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Abstract: In this paper, the maximum likelihood estimation of a general two-level

structural equation model with an unbalanced design is formulated as a missing

data problem by treating the latent random vectors at the group level as hypo-

thetical missing data. The commonly used EM algorithm is utilized to obtain the

solution. Expressions for the E-step are derived and it is shown that the complex

optimization of the M -step can be completed conveniently with existing software.

Some accelerated procedures such as the EM gradient algorithm and the Quasi-

Newton EM algorithm are modified to improve the convergence rate of the basic

EM algorithm. Results from simulation studies and analysis of examples illustrate

the features and potential of the EM approach.
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1. Introduction

Formulation of structural equation models is an important technique used
in studying correlations and causations among observed and latent variables. In
past years, based on the standard assumption that the observational data are
independent, models have been applied widely in educational research. However,
there are still many fundamental researches in educational testing which require
the analysis of multilevel data from various types of hierarchical sampling de-
signs. For example, consider the problem of deciding correct educational policy
on programs that involve judgement of the performance of schools, programs
and students; investigators are required to assess students’ performance and how
that performance is influenced by factors through the activities of teachers in
classrooms and effectiveness of school origanization. To analyze these influences
based on the non-independent multilevel data requires the statistical modeling of
the causations and correlations at each of these levels. In past years, significant
contributions have been developed to deal with multilevel data in educational
testing (see for example Goldstein (1987) and Bock (1989)). Moreover, a number
of authors have also established some theoretical results for analysis of structural
equation models with multilevel data. For example, McDonald and Goldstein
(1989) analyzed the two-level model with balanced sampling designs, and Lee
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(1990) developed the generalized least squares and the maximum likelihood (ML)
theory for more general models with unbalanced designs. In addition to the the-
oretical contributions, certain computational methods have also been proposed
recently. Longford and Muthen (1992) derived procedures for applying the scor-
ing algorithm in the context of the factor analysis model. It is noted that even in
this simple special case, expressions for implementing the scoring algorithm are
very complicated and tedious to program. Clearly, the situation is worse when
the scoring algorithm is applied to the general models. Muthen (1990) showed
that the solution established by McDonald and Goldstein (1989) with balanced
data can be obtained using available softwares EQS (Bentler (1992)) and LIS-
REL (Jöreskog and Sörborm (1996)). However, this method cannot be applied to
models with unbalanced designs. Raudenbush (1995), considering the observed
unbalanced data as “incomplete”, and the “complete data” as balanced, pro-
posed using the EM algorithm to obtain the solution of this missing-data prob-
lem. Expressions for the E-step were derived and it was suggested that the more
complex computation of the M -step be performed by Muthen’s (1990) method.
As pointed out by Raudenbush (1995), a likely disadvantage of his approach is
the slow convergence that occurs when sample sizes vary substantially. Lee and
Poon (1992) showed that the “multi-sample” option of LISREL (Jöreskog and
Sörbom (1996)) and EQS (Bentler (1992)) can be used to obtain a consistent
estimator of a special two-level model in which the covariance structures of the
individual levels are invariant across groups. The method cannot be applied to
models with different group structures.

In this paper, we investigate the application of the EM algorithm to obtain
the ML solution of the two-level general structural equation models by treating
the latent random vectors at the group level as missing. Hence, the approach
is quite different from Raudenbush (1995) but is similar to the procedure sug-
gested by Rubin and Thayer (1982) for the ML factor analysis where the latent
factor scores are treated as missing data. We show that the proposed algorithm
has the following features that are better in one or more aspects than the pro-
cedures cited in the previous paragraph: (i) general structural equation models
with unbalanced designs and different within group covariance structures can be
analyzed, (ii) ML solution can be obtained conveniently with the standard LIS-
REL (Jöreskog and Sörbom (1996)) or EQS (Bentler (1992)) software packages,
so it is easy to apply in practice, (iii) the convergence is fast and expressions for
implementation are simple; hence the computational burden of the algorithm is
light.

Organization of the rest of the paper is as follows. The model and the ML

estimation are discussed in Section 2. The motivation of the EM algorithm is
presented in Section 3. Expressions for the E-step are derived and procedures
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for computing the M -step are discussed. Moreover, some modifications in ac-
celerating the EM algorithm are presented. Section 4 includes some examples
and results of simulation studies which give some evidence about the empirical
performance of the proposed algorithms. Examples based on models with cross
level parameters are included. Finally, the paper concludes with a discussion of
the algorithm.

2. ML Estimation of Two-level Structural Equation Model

Suppose x
˜gi is a p × 1 observed random vector such that

x
˜gi = v

˜g + v
˜gi, (1)

for g = 1, . . . , G, i = 1, . . . , Ng, where v
˜g is a latent random vector varying at

the group level, and v
˜gi is a latent random vector varying at the individual level.

It is assumed that the random vectors {v
˜g, g = 1, . . . , G} are i.i.d; and for a

given g, {v
˜gi, i = 1, . . . , Ng} are i.i.d; and that v

˜g and v
˜gi are also independent.

Suppose v
˜g is distributed as N [0

˜
,Σ
˜
∗
B] and v

˜gi is distributed as N [0
˜
,Σ
˜
∗
gW ], where

the between group covariance structure Σ
˜
∗
B = Σ

˜B(θ
˜
∗) and the within group

covariance structure Σ
˜
∗
gW = Σ

˜ gW (θ
˜
∗) are matrix functions of an unknown q × 1

parameter vector θ
˜
∗. The Ng may be different, so we are dealing with models

with unbalanced designs. Without loss of generality, it is assumed that the mean
vectors are equal to zero. It should be noted that Σ

˜
∗
B and Σ

˜
∗
gW may have general

structure where cross-level parameters are allowed. Examples of Σ
˜
∗
B and Σ

˜
∗
gW

are the factor analysis model, the LISREL model (Jöreskog and Sörbom (1996)),
and the Bentler and Week’s (1980) model in EQS.

