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Abstract: We propose and study a class of weighted trimmed means based on the

symmetric quantile functions for the location and linear regression models. A ro-

bustness comparison with the underlying distribution of a symmetric-type heavy

tail is given. The weighted trimmed mean in optimal trimming under symmetric

distributions is shown to have an asymptotic variance very close to the Cramér-Rao

lower bound. For fixed weight setting, the weighted trimmed mean is still relatively

more efficient in terms of asymptotic variance than the trimmed mean based on re-

gression quantiles. From the parametric point of view, the computationally easy

weighted trimmed mean is shown to be an efficient alternative to maximum like-

lihood estimation which is usually computationally difficult for most underlying

distributions except the ideal case of normal ones. From the nonparametric point

of view, this weighted trimmed mean is shown to be an efficient alternative robust

estimator. A methodology for confidence ellipsoids and hypothesis testing based

on the weighted trimmed mean is also introduced.

Key words and phrases: Initial estimator, symmetric quantile, weighted trimmed

mean.

1. Introduction

Many nonadaptive robust estimators have been proposed for the estimation
of location and linear regression parameters under the assumption of heavy tail
error distribution. Some studies dealing with this topic include Ruppert and Car-
roll (1980), Koenker and Bassett (1978), Welsh (1987a, b), Frees (1991) and Koul
and Mukherjee (1994). In terms of their asymptotic variances, Koenker (1982)
and Ruppert and Carroll (1980) have shown that the usual robust estimators are
very competitive. However, the list of Cramér-Rao (CR) lower bounds in Chen
and Chiang (1996) showed that under a heavy tail distribution such as the con-
taminated normal distribution none of these estimators is really efficient when
the contaminated variance is large. The problem of constructing asymptotically
efficient estimators for location and regression parameters has also attracted con-
siderable attention. Adaptive location R-, M - and L-estimators were treated by
Beran (1974), Stone (1975) and Sacks (1975). Adaptive procedures extended to
the linear model have been proposed by Bickel (1982), Manski (1984), Manski and
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Hsieh (1987), Portnoy and Koenker (1989) and Welsh (1991). However, adaptive
estimators that deal with the estimation of regression parameters must estimate
a score function, which includes the derivative of the logarithm of an unknown
density function, which make them computationally complicated. Moreover, un-
like most nonadaptive estimators, the adaptive estimators cannot naturally be
generalized to other statistical problems, especially when the Fisher information
is not known. Chen and Chiang (1996), as a nonadaptive estimator, proposed
a class of symmetric trimmed means constructed by a symmetric quantile and
showed that in optimal trimming this estimator is more efficient than robust es-
timators such as �1-norm, Huber’s M -estimator, and the trimmed mean based
on regression quantiles in almost all cases of contaminated variances. Moreover,
when the contaminated variance is large enough, the asymptotic variance of the
symmetric trimmed mean may even be close to the CR lower bounds. However,
the impressive property of the asymptotis variance of the symmetric trimmed
mean being close to the CR lower bound does not occur when the contaminated
variance is not large.

In light of the fact that the symmetric trimmed mean is inefficient when the
contaminated variance is not large, a situation that occurs frequently in practice,
our purpose in this paper is to obtain a class of estimators that reduces this
inefficiency. Toward this end we propose a class of weighted trimmed means and
show that it, indeed, reduces the asymptotic variance for all cases of contami-
nated variance. This class of weighted trimmed means is worth while applying
to parametric and nonparametric estimation. With respect to parametric esti-
mation, at optimal weight settings for observations of the dependent variable,
the asymptotic variances of the weighted trimmed means are very close to the
CR lower bounds. So this also provides a computationally easy alternative to
maximum likelihood estimation whenever the latter as is often the case, is too
complicated computationally. From the nonparametric point of view, a compar-
ison of the weighted trimmed mean and the trimmed mean based on regression
quantiles for a fixed setting of the weights shows that the weighted trimmed mean
is relatively more efficient for contaminated normal distributions. An analysis of
real data which obviously follows a model with asymmetric errors is also given
for comparison of these two estimators. For statistical inference, we also sketch a
large sample methodology for confidence ellipsoids and hypothesis testing based
on the weighted trimmed mean.

In Section 2 we state several assumptions needed to develop a large sam-
ple representation of the weighted trimmed mean and introduce the weighted
trimmed mean itself. In Section 3 we develop a large sample representation of
the weighted trimmed mean based on the Bahadur representation. In Section 4
we compare the asymptotic variances of the weighted trimmed mean, the sym-
metric trimmed mean, and the trimmed mean based on regression quantiles for
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the case of optimal weight settings and also the case of fixed weights, associated
with the CR lower bounds. In Section 5 we present a large sample methodology
for confidence ellipsoids and hypothesis testing. Section 6 contains a real data
analysis and Section 7 is an appendix containing the proofs of the theorems used
in the paper.

2. Assumptions and the Construction of the Weighted Trimmed Mean

Consider the linear regression model

yi = x′iβ + εi, i = 1, . . . , n, (2.1)

where the yi’s are observations of the dependent random variable, the xi’s are
design p-vectors, and the εi’s are random errors that are independent and identi-
cally distributed (i.i.d.) with a distribution function F of zero mean and constant
variance.

