0+

2
523 S1 0330

—1/4 " 0 2 2h4
0P
+ffoo[8270 - US]_7C]2K2( )du p(]' _p) (4)
[32,050,c - Sf,c]g mhg(qp(0+)‘0+)2 ’

where s;.= [ K(u)uldu, 1=0,1,2,3, m=n—k+1.

Proof of Theorem 2. To prove this theorem the following lemma is required.
(See Lemma 4 and Lemma 2 of Fan and Gijbels (1992).)

Lemma. Assume that g(-), K(-) and S(-) are bounded and continuous
functions in [0,1] and right continuous at x = 0. Suppose further that
lim sup,,_, o | K (u)u*?| < oo for a nonnegative integer .

(i) For interior points x € [0,1],

> K(E=E)S0G) (@ - X)! = 1S ( / K (u)u'du(1 + op(1).
(ii) For left boundary points x = ch,, when h, — 0,

SRS

j=1

X S(X;)(n — X;)! = nh!T1S(04)g(04) int® K (u)u'du(14o0p(1)).
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Since

Qp(x) =D whn(2, )p 5,
j=1

where the weights are local linear kernel fitting weights,

K(Z522) Sz — (2 — &) Sm,1)

’U)h,m(fraj) = Sm’Q,S’m’O — Sg%l )
with .
T — &
S = ZK(%)@: — &)l 1=0,1,2.
1
Conditioning on covariates &, j, j = 1,...,m, and letting ,,(-) be the covariance

of the observations, wp, n(,-) the column vector W, (, §), and wp ,(z, )T the
transpose of wp, y,(z, ), the mean squares error of §,(x) is

MSE(.T, h, m,p) = (wh,m(‘rﬂ ')qu(') - qp(x))Z + wh,m(‘r? ')sz(')wh,m(xa )

Since the bias term (wpm(z,)Tgp(-) — gp(x)) is not affected by the correlation
structure and has the same asymptotic form as the bias provided by Fan (1993),
it follows that

(i) for an interior point

Whn ()T ap(-) = ap(@) = =1/20% pa(K)qp () + o(h?) + o(1/mh),
(ii) for a boundary point
whm (04, )T gp() — gp(0+) = —1/2h%a(K, c)? q,(0+) + o(h?) + o(1/mh),

. . 82,(3_81:583:5

with OZ(K, C) = m
To derive the variance term, apply the lemma with S(-) = o2(-)(1+
25021 p(v)). Note that the correlation function p(-) is independent of the co-

variate, and Y ' |p(v)| converges as m — oo. Thus

() S (Yo, ) — T 201+ 2Zp<u>>

< (s )T S (Yt () — +2zp Yo, )|

T2+ 23 o0 >—if,f)ag<-><1+2zp<u>>\
R(K)

o1 fmh) + (Y1423 o), (7)== 2
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Then from the above lemma,

K
[wWhm (2, ) W (2, ) — W\ = o(1/mh),

and at interior points
MSE(x, h,m,p)=1/4h"15(K)*q) (z)*+ R( 1-1—22/) )+o(1/mh)+o(h?),

and hence (i).
Part (ii) for boundary points x = ch with ¢ > 0 and h — 0 can be proved
along same lines as (i).

Remark 1. It is interesting and important that the asymptotic pointwise mean
square error (AMSE) shows that this two-step regression quantile smoothing
method yields the same result as the direct minimization of the “check function”
by local linear kernel fitting (Fan, Hu and Trong (1995)).

Remark 2. The pointwise mean square error at interior points in Theorem 2 still
holds for Gasser and Miiller smoothing (Hart and Wehrly (1986), Hart (1991))
and Priestly and Chao smoothing (Altman (1990)). These smoothers can also
be used in practice but with boundary kernel modification.

Remark 3. Another interesting feature of this method is that the AMSE is
independent of k, but asymptotically it is required that n — oo,k — oo, and
n—k — oo.