Let z
˜
′
g = (x

˜
′
g1, . . . , x˜

′
gNg

), the distribution of z
˜g is N [0

˜
, (J

˜g ⊗ Σ
˜
∗
B) + (I

˜g ⊗
Σ
˜
∗
gW )], where J

˜g is an Ng × Ng square matrix of unit elements, and I
˜g is the

identity matrix of order Ng. From the results in Lee (1990), it can be shown
that the negative log-likelihood function based on the observed data z

˜1, . . . , z˜G

is proportional to

F (θ
˜
∗) =

G∑
g=1

{
log |Σ

˜
∗
g| + N−1

g tr[Σ
˜
∗−1

g

∑
i,j

x
˜gix˜

′
gj]

+(Ng − 1) log |Σ
˜
∗
gW | + N−1

g tr[Σ
˜
∗−1

gW

∑
i�=j

(x
˜gix˜

′
gi − x

˜gix˜
′
gj)]

}
, (2)

where Σ
˜
∗
g = Σ

˜
∗
gW +NgΣ

˜
∗
B . Direct minimization of (2) to obtain the ML estimate

of θ
˜
∗ is very tedious even for the case where Σ

˜
∗
B and Σ

˜
∗
gW have the simple factor

analysis structures (Longford and Muthen (1992)). In the next section, it will
be shown that the ML estimate can be obtained conveniently with much less
effort by using the EM algorithm with either EQS (Bentler (1992)) or LISREL
(Jöreskog and Sörbom (1996)).
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3. Estimation of the Model Using the EM Algorithm

From the definition of the two-level model given in (1), it is clear that if v
˜g is

observed, the model will become rather simple and can be analyzed without much
difficulty. Thus, we consider {(x

˜g1, . . . , x˜gNg
, v
˜g), g = 1, . . . , G} as the complete

data set, and treat the random vectors v
˜g as missing. Hence, this model can be

formulated as a missing data problem and the EM algorithm (Dempster et al.
(1977)) is a natural procedure to obtain the solution. The idea presented here
has been proposed by Rubin (1991) and is similar to that given by Rubin and
Thayer (1982), where they obtained the ML factor analysis solution via the EM

algorithm by treating the latent factor scores as missing data.
Let X

˜
and V

˜
denote the observed data and the missing data with elements

given by the x
˜gi’s, and the v

˜g’s, respectively. The negative log- likelihood function
of the complete data set is proportional to

L(X
˜

, V
˜
|θ
˜
∗) =

1
2

G∑
g=1

Ng∑
i=1

[log |Σ
˜
∗
gW | + (x

˜gi − v
˜g)

′
Σ
˜
∗−1

gW (x
˜gi − v

˜g)]

+
1
2

G∑
g=1

[log |Σ
˜
∗
B | + v

˜
′
gΣ˜

∗−1

B v
˜g], (3)

where Σ
˜
∗
gW and Σ

˜
∗
B are the within and between group covariance structures that

depend on the unknown parameter vector θ
˜
∗.

In the E-step of the EM algorithm, we need to find E[L(X
˜

, V
˜
|θ
˜
∗)|X

˜
, θ
˜
],

that is, the expected value of the complete-data negative log-likelihood given the
observed data X

˜
and the current value of the parameter θ

˜
. The second step

of the EM algorithm, the M -step, requires minimizing this expected negative
log-likelihood with respect to θ

˜
∗, as if it were based on the complete data. Hence,

the M -step gives the next value of θ
˜
; using the new θ

˜
, the E-step is computed

and the algorithm continues.

3.1. The E-Step

It can be seen from (3) that finding E[L(X
˜

, V
˜
|θ
˜
∗)|X

˜
, θ
˜
] requires one to find

the

E
[ Ng∑

i=1

(x
˜gi−v

˜g)
′
Σ
˜
∗−1

gW (x
˜gi−v

˜g)|X˜ , θ
˜
)
]

= trΣ
˜
∗−1
gW

Ng∑
i=1

E
[
(x
˜gi−v

˜g)(x˜gi−v
˜g)

′ |X
˜

, θ
˜
)
]
,

(4)
and

E
[
v
˜
′
gΣ˜

∗−1

B v
˜g|X˜ , θ

˜

]
= trΣ

˜
∗−1

B E
[
v
˜gv˜

′
g|X˜ , θ

˜

]
. (5)
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Given the current parameter vector θ
˜
, the joint distribution of (v

˜
′
g, x˜

′
g1, . . . , x

˜
′
gNg

)′

is N [0
˜
,Ω
˜ g], where

Ω
˜ g =

[
Ω
˜g11 Ω

˜ g12

Ω
˜g21 Ω

˜ g22

]
,

with Ω
˜g11 = Σ

˜B = Σ
˜B(θ

˜
), Ω

˜ g12 = (Σ
˜B, . . . ,Σ

˜B), Ω
˜g22 = (J

˜g⊗Σ
˜B)+(I

˜g ⊗Σ
˜ gW ),

and Σ
˜ gW = Σ

˜gW (θ
˜
). Letting Σ

˜ g = Σ
˜ gW + NgΣ

˜B , it can be shown that

Ω
˜
−1
g22 = (I

˜g ⊗ Σ
˜
−1
gW ) − [J

˜g ⊗ N−1
g (Σ

˜
−1
gW − Σ

˜
−1
g )]. (6)

It follows from (6) that Ω
˜g12Ω˜

−1
g22 = (Σ

˜BΣ
˜
−1
g , . . ., Σ

˜BΣ
˜
−1
g ) and Ω

˜g11−Ω
˜g12Ω˜

−1
g22Ω˜ g21

= Σ
˜B − NgΣ

˜BΣ
˜
−1
g Σ

˜B. Hence, the conditional distribution of v
˜g given (x

˜g1, . . .,
x
˜gNg

) is multivariate normal with covariance matrix Σ
˜B−NgΣ

˜BΣ
˜
−1
g Σ

˜B and mean

vector Σ
˜BΣ

˜
−1
g t

˜g, where t
˜g = ΣNg

i=1 x
˜gi. Based on this result, the conditional ex-

pectation of (x
˜gi − v

˜g)(x˜gi − v
˜g)

′
and v

˜gv˜
′
g given (X

˜
, θ
˜
) can be obtained. Hence,

it can be shown that
Ng∑
i=1

E[(x
˜gi − v

˜g)(x˜gi − v
˜g)

′ |X
˜

, θ
˜
)] = NgC

˜ g(θ), (7)

where

C
˜ g(θ˜

) = N−1
g

[ Ng∑
i=1

x
˜gi x

˜
′
gi − t

˜gt˜
′
gΣ˜

−1
g Σ

˜B − Σ
˜BΣ

˜
−1
g t

˜gt˜
′
g

]
+ D

˜ g(θ),

with

D
˜ g(θ) = E[(v

˜gv˜
′
g)|X˜ , θ

˜
)] = (Σ

˜B − NgΣ
˜BΣ

˜
−1
g Σ

˜B) + Σ
˜BΣ

˜
−1
g t

˜gt˜
′
gΣ˜

−1
g Σ

˜B.