If xi is a scalar of one then (2.1) turns out to be a location model; so the
properties that we will develop in this paper for the weighted trimmed mean
also hold for the location model. Our purpose is to estimate the parameter β.
Like the symmetric mean, the weighted trimmed mean is constructed based on a
symmetric quantile that depends on an initial estimator β̂0. We now list a set of
assumptions about the design vectors, the distribution function, and the initial
estimator that are needed for our results:
(A.1) maxi,j n

−1/4|xij | = O(1).
(A.2) limn→∞ n−1 ∑n

i=1 xix
′
i = Q and limn→∞ n−1 ∑n

i=1 xi = θ, where Q is a
p× p positive definite matrix and θ is a finite p-vector.
(A.3) n−1 maxj

∑n
i=1 x

4
ij = O(1).

(A.4) The distribution function F has a continuous density function f which is
positive on the support of the random error variable.
(A.5) The derivative f ′ is bounded in a neighborhood of bF̃−1(λ) and −bF̃−1(λ)
for 0 < λ < 1 and 1 ≤ b < ∞, where F̃−1(λ) satisfies λ = P (−F̃−1(λ) < ε <
F̃−1(λ)).
(A.6) n1/2(β̂0 − β) = Op(1).
In the remainder of this paper we assume that conditions (A.1)-(A.6) are all
satisfied.

The weighted trimmed mean will be constructed by means of the symmetric
quantile, which is distinct from the regression quantile (see Koenker and Bassett
(1978)) generalized from the ordinary quantile function. Let 0 < λ < 1 and let β̂0

be an initial estimator of β. The symmetric quantile at percentage λ introduced
by Chen and Chiang (1996) is defined as a pair (x′β̂0 − â(λ), x′β̂0 + â(λ)) for
which â(λ) satisfies

â(λ) = argmina>0

n∑
i=1

(|yi − x′iβ̂0| − a)(λ− I(|yi − x′iβ̂0| ≤ a)), (2.2)
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where I(·) represents the indicator function with values zero and one. Here
x′β̂0 − â(λ) and x′β̂0 + â(λ) represent the lower and upper quantile bounds. The
following lemma, which provides a representation for the term â(λ), was proved
by Chen and Chiang (1996).

Lemma 2.1. If 0 < λ < 1, then

n1/2(â(λ)−F̃−1(λ))=(f(F̃−1(λ))+f(−F̃−1(λ)))−1
[
n−1/2

n∑
i=1

(λ−I(|εi|≤ F̃−1(λ)))

+(f(F̃−1(λ)) − f(−F̃−1(λ)))θ′n1/2(β̂0 − β)
]
+ op(1).

Based on the symmetric quantile function, we define the weighted trimmed
mean as follows.

Definition 2.2. If 1 ≤ b <∞, 1 < c <∞, and â(λ) is the solution of (2.2), the
weighted trimmed mean is defined as

β̂(λ, b, c) =
( n∑

i=1

xix
′
iJi

)−1
n∑

i=1

xi[yiJi + â(λ)sgn(yi − x′iβ̂0)Li(λ)

+(c− b)−1(câ(λ) − |yi − x′iβ̂0|)sgn(yi − x′iβ̂0)Ki(λ)], (2.3)

where Ji(λ) = I(|yi − x′iβ̂0| ≤ â(λ)), Li(λ) = I(â(λ) < |yi − x′iβ̂0| ≤ bâ(λ)),
Ki(λ) = I(bâ(λ) < |yi − x′iβ̂0| ≤ câ(λ)), and sgn(·) is the sign function with
values −1 and +1.

Apart from pre-multiplication by the random matrix (
∑n

i=1 xix
′
iJi(λ))−1∑n

i=1 xix
′
i, β̂(λ, b, c) is the least squares estimator calculated after replacing yi by

yiJi(λ)+â(λ) sgn(yi−x′iβ̂0)Li(λ) +(c−b)−1(câ(λ)−|yi−x′iβ̂0|)sgn(yi−x′iβ̂0)Ki(λ),
which resembles a reweighted observation.

3. Bahadur Representation and Limiting Distribution

In this section we state the Bahadur representation of the weighted trimmed
mean in terms of the initial estimator and give an exact form of the representation
with the �1-norm as initial estimator. We use the �1-norm because the differences
in the performance of the symmetric trimmed mean with various robust initial
estimators is small enough to be negligible (see Chen and Chiang (1996)). So,
for practical purposes, we can use any convenient robust initial estimator. We
now state the main theorem for representation of β̂(λ, b, c).

