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Abstract: We propose a two-stage estimation method for random coefficient ordi-

nary differential equation (ODE) models. A maximum pseudo-likelihood estimator

(MPLE) is derived based on a mixed-effects modeling approach and its asymptotic

properties for population parameters are established. The proposed method does

not require repeatedly solving ODEs, and is computationally efficient although it

does pay a price with the loss of some estimation efficiency. However, the method

does offer an alternative approach when the exact likelihood approach fails due to

model complexity and high-dimensional parameter space, and it can also serve as a

method to obtain the starting estimates for more accurate estimation methods. In

addition, the proposed method does not need to specify the initial values of state

variables and preserves all the advantages of the mixed-effects modeling approach.

The finite sample properties of the proposed estimator are studied via Monte Carlo

simulations and the methodology is also illustrated with application to an AIDS

clinical data set.
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1. Introduction

Ordinary differential equation (ODE) models are widely used in such scien-
tific fields as engineering, physics, econometrics, and, recently, biomedical sci-
ences. ODE models have been applied to quantify HIV viral dynamics and have
led to many important findings for AIDS pathogenesis in the past two decades
(Ho et al. (1995), Perelson et al. (1996), Perelson et al. (1997), Perelson and
Nelson (1999), Wu et al. (1999), Wu and Ding (1999), Nowak and May (2000),
Tan and Wu (2005), and Wu (2005)).

In this paper, we use a two-stage method to estimate the random coefficient
parameters in ODE models for longitudinal data. In the first stage, we estimate
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the state variables and time-varying covariates, as well as their derivatives, by us-
ing local polynomial smoothing for the nonparametric mixed effects models (Wu
and Zhang (2002)). In the second stage, a maximum pseudo-likelihood (MPL)
estimation is developed to estimate the unknown parameters, including both the
population and individual coefficients in a random coefficient ODE model. The
asymptotic properties of the proposed estimator for population parameters are
established. The spirit of two-stage method was initiated by Varah (1982) who
used a cubic spline to smooth the data in the first stage, and employed the least
squares method for parameter estimation in the second stage. Ellner, Seifu, and
Smith (2002) fitted the dynamic models to time series data using the local poly-
nomial regression. Liang and Wu (2008) established the theoretical properties
of the method for ODE models by applying the local polynomial smoothing in
the first stage. They proved that the two-step estimator has strong consistency
and asymptotic normality. Brunel (2008) obtained similar asymptotic results by
using regression splines. Chen and Wu (2008a,b) adopted a similar two-stage
method for ODE models with time-varying coefficients and also obtained the
asymptotic results for the proposed estimators. However, this literature deals
only with cross-section iid data.

Longitudinal dynamic systems (random coefficient ODE models) have been
suggested by Putter et al. (2002), Huang and Wu (2006), and Huang, Liu, and Wu
(2006), in which the hierarchical Bayesian approach was used to estimate dynamic
parameters in HIV dynamic models from longitudinal clinical data. Lahiri (2003)
proposed a spline-enhanced population model to study pharmacokinetics using a
random time-varying coefficient ODE model. Guedj, Thiébaut, and Commenges
(2007) used the maximum likelihood approach directly to estimate unknown
parameters in random coefficient ODE models.

In this paper, we extend the two-step estimation method (Varah (1982),
Liang and Wu (2008)) to longitudinal dynamic systems by adopting the mixed-
effects modeling approach. The extension is not trivial. When the nonparametric
mixed-effects (NPME) modeling approach is used in the first step, we need to
resort to asymptotic independence and a pseudo-likelihood idea to derive the
parameter estimates in the second step. The asymptotic theories for the proposed
pseudo-likelihood estimator are established. We also demonstrate, via Monte
Carlo simulations, that the NPME modeling approach in the first step provides
a good estimate for the state variables and their derivatives. Thus, the proposed
method preserves the advantages of both the mixed-effects modeling approach
and the two-step estimation method for ODE models: it avoids repeatedly solving
the ODE numerically so that it is computationally efficient; it does not require
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initial values of state variables; and implementation is easy compared to the exact
maximum likelihood method for ODE models.