It should be noted that with given X
˜

and θ
˜
, C
˜ g(θ) and D

˜ g(θ) are known; it
follows from (4) and (7) that

E[L(X
˜

, V
˜
|θ
˜
∗)|X

˜
, θ
˜
] = M(θ

˜
∗|θ

˜
)

=
G∑

g=1

Ng

2
[log |Σ

˜
∗
gW | + tr Σ

˜
∗−1
gW C

˜ g(θ˜
)] +

G

2
[log |Σ

˜
∗
B | + tr Σ

˜
∗−1
B C

˜B(θ
˜
)],

where C
˜B(θ) = G−1[D

˜ 1(θ˜
)+ · · ·+D

˜ G(θ
˜
)], which is also a known matrix with the

current vector θ
˜
. This completes the E-step of the algorithm.

3.2. The M-Step

The function to be minimized at this step can be expressed as

M(θ
˜
∗|θ

˜
) =

G+1∑
k=1

2−1Nk [log |Σ
˜
∗
k| + trΣ

˜
∗−1

k C
˜ k(θ˜

)], (8)
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where for k ≤ G, Nk = Ng, Σ
˜
∗
k = Σ

˜ gW (θ
˜
∗), C

˜ k(θ˜
) = C

˜ g(θ˜
); while for k = G +

1, Nk = G,Σ
˜
∗
k = Σ

˜B(θ
˜
∗) and C

˜ k(θ˜
) = C

˜B(θ
˜
). It should be noted that there is no

closed form solution for this minimization problem and some iterative procedure
is required. However, M(θ

˜
∗|θ

˜
) is a simple function which has exactly the same

form as the ML fit function in structural equation modelling for multiple groups
with the known matrices C

˜ k(θ˜
) playing the role of the sample covariance matri-

ces. If there are no cross-level parameters and each within group structure has
no common parameters, that is, Σ

˜
∗
B = Σ

˜B(θ
˜
∗
B), Σ

˜
∗
gW = Σ

˜gW (θ
˜
∗
g), g = 1, . . . , G,

and {θ
˜
∗
B , θ

˜
∗
1, . . . , θ˜

∗
G} is a set of distinct parameter vectors, then M(θ

˜
∗|θ

˜
) is just a

sum of G + 1 independent functions that depend on some separable parameters.
Hence, the minimum of M(θ

˜
∗|θ

˜
) can be obtained easily by separate minimization

of G+ 1 small and simple functions, each of them just involving one Σ
˜
∗
B or Σ

˜
∗
gW .

This minimization can be completed conveniently using the standard “multiple-
sample” option of LISREL or EQS. If there are some cross-level parameters
and/or common parameters in certain within-group structures, the minimum of
M(θ

˜
∗|θ

˜
) can also be obtained easily and conveniently by the “multiple-sample”

option of LISREL or EQS with appropriate equality constraints on the corre-
sponding elements of the parameter vector θ

˜
∗.

It should be noted that it is much more complicated to minimize the function
F (θ

˜
∗) than M(θ

˜
∗|θ

˜
). From (2), it can be seen that each term of F (θ

˜
∗) depends

on Σ
˜
∗
B through Σ

˜
∗
g; hence, even though Σ

˜
∗
gW and Σ

˜
∗
B contain different or common

parameters, the minimization of F (θ
˜
∗) has to be carried out with respect to all

the parameters simultaneously. As a result, the computational burden in direct
minimization of F (θ

˜
∗) via the scoring or other algorithms is much more complex

than the minimization of M(θ
˜
∗|θ

˜
) using the EM algorithm.

3.3. Acceleration of the EM algorithm

In general, it is well-known that the convergence of the EM algorithm may
be slow in certain practical applications (Dempster et al. (1977)). Recently, a
number of suggestions had been proposed to accelerate the algorithm. For in-
stance, Jamshidian and Jennrich (1993) advocated a conjugate gradient version
of the EM algorithm; Lange (1995a,b) respectively recommended an EM gra-
dient algorithm and a Quasi-Newton acceleration of the EM algorithm; and Liu
and Rubin (1994) proposed an ECME algorithm. In our situation, all the above
mentioned modifications can be adapted. To save space, we only briefly discuss
how to utilize Lange’s (1995a,b) approaches in accelerating the EM algorithm.

Based on the argument that a single Newton-Raphson iteration at each M -
step would be adequate to ensure convergence of an approximate EM algorithm,
the EM gradient algorithm proposed by Lange (1995a) is to update the current
parameter vector θ

˜
∗ at the ith iteration by

θ
˜i+1 = θ

˜i − d20M(θ
˜
∗|θ

˜i)
−1 d10M(θ

˜
∗|θ

˜i)
∣∣∣∣
θ
˜
∗
=θ
˜i

, (9)
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where d10 and d20 are respectively the first and second partial derivatives with
respect to θ

˜
∗ in M(θ

˜
∗|θ

˜i). Hence, this algorithm avoids the search for the exact
optimum in the M -step of the EM algorithm while preserving the local conver-
gence properties of the EM algorithm. The Quasi-Newton acceleration (Lange
(1995b)) is to replace (9) by

θ
˜i+1 = θ

˜i − [d20 M(θ
˜
∗|θ

˜i) + B
˜ i]

−1 d10M(θ
˜
∗|θ

˜i)
∣∣∣∣
θ
˜
∗
=θ
˜i

, (10)

in which B
˜ i is the current approximation to the missing Hessian matrix; and is

updated as described in Lange (1995b). By differentiating the function M(θ
˜
∗|θ

˜i)
in (8), it can be shown that

d10M(θ
˜
∗|θ

˜i) =
G+1∑
k=1

Nk

2

{
�
˜ k

(Σ
˜
∗
k ⊗ Σ

˜
∗
k)