Theorem 3.1. The weighted trimmed mean has the following representation

n1/2(β̂(λ, b, c) − β) = (λQ)−1
{
n−1/2

n∑
i=1

xi[εiJ0
i (λ) + F̃−1(λ)sgn(εi)L0

i (λ)
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+(c− b)−1(cF̃−1(λ)sgn(εi) − εi)K0
i (λ)]

+(c− b)−1P (bF̃−1(λ) < |εi| < cF̃−1(λ))n1/2(β̂0 − β)
}

+op(1),

where J0
i (λ) = I(|εi| ≤ F̃−1(λ)), L0

i (λ) = I(F̃−1(λ) < |εi| ≤ cF̃−1(λ)) and K0
i (λ)

= I(bF̃−1(λ) < |εi| ≤ cF̃−1(λ)).
The second term indicates the contribution of the initial estimator to the

weighted trimmed mean. Suppose that the initial estimator has the representa-
tion

n1/2(β̂0 − β) = Qn−1/2
n∑

i=1

xih(εi) + op(1) (3.1)

for some function h. For example, h(ε) is ε if least squares provides the initial
estimator, and it is 0.5f−1(F−1(0.5))sgn(ε) if the �1th norm is the initial estima-
tor (see Ruppert and Carroll (1980)). Here we select the �1th norm as our initial
estimator. We then have the following representation of β̂(λ, b, c).

Theorem 3.2. Let β̂0 be the �1th norm estimator. We then have
(a) n1/2(β̂(λ, b, c)−(β+(λQ)−1θδ)) = (λQ)−1n−1/2∑n

i=1xi(ψ(εi)−δ)+op(1),
where

ψ(εi) = (εi + hbcsgn(εi > F−1(0.5)))J0
i (λ) + (F̃−1(λ)sgn(εi)

+hbcsgn(εi > F−1(0.5)))L0
i (λ) + ((c − b)−1(cF̃−1(λ)sgn(εi) − εi)

+hbcsgn(εi > F−1(0.5)))K0
i + hbcsgn(εi > F−1(0.5))I(|εi| > cF̃−1(λ)),

and where hbc = 0.5(c − b)−1f−1(F−1(0.5))P (bF̃−1(λ) < |ε| < cF̃−1(λ)) and

δ =
∫ F̃−1(λ)

−F̃−1(λ)
εdF + F̃−1(λ)(P (F̃−1(λ) < ε < bF̃−1(λ))

−P (−bF̃−1(λ) < ε < −F̃−1(λ)))

+(c− b)−1
[
cF̃−1(λ)(P (bF̃−1(λ) < ε < cF̃−1(λ))

−P (−cF̃−1(λ) < ε < −bF̃−1(λ))) −
∫

F̃−1(λ)<|ε|<cF̃−1(λ)
εdF

]
.

(b) n1/2(β̂(λ, b, c) − (β + (λQ)−1θδ)) → N(0, σ2(λ)Q),
where σ2(λ) = λ−2(E((ψ(ε))2) − δ2) and where

E((ψ(ε))2) = h2
bc +

∫ F̃−1(λ)

−F̃−1(λ)
ε2dF + (F̃−1(λ))2P (F̃−1(λ) < |ε| < bF̃−1(λ))

+(c− b)−2(c2(F̃−1(λ))2P (bF̃−1(λ) < |ε| < cF̃−1(λ))
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+
∫

bF̃−1(λ)<|ε|<cF̃−1(λ)
ε2dF − 2cF̃−1(λ)

∫
bF̃−1(λ)<|ε|<cF̃−1(λ)

|ε|dF )

+2hbc[
∫ F̃−1(λ)

−F̃−1(λ)
εsgn(ε > F−1(0.5))dF

+F̃−1(λ)
∫

F̃−1(λ)<|ε|<bF̃−1(λ)
sgn(ε)sgn(ε > F−1(0.5))dF

+(c− b)−1
∫

bF̃−1(λ)<|ε|<cF̃−1(λ)
(cF̃−1(λ)sgn(ε)−ε)sgn(ε>F−1(0.5))].

Since ψ(εi) are i.i.d. with mean δ, the weighted trimmed mean has an asymptotic
normal distribution with asymptotic bias (λQ)−1θδ. Consider the special design
that Ruppert and Carroll (1980) and Welsh (1987a) considered:

n∑
i=1

xij = 0, j = 2, . . . , p, and xi1 = 1, i = 1, . . . , n. (3.2)

This yields θ = (1, 0, . . . , 0)′ and Q = [Qij ]i,j=1,2 which is partitioned such that
Q11 = 1, Q12 and Q21 are row and column (p− 1)-vectors of zeros, and Q22 is a
(p− 1) × (p − 1) positive definite matrix. Then the asymptotic bias of β̂(λ, b, c)
is λ−1δ(1, 0, . . . , 0)′. The bias of β̂(λ, b, c) for β involves only the intercept and
not the slopes. Consider the general design in which F is symmetric at zero and
assume that the �1-norm is the initial estimator. Then δ = 0 and the weighted
trimmed mean is asymptotically unbiased.