The remainder of this paper is organized as follows. The two-stage esti-
mation procedure is described in Section 2. The theoretical properties for the
population estimates are established in Section 3. In Section 4, we fit a viral
dynamic model to a longitudinal HIV dynamic data from an AIDS clinical study
to further illustrate the usefulness of the proposed method. In Section 5, we con-
duct simulation studies to evaluate the performance of the proposed estimates.
We conclude our paper with some discussion in Section 6. The proofs of the
theoretical results are provided in the Appendix.

2. Estimation Procedure

The proposed method is motivated by a HIV dynamic study with a popular
ODE model:

d

dt
TU (t) = λ − ρTU (t) − η(t)TU (t)V (t),

d

dt
TI(t) = η(t)TU (t)V (t) − δTI(t), (2.1)

d

dt
V (t) = NδTI(t) − cV (t),

where TU (t) is the concentration of uninfected target T cells, TI(t) is the con-
centration of infected cells, and V (t) is the concentration of plasma virus (viral
load) at time t. The functions V (t), TU (t), and TI(t) are called state variables.
Parameter λ represents the rate at which new T cells are continuously generated,
ρ is the death rate of uninfected T cells, η(t) is the time-varying infection rate of
T cells, δ is the death rate of infected cells, c is the clearance rate of free virus,
and N is the average number of virus produced from each infected cell.

In the dynamic system (2.1), viral load V (t) and total CD4+ T cell counts
T (t) = TU (t)+TI(t) can be measured in AIDS clinical studies. Using some simple
algebra, Liang and Wu (2008) transformed the system (2.1) into a single ODE
model:

V ′(t) = α0 + α1T (t) + α2T
′(t) − cV (t), (2.2)

where V ′(t) = dV (t)/dt and T ′(t) = dT (t)/dt, and parameters α0 = −Nδλ/(ρ−
δ), α1 = −Nδρ/(ρ − δ) and α2 = Nδ/(ρ − δ). Model (2.2) can be extended into
a random coefficient ODE model as

V ′
i (tij) = α0i + α1iTi(tij) + α2iT

′
i (tij) − ciVi(tij), (2.3)
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with subject index i = 1, . . . , n and the measurement index for the ith subject
j = 1, . . . , ni. In general, model (2.3) can be written as

X ′
i(tij) = F (Xi(tij), Zi(tij), Z ′

i(tij), θi)τ , i = 1, . . . , n, j = 1, . . . , ni, (2.4)

where Xi is a vector of state variables for the ith subject. The vector Zi(tij) =
(Zi1(tij), . . . , Zik(tij))τ is a k×1 vector of input variables (covariates) and Z ′

i(tij)
denotes its derivative (the notation “τ” stands for transposition). F (·) = (F1(·),
. . . , Fq(·))τ is a known linear or nonlinear function vector. The random coefficient
(unknown parameter) vector can be written as θi = θ + bθ,i, where θ (q × 1)
is the population parameter vector and bθ,i’s are random components of the
parameters that are independent and identically distributed (i.i.d.) with mean
0 and covariance matrix Dθ. For simplicity, we only consider the case that Xi

is a univariate state variable and the ODE model (2.4) is linear for unknown
parameters θi, i.e., the linear mixed-effects ODE model

X ′
i(tij) = F (Xi(tij), Zi(tij), Z ′

i(tij))
τθi, i = 1, . . . , n, j = 1, . . . , ni. (2.5)

Note that (2.5) has no closed-form solution in general. Although the theoret-
ical results are difficult to establish and the computation is more costly, our
methodologies are applicable to general nonlinear mixed-effects ODE models
(models with nonlinear for unknown parameters). In this paper, for simplicity,
our methodology and theoretical development focus on model (2.5).

In model (2.5), the state variable Xi(t) and input variables Zil(t), for 1 ≤
l ≤ k, are observed longitudinally, i.e., for i = 1, . . . , n, j = 1, . . . , ni,

Yi(tij) = Xi(tij) + εi(tij), Xi(tij) = u(tij) + vi(tij), (2.6)

Sil(tij) = Zil(tij) + εil(tij), Zil(tij) = ul(tij) + vil(tij), (2.7)

where u(t) and ul(t) are the population mean (fixed-effect) functions of the lon-
gitudinal data; vi(t) and vil(t), which are the subject-specific effects or random-
effect functions, model the departure of the i-th individual effect from the pop-
ulation mean functions u(t) and ul(t), respectively, and εi(t) and εil(t) are the
measurement error functions, respectively. Models (2.6) and (2.7) can be con-
sidered as nonparametric mixed-effects (NPME) models (Shi, Weiss, and Taylor
(1996), Rice and Wu (2001), and Wu and Zhang (2002, 2006)).