−1vec[C
˜ k(θ˜i) − Σ

˜
∗
k]

}
, (11)

d20M(θ
˜
∗|θ

˜i) =
G+1∑
k=1

Nk

2

{
�
˜ k

[(Σ
˜
∗
k⊗Σ

˜
∗
k)

−1+2[Σ
˜
∗−1

k ⊗ Σ
˜
∗−1

k (C
˜ k(θ˜i)−Σ

˜
∗
k)Σ˜

∗−1

k ]]�
˜
′
k

+∇̃k[I˜p⊗(Σ
˜
∗
k⊗Σ

˜
∗
k)

−1]vec[C
˜ k(θ˜i)−Σ

˜
∗
k]

}
, (12)

where �
˜ k

= ∂Σ
˜k(θ˜

∗)/∂θ
˜
∗, ∇̃k = ∂2Σ

˜k(θ˜
∗)/∂θ

˜
∗∂θ

˜
∗, I

˜p is a p × p identity ma-
trix and vec(A

˜
) is a vector that stores elements of A

˜
′

columnwise sequentially.
In the above EM gradient algorithm and the Quasi-Newton acceleration, it is
important that d20M(θ

˜
∗|θ

˜i) be a positive definite matrix. However, it can be
seen from (12) that d20M(θ

˜
∗|θ

˜i) may not be positive definite in general. Because
E(t

˜gt˜
′
g) = Ng(Σ

˜
∗
gW + NgΣ

˜
∗
B) = NgΣ

˜
∗
g, we have that E[D

˜ g(θ˜
)|θ
˜
∗
=θ
˜
] = Σ

˜B, and
E[C

˜ B(θ
˜
)|θ
˜
∗
=θ
˜
] = Σ

˜B , then E[C
˜ k(θ˜i)−Σ

˜k(θ˜i)] = 0 for all k = 1, . . . , G+1; hence

I
˜
(θ
˜i) = E[d20M(θ

˜i|θ˜i)] =
G+1∑
k=1

Nk

2

(
�
˜ k

(Σ
˜k ⊗ Σ

˜k)
−1 �

˜
′
k

)
,

where Σ
˜k = Σ

˜
∗
k(θ˜i). It should be noted that under the mild regularity conditions

that �
˜ k

is of full rank; the “information matrix” I
˜
(θ
˜i) is always positive defi-

nite. With this as motivation, we propose the following modified EM gradient
algorithm :

θ
˜i+1 = θ

˜i − I
˜
(θ
˜i)

−1 d10 M(θ
˜i|θ˜i), (13)

in which the Hessian matrix d20M(θ
˜i|θ˜i) is replaced by the “information matrix”

I
˜
(θ
˜i). In structural equation modelling, this is a common practice (Lee and Jen-

nrich (1979)). The procedure defined by (13) is also similar to the algorithm of
Titterington (1984) where d20M(θ

˜i|θ˜i) is replaced by the information matrix of
the complete data, which is clearly more difficult to evaluate than I

˜
(θ
˜i). More-

over, it follows from Lange (1995b) that d10M(θ
˜
|θ
˜
) = dF (θ

˜
) holds at θ

˜
= θ

˜i
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whenever θ
˜i is an interior point of the parameter feasible region; thus, the mod-

ified EM gradient algorithm defined in (13) can also be viewed as a gradient
method in minimization of the objective function F (θ

˜
∗) for the observed data.

The algorithm is said to have converged if ‖θ
˜i+1 − θ

˜i‖ is sufficiently small. Since
I
˜
(θ
˜i) is positive definite, this convergence criterion is equivalent to the condition

that the norm of d10M(θ
˜i|θ˜i) or dF (θ

˜i) is sufficiently small. Hence, the modified
EM gradient algorithm will converge to a minimum of F (θ

˜
∗). The analogous

Quasi-Newton EM algorithm (Lange (1995b)) is defined as:

θ
˜i+1 = θ

˜i − [I
˜
(θ
˜i) + B

˜ i]
−1d10M(θ

˜i|θ˜i). (14)

Due to the nature of the Quasi-Newton EM algorithm, it may not be very
convenient to utilize the LISREL program or the EQS program in obtaining the
solution. However, since I

˜
(θ
˜i) and d10M(θ

˜i|θ˜i) only involve the first derivatives of
the basic covariance structures with respect to θ

˜
: ∂Σ

˜ gW (θ
˜
)/∂θ

˜
and ∂Σ

˜B(θ
˜
)/∂θ

˜
,

they can be computed and implemented without much difficulty. For the modified
EM gradient algorithm, the EQS software (Bentler (1992)) which is essentially
based on the scoring type algorithm in the minimization procedure, can be used
to obtain the M -step iterations.

3.4. Asymptotic properties for statistical inference

At convergence, the EM algorithm or its accelerated procedures give the
maximum likelihood estimate θ̂

˜
∗

of θ
˜
∗ based on the observed data. Hence, it

follows from the asymptotic results developed by Lee (1990) that the asymptotic
distribution of T 1/2(θ̂

˜
∗ − θ

˜
∗) is N [0

˜
, 2H

˜
(θ
˜
∗)−1], where T = N1 + · · · + NG, and

H
˜

(θ
˜
∗) = G−1

G∑
g=1

(
�
˜ gW

[Σ
˜
∗
gW ⊗ Σ

˜
∗
gW ]−1�

˜
′
gw

+ N−1
g �

˜ g
[Σ
˜
∗
g ⊗ Σ

˜
∗
g]
−1�

˜
′
g

)
,

with �
˜ gW

= ∂Σ
˜ gW (θ

˜
∗)/∂θ

˜
∗, and �

˜ g
= ∂Σ

˜ g(θ˜
∗)/∂θ

˜
∗. The estimate of the

asymptotic standard errors of θ̂
˜
∗

can be obtained from the diagonal elements
of 2H

˜
(θ̂
˜
∗
)−1.