Corollary 3.3. Let β̂0 be the �1-norm estimator and λ = 1 − 2α, 0 < α <

0.5. We also assume that F is symmetric at zero. Then n1/2(β̂(1 − 2α, b, c) −
β) → N(0, σ2(α)Q−1) in distribution as n→ ∞, where

σ2(α) = (1 − 2α)−2
{ ∫

ε2(J0(α) + (c− b)−2K0(α))dF

+(c− b)−1
∫

|ε|[αbcf
−1(0)J0(α) − 2(c− b)−1(cF−1(1 − α)

+0.5αbcf
−1(0))K0(α)]dF + (1 − 2α)(0.5(c − b)−1αbcf

−1(0))2

+(F−1(1 − α) + 0.5(c − b)−1αbcf
−1(0))2αb + (c− b)−2[cF−1(1 − α)

+0.5αbcf
−1(0)]2αbc + (c− b)−2(0.5f−1(0)αbc)2αc

}
;

and where

J0(α) = I(|ε| ≤ F−1(1 − α)), L0(α) = I(F−1(1 − α) < |ε| ≤ bF−1(1 − α)),

K0(α) = I(bF−1(1 − α) < |ε| ≤ cF−1(1 − α)),

αb = P (F−1(1 − α) < |ε| ≤ bF−1(1 − α)),

αbc = P (bF−1(1 − α) < |ε| ≤ cF−1(1 − α)), and αc = P (|ε| > cF−1(1 − α)).
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The efficiency of the class of weighted trimmed means is not clear at this point.
We will display a table of the asymptotic variance of some robust estimators
including β̂(λ, b, c) for comparison of their efficiencies.

4. The Efficiency of the Weighted Trimmed Mean

To verify the efficiency of the weighted trimmed mean, we list here a table of
asymptotic variances of the weighted trimmed mean and the symmetric trimmed
mean, both of which use the �1-norm as the initial estimator, and the trimmed
mean based on regression quantiles, all in their optimal percentages, under the
following contaminated normal distribution:

(1 − δ)N(0, 1) + δN(0, σ2).

For the usual robust estimators, we select only the trimmed mean for comparison
because with respect to optimal trimming, the trimmed mean is quite efficient.

Table 1. Comparison of asymptotic variances

2α σ β̂t β̂st β̂wst CR 2α σ β̂t β̂st β̂wst CR
0.1 1 1.000 1.000 1.000 1.000 0.2 15 1.9512 1.4345 1.4045 1.4030

3 1.2959 1.3053 1.2660 1.2562 25 1.9886 1.3775 1.3565 1.3557
5 1.3735 1.2879 1.2579 1.2528 50 2.0169 1.3255 1.3130 1.3127
10 1.4318 1.2295 1.2107 1.2085 ∞ 2.0438 1.2562 1.2557 1.2557
15 1.4511 1.2001 1.1854 1.1847 0.3 3 1.9642 2.0360 1.9182 1.8742
25 1.4666 1.1719 1.1619 1.1616 5 2.2752 2.0134 1.9342 1.9104
50 1.4782 1.1465 1.1409 1.1407 10 2.5349 1.8349 1.7774 1.7717
∞ 1.4892 1.1139 1.1137 1.1137 15 2.6272 1.7435 1.6934 1.6904

0.2 3 1.6001 1.6325 1.5574 1.5326 25 2.7032 1.6479 1.6117 1.6101
5 1.7707 1.6050 1.5506 1.5381 50 2.7617 1.5595 1.5376 1.5369
10 1.9051 1.4928 1.4544 1.4513 ∞ 2.8179 1.4397 1.4387 1.4387

Designation: β̂t=Trimmed Mean, β̂st=Symmetric trimmed mean and
β̂wst=Weighted symmetric trimmed mean, also mention CR.

Here we list some conclusions that may be drawn from Table 1:
(a) The class of weighted trimmed means is more efficient than either the class
of trimmed means or that of symmetric trimmed means. Moreover, the class of
weighted trimmed means has asymptotic variances equal to the CR lower bounds
when the contaminated variance is large enough, thus attaining the efficiencies of
maximum likelihood estimation. This efficiency for the weighted trimmed mean
is not surprising since it has more tuning constants to set and these are here
chosen optimaly.
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(b) Compared with the symmetric trimmed mean, the weighted trimmed mean
produces a significant improvement in the asymptotic variances, especially in
cases of small contaminated variances.
(c) As is the case with the symmetric trimmed mean, the asymptotic variance of
the weighted trimmed mean decreases as the contaminated variances increases.
This exceptional property does not hold for the usual class of estimators in their
optimal settings, robust or nonrobust.

We continue here considering the contaminated normal distribution. How-
ever, the parameters of the estimators under consideration are fixed as constants.
The trimmed means based on regression quantiles are set to have trimming per-
centage 2α = 0.1, 0.2 and 0.3 and the weighted trimmed means are set to have
trimming percentage 2α = 0.1 and 0.15, and with constant (b, c) = (1.2, 1.7).
The following table gives the asymptotic variances of these two estimators cor-
responding to the above trimming percentages and weight settings.