In the following subsections, we introduce the two-stage estimation procedure
for the random coefficient ODE model (2.5). The basic idea is to apply a non-
parametric smoothing approach to (2.6) and (2.7) to estimate the time-varying
state variables and input variables (covariates) as well as their derivatives in the
first stage, and then substitute the estimates from the first stage to model (2.5)
to form a parametric regression model to estimate unknown parameters in the
second stage.
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2.1. Stage I: nonparametric estimation of state variables and their
derivatives

In the first stage, we fit the NPME model (2.6) and (2.7) to obtain the
estimates of the time-varying state variables, Xi(t), and the input variables, Zi(t),
as well as their derivatives for each individual subject using the local polynomial
approach (Wu and Zhang (2002)). Here we only present the results for the state
variable Xi(t), it is the same for the input variable Zi(t). For convenience, we
assume that the unobserved random-effect functions vi(t) are i.i.d. sampling
trajectories of the underlying Gaussian process (GP) with mean function 0 and
a covariance function γ(s, t). We also assume that the measurement errors εi(t)
are i.i.d. copies of a GP ε(t) with mean 0 and a covariance function γε(s, t) =
σ2(t)I(s = t), where I(·) is an index function. For i = 1, . . . , n, we have

vi ∼ GP (0, γ), εi ∼ GP (0, γε). (2.8)

Let tij , j = 1, . . . , ni be the design time points for the ith individual subject.
The model (2.6) can be rewritten as

Yij = u(tij) + vi(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , ni. (2.9)

Assume that u(t) and vi(t) are smooth functions and have up to (p + 1)-order
continuous derivatives at each time point within some interval of interest, v

(r)
i (t)

with covariance function γr(t, s), for each r = 1, . . . , p. Then, for each tij , u(tij)
and vi(tij) can be approximated by p-th degree polynomials within a neighbor-
hood of t0, i.e.,

u(tij) ≈ u(t0) + u′(t0)(tij − t0) + . . . +
u(p)(t0)

p!
(tij − t0)p = Hτ

ij,p(t0)β, (2.10)

vi(tij) ≈ vi(t0) + v′i(t0)(tij − t0) + . . . +
v

(p)
i (t0)

p!
(tij − t0)p = Hτ

ij,p(t0)bi, (2.11)

where Hij,p(t0) = (1, (tij − t0), . . . , (tij − t0)p)τ , and

β =
[
u(t0), u′(t0), . . . ,

u(p)(t0)
p!

]τ
, bi =

[
vi(t0), v′i(t0), . . . ,

v
(p)
i (t0)

p!

]τ
. (2.12)

Thus, within a neighborhood of t0, the NPME model (2.9) can be approximated
by a LME model

Yij = Hτ
ij,p(t0)β + Hτ

ij,p(t0)bi + εij , i = 1, . . . , n, j = 1, . . . , ni, (2.13)

where εij include the measurement and approximation errors, and bi are the
random effects. Let Kh(·) = K(·/h)/h, K a kernel function and h denoting
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bandwidth. For model (2.13), Wu and Zhang (2002) used a local likelihood
method to give the estimator of β and predictor of bi. Also they pointed out that
their method is equivalent to fitting the standard LME model

Ỹij = H̃τ
ij(t0)β + H̃τ

ij(t0)bi + εij , i = 1, . . . , n, j = 1, . . . , ni, (2.14)

where Ỹij = K
1/2
h (tij − t0)Yij is the response variable, H̃ij,p(t0) = K

1/2
h (tij −

t0)Hij,p(t0) are fixed-effects and random-effects covariates. Standard statistical
software packages such as the R lme function or SAS procedure PROC MIXED
can be used to fit (2.14).

Denote the final estimation of the state variable for individual subjects as
X̂i(t) = û(t) + v̂i(t) and its derivative as X̂ ′

i(t) = û′(t) + v̂′i(t). By Proposition 1
in Wu and Zhang (2002), we have

û(t) = eτ
1{

∑n
i=1(I + GiD)−1G−1

i }−1 ×
∑n

i=1(I + GiD)−1ψi,

û′(t) = eτ
2{

∑n
i=1(I + GiD)−1G−1

i }−1 ×
∑n

i=1(I + GiD)−1ψi,

v̂i(t) = eτ
1D(I + GiD)−1gi,

v̂′i(t) = eτ
2D(I + GiD)−1gi,

(2.15)

where eτ
k is a (p + 1) vector with 1 at the kth element and 0 otherwise;

Gi =


si,0 si,1 · · · si,p

si,1 si,2 · · · si,p+1
...