Let Ho be the null hypothesis that Σ
˜
∗
gW = Σ

˜ gW (θ
˜
∗) for g = 1, . . . , G and

Σ
˜
∗
B = Σ

˜B(θ
˜
∗), and let H1 be the general hypothesis that all covariance matrices

Σ
˜
∗
gW and Σ

˜
∗
B are any positive definite matrices. Let θ

˜o be the parameter vector
under H1; clearly, θ

˜o just consists of the distinct elements in all the within-group
covariance matrices and the between-group covariance matrix. The ML estimate
θ̂
˜o of θ

˜o can be obtained by using either the proposed EM algorithm or by
direct minimization of the function F (θ

˜o) as defined in (2) without imposing any
structures in Σ

˜
∗
B and Σ

˜
∗
gW . Based on the standard ML theory, the asymptotic

likelihood ratio statistic to test the goodness-of-fit of the proposed covariance
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structures Σ
˜
∗
gW and Σ

˜
∗
B in the model is given by χ2

L = −2T [F (θ̂
˜o) − F (θ̂

˜
∗
)],

which is asymptotically distributed as chi-square with degrees of freedom (G +
1)p(p+1)/2−q. Null hypotheses on the goodness-of-fit of other “nested” models
may also be tested by this type of asymptotic likelihood ratio test.

4. Examples and Simulation Studies

In this section, we will use some artificial examples to provide some idea
about the empirical performance of the EM algorithm and the accelerated EM

algorithms. Our main purpose is to demonstrate that these procedures work well
in analyzing the two-level structural equation models; but we do not attempt to
give an empirical comparison of the various EM methods. We will also provide
results from some simulation studies to illustrate the validity of the asymptotic
properties that are important for statistical inferences of the model. The related
source code can be obtained from the authors upon request.

For the sake of simplicity, our examples and simulation studies will be based
on the two-level confirmatory factor analysis model with the basic covariance
structures defined as:

Σ
˜
∗
B = Λ

˜
∗
BΦ

˜
∗
BΛ

˜
∗′
B + Ψ

˜
∗
B, and Σ

˜
∗
gW = Λ

˜
∗
gW Φ

˜
∗
gW Λ

˜
∗′
gW + Ψ

˜
∗
gW , (15)

where Λ
˜
∗
B and Λ

˜
∗
gW are the factor loading matrices, Φ

˜
∗
B and Φ

˜
∗
gW are the factors’

covariance matrices and Ψ
˜
∗
B and Ψ

˜
∗
gW are the covariance matrices of the error

measurements. We consider an unbalanced design situation with G = 120 groups
in which Ng = 4 for g = 1, . . . , 40, Ng = 6 for g = 41, . . . , 80 and Ng = 8 for
g = 81, . . . , 120. Hence, the total sample size is 720. An artificial data set will
be generated based on the following true population values:

Λ
˜
∗′
B =

[
0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8

]
= Λ

˜
∗′
gW , g = 1, . . . , 120

Φ
˜
∗
B =

[
1.0 0.3
0.3 1.0

]
; Φ
˜
∗
gW =

[
1.0 0.5
0.5 1.0

]
, g = 1, . . . , 120

and Ψ
˜
∗′
B = Ψ

˜
∗′
gW = 0.36I

˜8, g = 1, . . . , 120. For illustration, the simulated data will
be fit to a specific model of (15) with Λ

˜
∗
gW = Λ

˜
∗
W ,Φ

˜
∗
gW = Φ

˜
∗
W , and Ψ

˜
∗
gW = Ψ

˜
∗
W .

Hence, we are now considering a model with invariant covariance structure at
the individual level. Of course, other special cases can be studied. To ensure
identifiability, the zero’s and one’s in Λ

˜
∗
B,Λ

˜
∗
W ,Φ

˜
∗
B ,Φ

˜
∗
W and the zero off-diagonal

elements of Ψ
˜
∗
B and Ψ

˜
∗
W are treated as fixed known parameters that are not to

be estimated. So, there are 34 unknown parameters in this model, which we call
Model I.
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Based on the simulated data set and the proposed covariance structures,
we apply the EM algorithm developed in the previous sections to get the ML
estimate of the unknown parameters. The starting values of the unknown param-
eters in {Λ

˜
∗
B ,Λ

˜
∗
gW } and {Ψ

˜
∗
B ,Ψ

˜
∗
gW} were taken to be 1.6 and 0.72 respectively;

that is, they were taken to be twice of the true population values. The starting
values of the unknown correlations in the correlation matrices of the factors were
all taken to be zero. The algorithm is said to have converged to the solution
if the root mean squares (RMS) of the change of the elements in the parameter
vector between the EM steps is less than 0.0005. At the M -step of the basic EM

algorithm, we say that the minimum has been achieved if the RMS of the change
of the elements in the gradient vector is less than 0.0001. The convergence of
the EM algorithm is displayed in Table 1. The second column gives the number
of iterations required to complete the M -step. The EM algorithm converged to
the ML solution in 6 EM iterations which contain a total of 19 iterations at the
M -step. Hence, it seems that the convergence is reasonably fast.

Table 1. Convergence of the EM algorithm.

EM M- RMS of

Iter Iter |θ̂
˜
∗
i+1 − ˆ̂

θ
˜

∗
i | Λ∗

B(1, 1) Φ∗
B(2, 1) Ψ∗

B(1, 1) Λ∗
W (1, 1) Φ∗

W (2, 1) Ψ∗
W (1, 1)

0 1.600 0.000 0.720 1.000 0.000 0.720
1 5 0.49042 0.957 0.255 0.394 0.936 0.282 0.442
2 4 0.10308 0.816 0.396 0.344 0.798 0.436 0.403
3 3 0.01737 0.793 0.422 0.334 0.777 0.468 0.397
4 3 0.00322 0.789 0.425 0.332 0.774 0.473 0.397
5 2 0.00084 0.788 0.425 0.331 0.774 0.474 0.397
6 2 0.00028 0.787 0.425 0.331 0.774 0.474 0.397

The modified EM gradient (EMG) algorithm and the modified Quasi- New-
ton EM (QNEM) algorithm have also been applied to the same simulated data
set, based on the same starting values. The convergence of the EMG algorithm
is presented in Table 2. It can be seen that the algorithm converged rapidly to
the solution in 7 iterations. It should be noted that the computation of one EMG

iteration is basically equal to one M -step iteration in the basic EM algorithm,
so clearly the EMG algorithm is better. But since the basic EM algorithm per-
forms quite well, the improvement is not dramatic. We found that the QNEM

algorithm also converged in 7 iterations and its convergence is very similar to the
EMG algorithm. In fact, since the problem involved only hypothetical missing
data, the contribution of the missing Hessian matrix in improving the conver-
gence of the efficient EMG algorithm is minor. To save space, the convergence
of the QNEM algorithm is not reported.
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Table 2. Convergence of the EMG algorithm.