Table 2. Comparison of asymptotic variances

δ σ β̂t(0.1) β̂t(0.2) β̂t(0.3) β̂swt(v1) β̂swt(v2)
0.1 3 1.29 1.34 1.44 1.14 1.24

5 1.37 1.40 1.49 1.28 1.35
10 1.45 1.44 1.53 1.26 1.31

0.2 3 1.62 1.61 1.70 1.63 1.58
5 1.92 1.77 1.83 2.08 1.60
10 2.33 1.91 1.94 4.60 1.77

Designation:(1) () in β̂t( ) is the trimming percentage and ( , , ) in β̂swt( , , )
is the fixed vector of 2α, b, c. (2) v1 = (.1, 1.2, 1.7) and v2 = (.15, 1.2, 1.7)

These results show that the weighted trimmed mean with parameter set-
ting (2α, b, c) = (.15, 1.2, 1.7) is quite efficient for the contaminated normal
distributions.

The performance of the symmetric weighted trimmed means shown in the ta-
bles above reveals its importance in application with respect to both parametric
and nonparametric estimation. Because computation of maximum likelihood es-
timation for most underlying distributions, symmetric or asymmetric, except for
the normal one, is complicated, this easy computation implies that the symmet-
ric weighted trimmed mean is an efficient alternative for parametric estimation.
For nonparametric estimation, the weighted trimmed mean also performs rel-
atively more efficiently than the trimmed mean based on regression quantiles.
An example analyzing data with outliers and obviously with asymmetric error
distribution will be given in Section 6.
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5. Large Sample Inference

Here we sketch a large sample methodology for confidence ellipsoids and
hypothesis testing based on the weighted trimmed mean for the case of a sym-
metric distribution. To do this, we first need to estimate the asymptotic co-
variance matrix of β̂(1 − 2α, b, c). For simplicity here we let ei = yi − x′iβ̂0 and
α̂st = n−1∑n

i=1I(sâ(1−2α) < ei < tâ(1−2α)). By assumption (A.2), we estimate
Q by n−1∑n

i=1xix
′
i. Furthermore, let

σ̂2(α, f−1(0)) = (1 − 2α)−2
{
n−1

n∑
i=1

e2i (Ji(1 − 2α) + (c− b)−2Ki(1 − 2α))

+(c− b)−1n−1
n∑

i=1

|ei|[α̂bcf
−1(0)Ji(1 − 2α)

+â(1 − 2α)α̂bcf
−1(0)Li(1 − 2α) − 2(c− b)−1(câ(1 − 2α)

+0.5α̂bcf
−1(0))Ki(1 − 2α)]

+(0.5(c − b)−1α̂bcf
−1(0))2 + (â(1 − 2α))2α̂1b

+(c− b)−2[(câ(1 − 2α))2 + câ(1 − 2α)α̂bcf
−1(0)]α̂bc

}
,

where Ji, Li, and Ki are defined in Definition 2.2.

Theorem 5.1. σ̂2(α, f−1(0)) → σ2(α) in probability. To obtain an estimator
of σ2(α), we still need to obtain an estimator of the density f(0).

Lemma 5.5. For h > 0,

n−1
n∑

i=1

I(−2−1h < ei < 2−1h) → F (h/2) − F (−h/2) in probability.

Since F is differentiable on its support, we have limh→0 h
−1(F (h/2) −F (−h/2))

= f(0). Let h0 be some suitable choice of bandwith h. Useful rules for determining
h0 are stated in Scott (1992). Estimates of the density function f in the regression
case were also introduced by Koenker and Portnoy (1987) and Welsh (1991). A
reasonable estimator of density f(0) is f̂(0) = (nh0)−1n−1∑n

i=1I(−2−1h0 < ei <
2−1h0). We then have the following estimator of σ2(α) : S2(α) = σ̂2(α, f̂−1(0)).
For 0 < u < 1, let Fu(r1, r2) denote the (1−u) quantile of the F distribution, with
r1 and r2 degrees of freedom, and let du(r1, r2) = (1 − 2α)−1S2(α)r1Fu(r1, r2).
Suppose for some integer �, K is a matrix of size �× p, and K has rank �. Let m
be the number of residuals ei lying outside the interval (−câ(1−2α), câ(1−2α)).
Then the region of β

(β̂(1 − 2α, b, c) − β)′K ′[K(
n∑

i=1

xix
′
iJi(1 − 2α))−1K ′]−1

K(β̂(1 − 2α, b, c) − β)

≥ du(�, n−m− p)
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has a probability of approximately u. If K = Ip, the confidence ellipsoid

(β̂(1 − 2α, b, c) − β)′
( n∑

i=1

xix
′
iJi(1 − 2α)

)
(β̂(1 − 2α, b, c) − β) ≤ du(�, n−m− p)

for β has an asymptotic confidence coefficient of approximately 1− u. Moreover,
if we test H0 : Kβ = v by rejecting H0 whenever

(Kβ̂(1 − 2α, b, c) − v)′
[
K(

n∑
i=1

xix
′
iJi(1 − 2α))−1K ′]−1

(Kβ̂(1 − 2α, b, c) − v)

≥ du(�, n−m− p)

it has an asymptotic size of u.

6. Example

Let us look at an example of real data with outliers and asymmetric errors to
compare the symmetric weighted trimmed mean with the trimmed mean based on
regression quantiles. The example we now consider is a data set of international
phone calls that appeared in the Belgian Statistcal Survey and can be seen in
Rousseeuw and Leroy (1987). The plot of the phone calls (in tens of millions) is
indexed by “A” in Figures 1 as indicated hereunder.