4. Bandwidth Selection and Numerical Examples

Theorem 2 shows that the asymptotically optimal bandwidth for interior
points is
9% (ap(2)[2)qy ()23 (K )m
As mentioned in Remark 1 above, this method of combining k-NN estimation
with local linear kernel mean fitting for smooth conditional p-quantile based on
n independent samples is asymptotically equivalent to the local linear kernel
weighting “check-function” based on m independent samples, in the sense of
asymptotic mean square error. Recall the rule-of-thumb for bandwidth selection
rule derived from Yu and Jones (1998):

(a) use ready—made, and sophisticated, methods to select Apeqn such as the
technique suggested by Ruppert, Sheather and Wand (1995);

(b) use hy = hiean %}1/5( )1/% to obtain all other hys from Apean -

Clearly, for fixed p the bandw1dth selection relates to the Values of m and n,
and h;, here is generally a bit bigger than that used in local linear kernel fitting.

h® =
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The Associate Editor pointed out a deficiency: using the global bandwidth
in problems where the designs are not uniform might undersmooth the quantile
curves in one area but oversmooth in another. This is because a single k£ that
appeals to the k-NN method might produce many points in one area but few in
another area. However, this is not a big concern, as the design-adaptive local
linear kernel smoothing technology is employed in the final estimation.

On the other hand, if the deficiency above occurs in practice, then various &
in the k-NN method may be used to avoid the shortcoming.

4.1. Smoothing quantile curves

The method is applied to fit the median using different values of k.

First, data are simulated from the model of Section 1 with sample size n =
500. A normal kernel with A,cqn = 1, selected subjectively, is used to fit the
median with k£ = 10,20,50 and 100. Figure 2 is based on 100 simulations. It is
seen from Figure 2 that & > 50 is not necessary for this method and that changing
k has very little smoothing effect on the fitted curve. The same conclusions can
be drawn for fitting other quantiles.

Figure 2(a) Figure 2(b)
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Figure 2. Simulated data (n = 500), y = 22 plus Gaussian errors with stan-
dard deviation 10. Fitted median by two-step method with 100 simulations.
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(a) k =10. (b) k =20. (¢) k =50. (d) k = 100. True median (dotted line)
and fitted curves (solid line).

Secondly, two practical datasets are used here, one is approximately normally
distributed with n = 298 while the other is skew, with n = 4011. We will refer
to them as the serum concentration data and the US girls’ weight data (Yu and
Jones (1998)). We employ the rule 6 (a) and (b) derived from equation (5) for
hy, selection.

(i) US girls weight data with hpeqn = 1.8 for & = 30,50. The seven fitted
quantiles are

{p =0.5, 0.25, 0.75, 0.9, 0.1, 0.97, 0.03} (Figure 3).
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Figure 3. Scatter plots of body weight of 4011 U.S. girls aged between 1 and
21 years. (a) Smoothed reference centile curves for the US girls’ weight data
at 3rd, 10th, 25th, 50th, 75th, 90th and 97th quantiles. (b) k = 30. (c)
k = 50.

(ii) Serum concentration data (IgG) with hpeqn = 0.5 and k& = 20,30. The
seven fitted quantiles are
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{p=0.5,0.25,0.75, 0.9, 0.1, 0.95, 0.05} (Figure 4).
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Figure 4. Smoothed reference centile curves for the immunoglobin—G data at
5th, 10th, 25th, 50th, 75th, 90th and 95th quantiles. (a) k = 20. (b) k = 30.

Clearly, the differences for moderate centile curves and extreme centile curves
based on different k values are small for the two data sets.

4.2. A comparison based on simulation

As we have seen, this proposed two-step method for smoothing regression
quantiles is related to three existing methods: the HRY method (Healy, Rasbash
and Yang (1988)), the k-NN method (Bhattacharya and Gangopadhyay (1990))
and local linear kernel fitting using the “check function” (Fan, Hu and Truong
(1995)).

Within the “check function” group, several smoothing techniques, in the
category of spline smoothing with roughness penalty have been discussed by
Koenker, Ng and Portong (1994), He and Shi (1994) and He (1997). Kernel
smoothing and spline smoothing are the two main smoothing techniques, and
it should be noted that the reason kernel smoothing, not spline smoothing, is
used here, is to try to use the ready-made smoothing parameter selection rule.