EM RMS of RMS of

Iter d10M(θ
˜
|θ
˜
) |θ̂

˜

∗
i+1 − θ̂

˜

∗
i | Λ∗

B(1, 1) Φ∗
B(2, 1) Ψ∗

B(1, 1) Λ∗
W (1, 1) Φ∗

W (2, 1) Ψ∗
W (1, 1)

0 1.600 0.000 0.720 1.600 0.000 0.720

1 0.05836 0.40940 1.090 0.093 0.388 1.070 0.099 0.442

2 0.03774 0.15393 0.871 0.254 0.336 0.852 0.271 0.403

3 0.00946 0.05350 0.807 0.381 0.328 0.788 0.415 0.398

4 0.00099 0.01390 0.792 0.418 0.329 0.776 0.463 0.397

5 0.00016 0.00314 0.789 0.424 0.330 0.774 0.472 0.397

6 0.00004 0.00094 0.788 0.425 0.330 0.774 0.474 0.397

7 0.00001 0.00034 0.787 0.425 0.331 0.774 0.474 0.397

To study the performance of the algorithms in analyzing models with cross
level parameters, we have simulated another data set based on the same settings
as above and fit the data to the above model with additional constraints that
Λ
˜
∗
B = Λ

˜
∗
W . There are 26 unknown parameters in this model; we call this Model

II. We found that the convergence of the algorithms are quite similar. Using the
same starting values as before, the EM algorithm converged to the ML solution
in 6 EM iterations with 19 M -step iterations, while both the EMG and QNEM
algorithms converged in 7 iterations. The convergence is not presented to save
space.

Moreover, we consider another simulated data set with G = 120 groups
which are divided evenly into six clusters with unequal sample sizes. The level-
one sample sizes Ng for groups in these clusters are equal to 2, 8, 16, 32, 64 and
96, respectively. Using the same starting values and convergence criterion, the
EM algorithm converged in 5 EM iterations with 16 M-step iterations for Model
I; while for Model II, it converged in 5 EM iterations with 20 M-step iterations.
The EMG and QNEM algorithms converged in 5 iterations for both Model I and
Model II. Hence, it is apparent that the proposed algorithms converged rapidly
even for data sets with level-one sample sizes substantially varied.

Based on the above results, we used the EMG algorithm to obtain the ML
estimates in the simulation study concerning the asymptotic behavior. Models I
and II as described above were considered. For each model, the following sample
size designs of G and Ng were used:

A: G = 60, 20 groups with Ng = 4, 6, 8; T = 360;
B: G = 60, 20 groups with Ng = 8, 12, 16; T = 720;
C: G = 120, 40 groups with Ng = 4, 6, 8; T = 720;
D: G = 120, 40 groups with Ng = 8, 12, 16; T = 1440.

For each of these cases, 100 replications were completed; and for each repli-
cation, the ML estimates, the standard error estimates and the goodness-of-fit
statistic χ2

L were computed based on the results developed in Sections 3.3 and
3.4.
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The root mean squares between the ML estimates and the true values of the
parameters in Model I and Model II are presented in Tables 3 and 4, respectively.
From results in these tables, we observe that the ML estimates based on these
sample sizes are accurate. As expected, the accuracy increased with the sample
sizes, hence the ML estimates of the parameters in the equal within-group covari-
ance structures are generally more accurate than the estimates of the parameters
in the between-group covariance structure.

Table 3. Root mean squares of the estimates and population values in Model I.

Sample Size Design
Parameter True Value A B C D
Λ∗

B(1, 1) 0.80 0.140 0.119 0.098 0.092
Λ∗

B(2, 1) 0.80 0.151 0.124 0.111 0.089
Λ∗

B(3, 1) 0.80 0.136 0.117 0.100 0.094
Λ∗

B(4, 1) 0.80 0.115 0.120 0.092 0.090
Λ∗

B(5, 2) 0.80 0.138 0.121 0.102 0.093
Λ∗

B(6, 2) 0.80 0.141 0.110 0.085 0.099
Λ∗

B(7, 2) 0.80 0.117 0.118 0.090 0.087
Λ∗

B(8, 2) 0.80 0.127 0.113 0.090 0.076
Φ∗

B(2, 1) 0.30 0.162 0.139 0.106 0.099
Ψ∗

B(1, 1) 0.36 0.095 0.087 0.072 0.070
Ψ∗

B(2, 2) 0.36 0.113 0.091 0.068 0.068
Ψ∗

B(3, 3) 0.36 0.102 0.106 0.071 0.080
Ψ∗

B(4, 4) 0.36 0.112 0.101 0.073 0.072
Ψ∗

B(5, 5) 0.36 0.118 0.116 0.073 0.069
Ψ∗

B(6, 6) 0.36 0.093 0.093 0.076 0.065
Ψ∗

B(7, 7) 0.36 0.114 0.099 0.073 0.069
Ψ∗

B(8, 8) 0.36 0.118 0.106 0.074 0.069
Λ∗

W (1, 1) 0.80 0.053 0.030 0.036 0.024
Λ∗

W (2, 1) 0.80 0.053 0.032 0.031 0.025
Λ∗

W (3, 1) 0.80 0.047 0.033 0.033 0.024
Λ∗

W (4, 1) 0.80 0.051 0.032 0.032 0.025
Λ∗

W (5, 2) 0.80 0.047 0.033 0.033 0.026
Λ∗

W (6, 2) 0.80 0.049 0.029 0.036 0.024
Λ∗

W (7, 2) 0.80 0.054 0.033 0.035 0.021
Λ∗

W (8, 2) 0.80 0.052 0.031 0.030 0.024
Φ∗

W (2, 1) 0.50 0.054 0.036 0.037 0.022
Ψ∗

W (1, 1) 0.36 0.039 0.029 0.024 0.017
Ψ∗

W (2, 2) 0.36 0.037 0.026 0.029 0.017
Ψ∗

W (3, 3) 0.36 0.037 0.026 0.027 0.018
Ψ∗

W (4, 4) 0.36 0.040 0.029 0.028 0.020
Ψ∗

W (5, 5) 0.36 0.036 0.024 0.025 0.017
Ψ∗

W (6, 6) 0.36 0.035 0.025 0.027 0.019
Ψ∗

W (7, 7) 0.36 0.038 0.026 0.028 0.017
Ψ∗

W (8, 8) 0.36 0.039 0.027 0.025 0.018
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Table 4. Root mean squares of estimates and population values in Model II.