It seems to show an upward trend over years. However, the tendency contains
heavy contamination from year 64 to 69 (1964 - 1969). For this data set, we
first study the performance of the trimmed means. The trimmed mean has
parameters of trimming percentages on two sides to be determined. We first
set the equally trimming percentage as α = 0.05 (0.95), 0.15 (0.85), 0.25 (0.75),
0.35 (0.65) and 0.45 (0.55). The predicted regression functions based on trimmed
means associated with these α’s and numbers of observations being trimmed
are plotted in Figure 1. The trimmed mean with trimming percentage α =
0.35 (0.65) is still not satifactory in explaining the main trend of the data. The
reasons for this poor performance includes: (a) There is still one (65) in the
6 extreme observations (64-69) not being trimmed. (b) Too many observations
representing the data of the main trend are removed. This impairs the estimation
of the regression parameters. Although the trimmed mean with α = 0.45 (0.55)
performs much better than the others, it is still impaired by removing too many
good observations (21 of 24 observations are removed).
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Figure 1. Sequential trimmed means based on regression quantiles

Unlike the trimmed mean that is suffering from removing good observations,
the symmetric weighted trimmed mean would remove observations only if they
have larger absolute residuals computed from an initial estimate. Let the �1-norm
be the initial estimate. We also fix the tuning constant with (b, c) = (1.2, 1.7)
because it performed well in the estimation under errors of contaminated normal
distributions. Suppose that the residuals from the �1-norm estimate ordered by
their absolute values are e1, . . . , en. We then compute a sequence of symmetric
weighted trimmed means by setting the sequential trimming percentage λi as
λi = |ei|. The following table gives the estimates associated with the years those
corresponding observations are removed.
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Table 4. Sequential weighted trimmed mean for international calls

Step β̂0 β̂1 Years with obs removed
1 −27.16 .525 None
2 −25.53 .496 None

3 −22.57 .442 None

4 −17.86 .355 69
5 −17.38 .347 69
6 −6.348 .130 64, 65, 66, 67, 68, 69
7 −5.851 .121 64, 65, 66, 67, 68, 69
8 −4.976 .105 64, 65, 66, 67, 68, 69
9 −3.632 .081 64, 65, 66, 67, 68, 69
10 −5.545 .115 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
11 −5.282 .111 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
12 −4.969 .105 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
13 −4.429 .095 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
14 −4.484 .095 64, 65, 66, 67, 68, 69, 70, 71, 72, 73

Properties of the sequential weighted trimmed means based on this example
include:
(a) The stability of the sequential weighted trimmed means strongly depends on
whether extreme outliers remain in the data set for computing estimates. The
sequence becomes unstable when outliers are not all removed (Step 1 to 5) and
stable when outliers are all removed (Steps after 6).
(b) Removing larger outliers is possible without hurting the estimate by removing
good observations. Also, when the residual quantile estimate â(λ) becomes large
as it does for larger steps, the good observations are all retained.

For this data set that can be plotted on a plane, one might argue that a
trimmed mean with asymmetric trimming by removing only the observations
lying above the upper regression quantile may perform better. Indeed it turns
out that the performance of the asymmetric trimmings is relatively better than
the equally trimming ones. However, note that asymmetric trimming still suffers
from removing some good observations. To see this, we list here the observations
that lie above the upper qunatiles in the following table, where the years in (·)
correspond to good observations.

Table 5. Observations lying above the regression quantile

α Years with obs removed

0.95 69

0.85 (50, 51), 68, 69

0.75 (50, 51, 52), 67, 68, 69

0.65 (50, 51), 64, 66, 67, 68, 69

0.55 (50, 51, 52, 53), 64, 65, 66, 67, 68, 69, 70
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We have two points to note on the asymmetric trimmed mean. First, the trimmed
mean with α = 0.65 is still not satisfactory to explain the main trend of the data
because the extreme of year 65 has not been removed. It would perform better
if α = 0.45. However, it has suffered from removing good observations of years
50-53.

7. Appendix

To prove Theorem 3.1, we need several lemmas.

Lemma 7.1. For a fixed real value k,

n−1/2
n∑

i=1

xiI(yi − x′iβ̂0 ≤ kâ(λ)) = n−1/2
n∑

i=1

xiI(εi ≤ kF̃−1(λ))

f(kF̃−1(λ))[kn1/2(â(λ) − F̃−1(λ))θ +Qn1/2(β̂0 − β)] + op(1).

Proof. From Lemma 2.1 of Jureckova (1984), we have

n−1/2
n∑

i=1

xi[I(εi ≤ kF̃−1(λ) + n−1/2(k, x′i)Tn) − I(εi ≤ kF̃−1(λ))]

= f(kF̃−1(λ))n−1/2
n∑

i=1

xi(k, x′i)Tn + op(1), (7.1)

for any sequence of ( p + 1)-dimensional random vector Tn which satisfies Tn =
Op(1).