...
. . .

...
si,p+1 si,p+2 · · · si,2p

 , ψi =


ψi,0

ψi,1
...

ψi,p

 ,gi =


gi,0

gi,1
...

gi,p

 ; (2.16)

si,r =
ni∑

j=1

Kh(tij − t)(tij − t)r

σ2(tij)
, r = 0, . . . , 2p; (2.17)

ψi,r =
ni∑

j=1

Kh(tij − t)(tij − t)rYij

σ2(tij)
, r = 0, . . . , p; (2.18)

gi,r =
ni∑

j=1

Kh(tij − t)(tij − t)r
[Yij − Hτ

ij,r(t)β̂]
σ2(tij)

, r = 0, . . . , p. (2.19)

Here we use local linear smoothing (p = 1) to estimate the curve functions u(t)
and vi(t) and local quadratic kernel (p = 2) to estimate the derivative functions
u′(t) and v′i(t). Similarly we can obtain the estimates of the input variable and
its derivative, Ẑi(t) and Ẑ ′

i(t).
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For bandwidth selection, there are the criteria of leave-one-subject-out cross
validation (SCV, Rice and Silverman (1991)) and leave-one-point-out cross vali-
dation (PCV). Wu and Zhang (2002) compared four bandwidth selection strate-
gies. They concluded that when estimating the individual curve, the best method
is the bias-corrected hybrid bandwidth (BCHB) and the second best is the hybrid
bandwidth (HB) method, i.e., using SCV for population curve estimate and PCV
for random-effects curve estimate. Readers are referred to Wu and Zhang (2002)
for details. Due to the heavy computational burden of BCHB, we prefer the HB
method here. That is, we select ĥ01 for u(t) by SCV and choose ĥ02, the band-
width for the random effects curves vi(t), by PCV. The consistency of SCV has
been proved by Hart and Wehrly (1993). Thus the ĥ01 is of order Ñ−1/5 where
Ñ =

∑n
1 ni, and ĥ02 is of order n

−1/5
i . However, our asymptotic theories in Sec-

tion 3 (Condition C8) requires the bandwidth to be of order Op(n−1/4an), where
an is a sequence going to 0 with a slower rate than log−1(n). Thus, to meet this
requirement, we need to use modified bandwidths, h01 = ĥ01 × n−1/20 × m̃1/5an

and h02 = ĥ02 × n−1/4 × m̃1/5an, where m̃ = n/
∑n

i=1(1/ni), which is at the
same order as ni, and an = log−ς(n) with ς being a positive number less than
1. Since the constants in the limiting bandwidths are unknown, the asymptotic
order of the bandwidths just provides us with a rough guideline for determin-
ing the practical bandwidths. Besides, for estimation of derivatives of a curve
under the framework of a nonparametric mixed-effects model, the issue of band-
width selection is not well resolved. It is an interesting research topic worthy
of more attention in the future. We adopt an ad hoc approach: apply the local
quadratic polynomial approach to fit the NPME model, and use the SCV and
PCV method to choose the bandwidths, say ĥ11 and ĥ12, to optimize the esti-
mates of u(t) and vi(t). Then, to satisfy condition (C8), we use the modified
bandwidths, h11 = ĥ11 × n−1/20 × m̃1/5an and h12 = ĥ12 × n−1/4 × m̃1/5an to es-
timate u′(t) and v′i(t). Similar ideas of partially data-driven bandwidth selection
were also used in Carroll et al. (1997) and Stute and Zhu (2005) for cross-section
iid data.

2.2. Stage II: ODE parameter estimation

The idea for ODE parameter estimation in the second stage is simple. We
substitute the estimates of Xi(t), X ′

i(t), Zi(t), and Z ′
i(t) from the first stage

into the ODE model, say model (2.5), to formulate a regression-like model for
unknown parameters, and then apply regression approaches to obtain the param-
eter estimates. However, the justification for the estimator may not be trivial
since the formulated regression models are not standard, instead both sides of the
models are functions of the nonparametric estimates from the first stage rather
than the measurement data. The theoretical properties for the final estimator
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need to be rigorously established. In this subsection, we derive the maximum
pseudo-likelihood estimation (MPLE) method.