Sample Size Design
Parameter True Value A B C D
Λ∗

B(1, 1) = Λ∗
W (1, 1) 0.80 0.046 0.037 0.029 0.022

Λ∗
B(2, 1) = Λ∗

W (2, 1) 0.80 0.053 0.035 0.034 0.023

Λ∗
B(3, 1) = Λ∗

W (3, 1) 0.80 0.050 0.033 0.035 0.020

Λ∗
B(4, 1) = Λ∗

W (4, 1) 0.80 0.044 0.035 0.035 0.020

Λ∗
B(5, 2) = Λ∗

W (5, 2) 0.80 0.047 0.029 0.030 0.022

Λ∗
B(6, 2) = Λ∗

W (6, 2) 0.80 0.051 0.032 0.034 0.022

Λ∗
B(7, 2) = Λ∗

W (7, 2) 0.80 0.046 0.027 0.031 0.021

Λ∗
B(8, 2) = Λ∗

W (8, 2) 0.80 0.043 0.031 0.029 0.026

Φ∗
B(2, 1) 0.30 0.147 0.158 0.106 0.097

Ψ∗
B(1, 1) 0.36 0.099 0.083 0.073 0.071

Ψ∗
B(2, 2) 0.36 0.104 0.088 0.073 0.065

Ψ∗
B(3, 3) 0.36 0.104 0.093 0.086 0.072

Ψ∗
B(4, 4) 0.36 0.116 0.095 0.074 0.073

Ψ∗
B(5, 5) 0.36 0.097 0.093 0.072 0.058

Ψ∗
B(6, 6) 0.36 0.078 0.086 0.071 0.066

Ψ∗
B(7, 7) 0.36 0.095 0.097 0.074 0.073

Ψ∗
B(8, 8) 0.36 0.097 0.093 0.064 0.072

Φ∗
W (2, 1) 0.50 0.052 0.032 0.038 0.023

Ψ∗
W (1, 1) 0.36 0.034 0.023 0.024 0.020

Ψ∗
W (2, 2) 0.36 0.040 0.027 0.030 0.019

Ψ∗
W (3, 3) 0.36 0.039 0.025 0.031 0.017

Ψ∗
W (4, 4) 0.36 0.042 0.024 0.025 0.018

Ψ∗
W (5, 5) 0.36 0.040 0.024 0.026 0.022

Ψ∗
W (6, 6) 0.36 0.035 0.025 0.026 0.018

Ψ∗
W (7, 7) 0.36 0.039 0.026 0.030 0.017

Ψ∗
W (8, 8) 0.36 0.037 0.024 0.027 0.017

Let SD(θ̂∗(i)) be the empirical standard deviation obtained from the 100

estimates of the ith element of θ
˜
∗, θ̂∗(i); and SE(θ̂∗(i)) be the mean of the 100

standard error estimates of θ̂∗(i). The ratios SD(θ̂∗(i))/SE(θ̂∗(i)) corresponding to
the parameters in Models I and II are reported in Tables 5 and 6, respectively.
It can be seen that these ratios are close to 1.0, indicating the proposed method
of getting the standard error estimates via H

˜
(θ̂
˜
∗
) is acceptable.
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Table 5. SD(θ̂
˜
∗
(i))/SE(θ̂

˜
∗
(i)) of the parameters estimates in Model I.

Sample Size Design
Parameter A B C D

Λ∗
B(1, 1) 1.087 0.996 1.083 1.117

Λ∗
B(2, 1) 1.167 1.042 1.219 1.079

Λ∗
B(3, 1) 1.070 0.996 1.109 1.102

Λ∗
B(4, 1) 0.906 1.026 1.012 1.083

Λ∗
B(5, 2) 1.067 1.016 1.116 1.112

Λ∗
B(6, 2) 1.113 0.933 0.935 1.197

Λ∗
B(7, 2) 0.923 1.000 0.986 1.045

Λ∗
B(8, 2) 1.011 0.960 0.989 0.918

Φ∗
B(2, 1) 1.092 1.010 0.987 0.996

Ψ∗
B(1, 1) 0.950 0.940 1.026 1.069

Ψ∗
B(2, 2) 1.127 0.953 0.953 1.047

Ψ∗
B(3, 3) 1.029 1.161 1.008 1.245

Ψ∗
B(4, 4) 1.099 1.113 1.031 1.117

Ψ∗
B(5, 5) 1.182 1.213 0.991 1.071

Ψ∗
B(6, 6) 0.963 1.016 1.069 1.000

Ψ∗
B(7, 7) 1.161 1.074 1.024 1.063

Ψ∗
B(8, 8) 1.188 1.147 1.012 1.058

Λ∗
W (1, 1) 1.167 0.929 1.113 1.054

Λ∗
W (2, 1) 1.169 0.988 0.976 1.083

Λ∗
W (3, 1) 1.047 1.011 1.030 1.059

Λ∗
W (4, 1) 1.121 1.006 1.016 1.082

Λ∗
W (5, 2) 1.024 1.050 1.023 1.144

Λ∗
W (6, 2) 1.072 0.915 1.114 1.075

Λ∗
W (7, 2) 1.206 1.048 1.096 0.922

Λ∗
W (8, 2) 1.133 0.957 0.958 1.044

Φ∗
W (2, 1) 1.157 1.100 1.125 0.952

Ψ∗
W (1, 1) 1.127 1.157 0.976 1.003

Ψ∗
W (2, 2) 1.039 1.050 1.166 0.975

Ψ∗
W (3, 3) 1.061 1.050 1.083 0.999

Ψ∗
W (4, 4) 1.157 1.172 1.148 1.152

Ψ∗
W (5, 5) 1.018 0.967 1.011 0.975

Ψ∗
W (6, 6) 0.988 0.996 1.106 1.060

Ψ∗
W (7, 7) 1.079 1.044 1.113 0.986

Ψ∗
W (8, 8) 1.101 1.103 1.007 1.002
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Table 6. SD(θ̂
˜
∗
(i))/SE(θ̂

˜
∗
(i)) of the parameters estimates in Model II.