SMOOTHING REGRESSION QUANTILE 771

Whatever the smoothing method, the key issue in estimation lies in smoothing
parameter selection. As is the case with kernel smoothing (3, ¥(Y; —a)K (I_TXZ))
and spline smoothing (3=; ¥ (Yi—g(z:))4+ [(l¢”(x)[")/7dt  with 1) the quadratic
function or the check function), the efficiency of kernel smoothing and spline
smoothing for regression modelling is the same if both smoothing parameters are
correctly choosen. As a matter of fact, the two smoothing techniques, in terms of
the asymptotic relationship of their smoothing parameters, are equivalent (Cox
(1983), Silverman (1984)).

It would be useful to compare the new methodology with these, and also to
the double-kernel method (Yu and Jones (1998)) and the restricted regression
quantile method (RRQ) (He (1997)).

To highlight the advantages and disadvantages of each approach, we carry
out a simulation comparison based on the model

Y =242 cos(X) + exp(—4X?) +e,

with X ~ N(0,1) and e ~ E(1).

Clearly, the general expression of the pth regression quantile for this model
is

gp(r) = 2+ 2 cos(z) + exp(—4z?) — log(1 — p).

The simulations are based on the estimation of three regression quantiles:
p = 0.5,p = 0.9 and p = 0.1, with sample size n = 500. Only 100 simulations
were performed here.

The regression quantiles in the interval x € [—1, 1] are estimated. The inte-
grated square error (ISE) is computed as

1
15E, = | (dp(@) = @) *do.

For the HRY method, k = 50 is selected subjectively in the first step calcu-
lation, and an even polynomial is chosen in the second step:

Yp = Gop + G1pT + agpx2 +eeet anxT,

where the coefficients {a;,}]_, are given by

aip = byo + bp1® () + -+ + byg, (27 ().

The higher the degree of polynomial y,,, the more accurate the fitting. Here
T=8,go=1and g = g2 =0.

Regression B-splines are chosen to fit the RRQ. In the other methods, k£ or
h was selected to minimize asymptotic MISE. For example, the k = [k] which
minimizes the AMISE of k-NN method from Section 3 is

AMISE = (k/n)* / L 9@ P gy ) + 20 @) 1 gy ()])

2 X
g 247 @) F(gp @) [7) )y
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p(1—p) [t 1
R /_1f<qp<x>\x>d“’

The h, for applying the “check function” method is

R(K)p( f 1
B5— WQ( 1 g%(gp(z )\x)f(x)
p

20 p T f T '

The h), for applying the two-step method is

dz

R(K)p( 1
5 _ rori I Fmmmrm
g S (¢ ()2 da

The (hy, hap) for the applying the double-kernel method is to minimize

1/ [ (2) P 0y ol ()
+ h3p2(W)g'(gp()]2)/g(ap ()| 2))* da

1 R(K) - - xX)|T) X
- /_1 nhg(@)g2(g,(2)[2) (p(1 = p) = hag(gp(2)|2)a(W))dz,

with W(u) = 1/2I(Ju| < 1), «(W) = [ Q(t)(1—Q(t))dt and Q(t) = ffoo W (u)du
Table 1 lists the results.

Table 1. ISE of three quantiles estimators by six methods.

method p=01|{p=05|p=09
HRY 0.12 0.09 0.13
k-NN 0.02 0.03 0.29
check function | 0.01 0.032 |0.18
two-step 0.008 |0.023 ]0.19
double-kernel | 0.0069 |0.023 |0.12
RRQ 0.0068 | 0.015 |0.12

Clearly, the HRY method does not perform as well as the others, although
there is no big difference between fitting median and extreme quantiles in terms
of ISE. It seems that there is not much difference between the other three meth-
ods, but the proposed two-step method has general advantages over each except
the double-kernel method and the RR(Q method in this simulation. Also, the
proposed method’s calculations are much quicker than those of the “check func-
tion” and double-kernel methods, as the two-step method does not require any
iterative calculations.
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Two-step estimating or sampling ideas, and methods such as two-step regres-
sion and bootstrapping, have existed for a long time in the statistical literature,
and have proved very successful in classical statistical analysis and advanced es-
timation theory. In this paper similar techniques are demonstrated for regression
quantile estimation.
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