First we employ the linear mixed-effects regression approach (Davidian and
Giltinan (1995), Vonesh and Chinchilli (1996)) to derive the parameter estimates
for model (2.5). We assume that the X̂ ′

i(tij) are obtained by the local polynomial
mixed-effects (LP-MIX) approach from the first stage, as introduced in the last
subsection. We substitute X̂ ′

i(tij) into (2.5) and it follows that

X̂ ′
i(tij) = F (Xi(tij), Zi(tij), Z ′

i(tij))
τθi + ∆i(tij), i = 1, . . . , n, j = 1, . . . , ni,

(2.20)
where θi = θ + bθ,i; we assume that bθ,i ∼ N(0, Dθ). By (2.15), the error term is

∆i(tij) = X̂ ′
i(tij) − X ′

i(tij)

= eτ
2{

n∑
i=1

(I + GiD)−1G−1
i }−1

×
n∑

i=1

(I + GiD)−1ψi + eτ
2D(I + GiD)−1gi − u′(tij) − v′i(tij). (2.21)

In order to derive the estimates of the unknown parameters in model (2.20),
we need to study the properties of the error term ∆i(t). Let D = {tij , i =
1, . . . , n, j = 1, . . . , ni} denote the collection of design time points. Let B(K) =∫

K(t)t2dt, V (K) =
∫

K2(t)dt, E(K) =
∫

K(t)t4dt, C(K) =
∫

K2(t)t2dt. We
prove the following lemma in the Appendix.

Lemma 2.1. Under conditions (C1) to (C9) in Section 3, we have

E[∆i(t)|D] =
h2

11u
(3)(t)E(K)
3!B(K)

+ op(h2
11), (2.22)

Var [∆i(t)|D] =
τ2(t)C(K)

nih3
12B

2(K)f(t)
+ op[(nih

3
12)

−1], (2.23)

where h11 and h12 denote the bandwidths for estimating the derivatives u′(t) and
v′i(t), respectively.

Let τ2(t) = γ(t, t)+σ2(t). Note that the vi(t)’s and εi(t)’s are mutually inde-
pendent Gaussian processes. The random vector (Y11, . . . , Y1n1 , . . . , Yn1, . . . , Ynni ,

v′i(tij))
τ is normally distributed. Let ∆i = (∆i(ti1), . . . , ∆i(tini))

τ , by (2.21) a lin-
ear transformation of (Y11, . . . , Y1n1 , . . . , Yn1, . . . , Ynni , v

′
i(tij)

τ , so ∆i is normally
distributed. For i 6= j, ∆i and ∆j are not independent, but are asymptotically
independent, defined as follows (Lahiri (2003), Hürlimann (2004), Draisma et al.
(2004)).
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Definition 2.1. Two sequences of random vectors {Un} in Rp and {Wn} in Rq,
defined on a common probability space, are asymptotically independent if there
exist constants ln > 0, sn > 0, and vectors µn ∈ Rp and ωn ∈ Rq such that
the random vector (ln[Un−µn]τ , sn[Wn−ωn]τ ) converges in distribution to some
random vector (U,W ), and U and W are independent.

Lemma 2.2. Under the observation design D and conditions (C1) to (C9) in
Section 3, ∆i and ∆j are asymptotically independent for i 6= j.

By Lemmas 2.1 and 2.2, {∆i, i = 1, . . . , n} are normal vectors which are
mutually and asymptotically independent with asymptotic mean 0. Let Xi =
(Xi(ti1), . . . , Xi(tini))

τ , Fi = {F (Xi(ti1), Zi(ti1), Z ′
i(ti1)), . . . , F (Xi(tini), Zi(tini),

Z ′
i(tini))}τ , Zi = (Zi(ti1), . . . , Zi(tini))

τ , and Z′
i = (Z ′

i(ti1), . . . , Z
′
i(tini))

τ . Since
{∆i, i = 1, . . . , n} are asymptotically independent, we define the pseudo-likeli-
hood for model (2.20) as the product of the likelihoods for ∆i’s:

PL(∆i, bθ,i|X̂′
i)