Sample Size Design
Parameter A B C D
Λ∗

B(1, 1) = Λ∗
W (1, 1) 1.099 1.199 1.000 1.024

Λ∗
B(2, 1) = Λ∗

W (2, 1) 1.261 1.151 1.165 1.027

Λ∗
B(3, 1) = Λ∗

W (3, 1) 1.195 1.070 1.172 0.915

Λ∗
B(4, 1) = Λ∗

W (4, 1) 1.060 1.134 1.180 0.942

Λ∗
B(5, 2) = Λ∗

W (5, 2) 1.133 0.960 1.036 1.033

Λ∗
B(6, 2) = Λ∗

W (6, 2) 1.230 1.052 1.169 1.044

Λ∗
B(7, 2) = Λ∗

W (7, 2) 1.101 0.897 1.057 0.961

Λ∗
B(8, 2) = Λ∗

W (8, 2) 1.034 1.014 0.988 1.186

Φ∗
B(2, 1) 0.997 1.160 1.020 1.013

Ψ∗
B(1, 1) 0.988 0.959 1.076 1.147

Ψ∗
B(2, 2) 1.060 1.009 1.051 1.051

Ψ∗
B(3, 3) 1.052 1.082 1.258 1.142

Ψ∗
B(4, 4) 1.147 1.080 1.088 1.191

Ψ∗
B(5, 5) 0.979 1.074 1.045 0.931

Ψ∗
B(6, 6) 0.825 0.985 1.022 1.066

Ψ∗
B(7, 7) 1.006 1.091 1.096 1.186

Ψ∗
B(8, 8) 1.013 1.044 0.950 1.095

Φ∗
W (2, 1) 1.126 0.989 1.161 1.011

Ψ∗
W (1, 1) 0.966 0.928 0.985 1.162

Ψ∗
W (2, 2) 1.149 1.072 1.216 1.084

Ψ∗
W (3, 3) 1.119 1.007 1.243 0.973

Ψ∗
W (4, 4) 1.182 0.953 1.008 1.059

Ψ∗
W (5, 5) 1.163 0.983 1.074 1.243

Ψ∗
W (6, 6) 0.994 1.003 1.070 1.046

Ψ∗
W (7, 7) 1.105 1.055 1.195 0.964

Ψ∗
W (8, 8) 1.019 0.948 1.092 0.995

Based on the definition of the model and the parameters’ specification, the
asymptotic goodness-of-fit statistics χ2

L for Model I and Model II should be chi-
square with 38 and 46 degrees of freedom, respectively. These were tested by the
Kolomogorov-Smirnov statistic based on the χ2

L values obtained from the 100
replications. For Model I, the p-values corresponding to the sample size designs
A, B, C, D are 0.8885, 0.5173, 0.1010 and 0.6269, respectively; while for Model
II, the corresponding values are 0.8952, 0.5322, 0.4612 and 0.3759, respectively.
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From these results, it is reasonable to conclude that the empirical behavior of
this test statistic agrees with the theoretical asymptotic result.

5. Discussion

The basic ML theory for multilevel structural equation modelling is given by
Lee (1990) and some procedures for computation of the solution in some special
situation have been presented by Muthen (1990), Longford and Muthen (1992),
and Raudenbush (1995). However, since these procedures cannot be easily used
by most practitioners, the applications of multilevel structural equation models to
real life situations are still relatively limited. By treating the second level random
vectors as hypothetical missing data and analyzing the model as a missing data
problem, this paper investigates the application of the EM algorithm to obtain
the ML solution of the general two-level model with unbalanced designs. It is
shown that the EM algorithm works well and moreover its performance can also
be improved with the accelerated EM gradient procedure. Based on the results
obtained in previous sections, it should be evident that the EM approach has at
least the following attractive features:

(i) It converged rapidly to the ML solution. In our examples with 34 and 26
unknown parameters, the EMG algorithm converged in 7 or 5 iterations.

(ii) The ML solution is obtained by minimizing a simple function M(θ
˜
∗|θ

˜
) as

defined in (8). A simple program to compute C
˜ k(θ˜

) is required and the more
complex task of minimization can be completed conveniently with existing
software such as LISREL (Jöreskog and Sörbom (1996)) or EQS (Bentler
(1992)).

(iii) Depending on the software used in the analyses, the covariance models under
consideration can be the LISREL model (Jöreskog and Sörbom (1996)) or
the Bentler and Week’s (Bentler and Weeks (1980)) model in EQS. It is
well known that these two general models are sufficient for most real-life
applications.

(iv) Since I
˜
(θ
˜i) is positive definite, the EM algorithm is robust to poor starting

values because it is a descent algorithm that produces an acceptable step at
every iteration.
The degree of improvement on convergence rate of the QNEM algorithm

over that of the EMG algorithm depends on the effect of the additional matrix
B
˜ i in helping the “information” matrix I

˜
(θ
˜i) to approximate the Hessian matrix

of F (θ
˜
∗) at θ

˜i. It can be shown that this approximation is better with increase
of Ng. Due to the extremely quick convergence of the EMG algorithm in our
artificial examples, it is apparent that the approximation is very good even with
quite small Ng. Thus, the performance of the EMG algorithm is apparently
satisfactory. The conjugate gradient acceleration proposed by Jamshidian and
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Jennrich (1993) and the ECME algorithm of Liu and Rubin (1994) are other at-
tractive alternatives. For the sake of brevity, the present paper does not attempt
to provide an empirical comparison of various EM type acceleration procedures.
Such comparison would be interesting for future research.
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