With equation (2.1), we have

yi − x′iβ̂0 − kâ(λ) = εi − [kF̃−1(λ) +n−1/2(k, x′i)n
1/2(â(λ)− F̃−1(λ), (β̂0 − β)′)′].

(7.2)
Also, Lemma 2.1 and assumption (A.6) imply that

n1/2(â(λ) − F̃−1(λ), (β̂0 − β)′)′ = Op(1). (7.3)

Replacing Tn by n1/2(â(λ) − F̃−1(λ), (β̂0 − β)′)′ and substituting the relation
(7.2) into (7.1) we have

n−1/2
n∑

i=1

xiI(yi − x′iβ̂0≤kâ(λ)) = n−1/2
n∑

i=1

xiI(εi≤kF̃−1(λ))

+f(kF̃−1(λ))n−1/2
n∑

i=1

xi(k(â(λ) − F̃−1(λ)) + x′i(β̂0 − β)) + op(1). (7.4)

Lemma 7.1 follows from (7.4) and assumption (A.2).
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Lemma 7.2. For constant k,

n−1/2
n∑

i=1

xiεiI(yi − x′iβ̂0 ≤ kâ(λ)) = n−1/2
n∑

i=1

xiεiI(εi ≤ kF̃−1(λ))

+kF̃−1(λ)f(kF̃−1(λ))[kn1/2(â(λ) − F̃−1(λ))θ +Qn1/2(β̂0 − β)] + op(1).

Proof. From Lemma 3.1 of Jureckova, we have

n−1/2
n∑

i=1

xiεi[I(εi ≤ kF̃−1(λ) + n−1/2(k, x′i)Tn) − I(εi ≤ kF̃−1(λ))]

= kF̃−1(λ)f(kF̃−1(λ))n−1/2
n∑

i=1

xi(k, x′i)Tn + op(1), (7.5)

for any sequence of ( p + 1)-dimensional random vectors Tn which satisfies Tn =
Op(1). Then the lemma follows from (7.2), (7.3), and (7.5).

Lemma 7.3. For constant k,

n−1
n∑

i=1

xix
′
iI(yi − x′iβ̂0 ≤ kâ(λ)) = P (ε ≤ kF̃−1(λ))Q+ op(1).

Proof. Lemma 3.2 of Jureckova implies that

n−1
n∑

i=1

xix
′
iI(εi ≤ kF̃−1(λ) + n−1/2(k, x′i)Tn) = P (ε ≤ kF̃−1(λ))Q+ op(1) (7.6)

for any sequence Tn which satisfies Tn = Op(1). Then the lemma follows from
(7.2), (7.3) and (7.6)

We now prove the main theorem.

Proof of Theorem 3.1. From (2.1) and (2.3), the weighted trimmed mean can
be formulated as

n−1
n∑

i=1

xix
′
iI(|yi − x′iβ̂0| ≤ â(λ))(β̂(λ, b, c) − β) = A+B + C,

where

A=
n∑

i=1

xiεiI(|yi−x′iβ̂0|≤ â(λ)),

B= â(λ)
n∑

i=1

xisgn(yi − x′iβ̂0)I(â(λ) < |yi−x′iβ̂0|≤bâ(λ)),

C=(c−b)−1
n∑

i=1

xi(câ(λ)−|yi−x′iβ̂0|)sgn(yi−x′iβ̂0)I(bâ(λ)< |yi−x′iβ̂0|≤ câ(λ)).
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Since A can be rewritten as
n∑

i=1

xiεiI(yi − x′iβ̂0 ≤ â(λ)) −
n∑

i=1

xiεiI(yi − x′iβ̂0 ≤ −â(λ)),

Lemma 7.2 with k = −1 and k = 1 gives A as follows:

n−1/2A = F̃−1(λ)(f(F̃−1(λ)) − f(−F̃−1(λ)))θn1/2(â(λ) − F̃−1(λ))

+F̃−1(λ)(f(F̃−1(λ)) + f(−F̃−1(λ)))Qn1/2(β̂0 − β)

+n−1/2
n∑

i=1

xiεiI(|εi| ≤ F̃−1(λ)) + op(1).

Let B0 = F̃−1(λ)(â(λ))−1B, then B0 can be expanded as

F̃−1(λ)
[ n∑
i=1

xiI(yi − x′iβ̂0 ≤ bâ(λ)) −
n∑

i=1

xiI(yi − x′iβ̂0 ≤ â(λ))

−
n∑

i=1

xiI(yi − x′iβ̂0 ≤ −â(λ)) +
n∑

i=1

xiI(yi − x′iβ̂0 ≤ −bâ(λ))
]
. (7.7)

Applying Lemma 7.1 to (7.7) with k = 1, − 1, b, and −b, we have

n−1/2B0 = F̃−1(λ){[bf(bF̃−1(λ)) − f(F̃−1(λ)) + f(−F̃−1(λ))

−bf(−bF̃−1(λ))]θn1/2(â(λ) − F̃−1(λ)) + [f(bF̃−1(λ)) − f(F̃−1(λ))

−f(−F̃−1(λ)) + f(−bF̃−1(λ))]Qn1/2(β̂0 − β)

+n−1/2
n∑

i=1

xisgn(εi)I(F̃−1(λ) < |εi| ≤ bF̃−1(λ))} + op(1).