= (2π)−n
n∏

i=1

|Ri|−1/2
n∏

i=1

exp
{
−1

2
[X̂′

i − Fiθ − Fibθ,i]τR−1
i [X̂′

i − Fiθ − Fibθ,i]
}

|Dθ|−n/2
n∏

i=1

exp
(
− 1

2
bτ
θ,iD

−1
θ bθ,i

)
, (2.24)

where Dθ = Var (bθ,i) and Ri = Var (∆i). The pseudo-likelihood idea has been
used under different frameworks by others (Besag (1974, 1977), Troxel, Lipsitz,
and Harrington (1998)), in which the correlations among dependent variables are
ignored.

If Xi, Zi, and Z′
i are exactly known, the estimate of θ and the predictor of

bθ,i are the maximizers of (2.24), that can be obtained as

θ̂ =
( n∑

i=1

Fτ
i V

−1
i Fi

)−1
n∑

i=1

Fτ
i V

−1
i X̂′

i, (2.25)

b̂θ,i = DθFτ
i V

−1
i (X̂′

i − Fiθ̂). (2.26)

However, in the above expressions, the Xi, Zi, and Z′
i are not exactly known

but measured with error. Then we can substitute their estimates from the first
stage, X̂i, Ẑi and Ẑ′

i into (2.25) and (2.26). The final maximum pseudo-likelihood
estimates (MPLE) are

θ̂ =
( n∑

i=1

F̂τ
i V̂

−1
i F̂i

)−1
n∑

i=1

F̂τ
i V̂

−1
i X̂′

i, (2.27)

b̂θ,i = DθF̂τ
i V̂

−1
i (X̂′

i − F̂iθ̂), (2.28)
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where F̂i = {F (X̂i(ti1), Ẑi(ti1), Ẑ ′
i(ti1)), . . . , F (X̂i(tini), Ẑi(tini), Ẑ

′
i(tini))}τ and

V̂i = F̂iDθF̂τ
i +Ri. This plug-in approach for unknown state variables and their

derivatives is similar to the estimation procedure in Gong and Samaniego (1981),
Liang, Wu, and Carroll (2003), Wu and Liang (2004), and Liang and Wu (2008).

The computation procedure is the same as that to obtain θ̂ and b̂θ,i as the
maximum likelihood estimation for the standard LME model. For implementa-
tion, we can directly use R function lme or SAS procedure PROC MIXED for
the model

X̂′
i = F̂iθ + F̂ibθ,i + ∆i, i = 1, . . . , n. (2.29)

Note that we call our estimate the maximum pseudo-likelihood estimate
(MPLE). The word “pseudo” has a two-layer meaning here: the likelihood func-
tion is formulated using the concept of asymptotic independence instead of exact
independence; the unknown time-varying functions are replaced by their non-
parametric estimates.

3. Asymptotic Properties

In this section, we study the asymptotic properties of the MPLE of the
population parameters. For notational simplicity, we ignore the input or covariate
variables Zi(t) in the theoretical development, i.e., we consider the model

X ′
i(tij) = F (Xi(tij))τ (θ + bθ,i). (3.1)

Results still hold and the proofs are similar when the model contains the input
or covariate variables Zi(tij) and their derivatives Z ′

i(tij). First we introduce the
following conditions.

C1 The design points tij , j = 1, . . . , ni, i = 1, . . . , n are i.i.d. variables with a
density function f(t).

C2 The time point t is in the interior of f where f(t) 6= 0 and f ′(t) exists.

C3 The curves of the fixed and random effects u(t) and vi(t), i = 1, . . . , n, have
third order continuous derivatives at t.

C4 The covariance functions γ(s, t) of vi(t) and γ1(s, t) of v′i(t) have twice-
continuous derivatives in s and t.

C5 The variance function of the measurement error σ2(t) is continuous at t.

C6 The kernel function K is a bounded symmetric density function with sup-
port [−1, 1] satisfying

∫ 1
−1 K(t)dt = 1,

∫ 1
−1 tK(t)dt = 0. If B(K) =

∫
K(t)t2dt,

V (K) =
∫

K2(t)dt, E(K) =
∫

K(t)t4dt, C(K) =
∫

K2(t)t2dt, then B(K),
V (K), C(K) and E(K) < +∞.