Furthermore, Lemma 2.1 gives n1/2(â(λ) − F̃−1(λ)) = Op(1), We then have

n−1/2B = n−1/2B0 + op(1).

Consider the representation of C. Decompose C as

C = C1 + C2 + C3,

where

C1 = c(c− b)−1â(λ)
n∑

i=1

xiI(bâ(λ) < |yi − x′iβ̂0| ≤ câ(λ)),

C2 = (c− b)−1
n∑

i=1

xix
′
iI(bâ(λ) < |yi − x′iβ̂0| ≤ câ(λ))(β̂0 − β),

C3 = −(c− b)−1
n∑

i=1

xiεiI(bâ(λ) < |yi − x′iβ̂0| ≤ câ(λ)).
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Using an argument similar to the above, we have

n−1/2C1 = c(c − b)−1F̃−1(λ){[cf(cF̃−1(λ)) − bf(bF̃−1(λ)) + bf(−bF̃−1(λ))

−cf(−cF̃−1(λ))]θn1/2(â(λ) − F̃−1(λ)) + [f(cF̃−1(λ)) − f(bF̃−1(λ))

−f(−bF̃−1(λ)) + f(−cF̃−1(λ))]Qn1/2(β̂0 − β)

+n−1/2
n∑

i=1

xisgn(εi)I(bF̃−1(λ) < |εi| ≤ cF̃−1(λ))} + op.

It follows on applying Lemma 7.3 with k = b, − b, c and −c to C2 that

n−1/2C2 = (c− b)−1λbcQn
1/2(β̂0 − β) + op(1).

Again, using Lemma 7.2 on C3, we get

n−1/2C3 = −(c−b)−1{[c2F̃−1(λ)(f(cF̃−1(λ))−f(−cF̃−1(λ)))−b2F̃−1(λ)(f(bF̃−1(λ))

−f(−bF̃−1(λ)))]θn1/2(â(λ) − F̃−1(λ)) + [cF̃−1(λ)(f(cF̃−1(λ))

+f(−cF̃−1(λ))) − bF̃−1(λ)(f(bF̃−1(λ)) + f(−bF̃−1(λ)))]Qn1/2(β̂0 − β)

+n−1/2
n∑

i=1

xiεiI(bF̃−1(λ) < |εi| ≤ cF̃−1(λ))} + op(1).

Take the sum n−1/2(C1 + C2 + C3) + n−1/2A + n−1/2B and make some simple
rearrangements. We then have

n−1/2(A+B + C)

= (c− b)−1λbcQn
1/2(β̂0 − β) + n−1/2

n∑
i=1

xi

[
εiI(|εi| ≤ F̃−1(λ)) + F̃−1(λ)sgn(εi)I(F̃−1(λ) < |εi| ≤ bF̃−1(λ))

+(c−b)−1(cF̃−1(λ)sgn(εi) − εi)I(bF̃−1(λ)< |εi| ≤ cF̃−1(λ))
]
+op(1). (7.8)

The theorem then follows from (7.8) and the following result from Lemma 7.3:

n−1
n∑

i=1

xix
′iI(|yi − x′iβ̂0| ≤ â(λ)) = λQ+ op(1).

Now we turn to proving Theorem 5.1. Theorem 5.1 follows from the following
lemma.

Lemma 7.4. (a) Let −∞ < s < t <∞. Then

n−1
n∑

i=1

I(sâ(1−2α) < yi−x′iβ̂0 < tâ(1−2α)) → P (sF−1(1−α) < ε < tF−1(1−α))
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in probability.
(b) Let 0 ≤ s < t <∞. Then

n−1
n∑

i=1

(yi − x′iβ̂0)cI(sâ(1 − 2α) < yi − x′iβ̂0 < tâ(1 − 2α))

→
∫
εcI(sF−1(1 − α) < ε < tF−1(1 − α))dF

in probability for c = 1 and 2.

Proof. We consider only case (b) for c = 1. The proofs of the other cases are
similar. Replacing yi by x′iβ + εi, the equation in (b) with c = 1 is

n−1
n∑

i=1

εiI(sâ(1 − 2α) < yi − x′iβ̂0 < tâ(1 − 2α)) − n−1
n∑

i=1

xiI(sâ(1 − 2α) <

yi − x′iβ̂0 < tâ(1 − 2α))(β̂0 − β). (7.9)

Lemma 7.1 implies that

n−1
[ n∑
i=1

xiI(sâ(1 − 2α) < yi − x′iβ̂0 < tâ(1 − 2α)) −
n∑

i=1

xiI(sF−1(1 − 2α)

< εi < tF−1(1 − 2α))
]

= Op(n−1/2).

With addition of assumption (A.6), the second term of (7.9) is Op(n−1/2). More-
over, Lemma 7.2 implies that the first term of (7.9) is asymptotically equal to

n−1
n∑

i=1

εiI(sF−1(1 − α) < εi < tF−1(1 − α)) = Op(n−1/2).

These results then imply that (b) with c = 1 holds.
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