C7 As n → +∞, ni → +∞, nih
3
12 → +∞, nih02 → +∞.
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C8 The bandwidths h01, h02, h11, and h12 are of order Op(n−1/4an) for the
LP-MIX estimate in Stage I, where an is a sequence tending to 0 at a rate
slower than log−1(n).

C9 D is a diagonal matrix, say D = diag(d2
1(t), d

2
2(t)) when p = 1 and D =

diag(d2
1(t), d

2
2(t), d

2
3(t)) when p = 2, with d2

r(t) > 0 for r = 1, 2, 3.

C10 The matrices Fi and F̂i are of full rank in column. The first and second
derivatives of the function F , ∂F (x)/∂x and ∂2F (x)/∂x2 exist and are
continuous for x in its domain χ. There exists a positive constant M , for
x ∈ χ, with

sup
x∈χ

∣∣∣∣∂F (x)
∂x

∣∣∣∣ ≤ M.

The conditions (C1) to (C6) and (C10) are commonly used. Conditions (C7)
and (C8) guarantee the asymptotic normality of θ̂ in Theorem 3.2. Condition
(C9) is set for technical convenience. By (C7) and (C8), we can see that if we
have ni = O(nω), then ω > 3/4.

Lemma 3.1. For the LP-MIX estimator in the first stage, under (C1) to (C9)
we have

E[Λi(t)|D]=
h2

01u
(2)(t)B(K)

2
+op(h2

01), Var [Λi(t)|D]=
τ2(t)V (K)
nih02f(t)

+op[(nih02)−1],

where τ2(t) = γ(t, t) + σ2(t) and Λi(t) = X̂i(t) − Xi(t).

The proofs of next results are in the Appendix.

Theorem 3.1. Under the conditions (C1) to (C10), the population parameter
estimator θ̂ is a consistent estimator of the parameter θ.

Theorem 3.2. Under the conditions (C1) to (C10),

√
n(θ̂ − θ) d−→ N(0, Dθ), (3.2)

where Dθ = Var (bθ,i).

Remark 3.1. The convergence rate of the proposed MPL estimator in Theorem
3.2 is the standard root-n, where n is the number of subjects or clusters in
the longitudinal study. This rate is the same as that of the standard LME
model (Vonesh and Chinchilli (1996)), but here we assume that the number of
measurements for each individual subject or cluster → ∞. This, combined with
our model feature of the same covariate for both population parameters and
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random components of the parameters, results in a simpler asymptotic variance-
covariance matrix compared to that of the standard LME model (see details of
the proof in Appendix). Theorem 3.2 indicates that the asymptotic variance of
the proposed MPL estimator of the population parameters only depends on the
between-subject variation of the longitudinal data.

Remark 3.2. Note that if additional input variables or covariates, Zi(tij) and
Z ′

i(tij) exist as in model (2.5), the above results still hold. We only need to
make similar assumptions to (C3) and (C4) for Zi(tij), and obtain the estimates
of Ẑi(t) and Ẑ ′

i(t) by using the LP-MIX with bandwidths of order n−1/4an as
specified in the condition (C8). The proofs of the consistency and asymptotic
normality of the parameter estimates are similar.

4. Data Analysis

We fit the random coefficient ODE model (2.3) to an AIDS clinical data set
to further illustrate the usefulness of the proposed methods. The viral load and
numbers of CD4+ T cells from four patients were frequently measured in this
study after initiating an antiretroviral regimen. Viral load was measured at 13
time points during the first day, 14 measurements from day 2 to week 2, and then
one measurement at each of every four weeks, for all subjects. The measurements
of total CD4+ T cell counts were also scheduled at week 2 and every four weeks.
Note that the observed viral load and concentration of CD4+ T cells are modeled
by Vi(tij) and Ti(tij) with

Vi(tij) = V (tij) + V ∗
i (tij) + ε1i(tij), Ti(tij) = T (tij) + T ∗

i (tij) + ε2i(tij), (4.1)

for i = 1, . . . , n and j = 1, . . . , ni, where V (t) and T (t) model population-specific
mean functions, V ∗

i (t) and T ∗
i (t) model subject-specific variations from the mean

curve functions, and ε1i(t) and ε2i(t) are measurement errors.
In order to estimate the dynamic parameters in the original model (2.1), we

first apply the nonlinear regression approach and the model suggested in Perelson
et al. (1996) to estimate the parameters δi and ci for all subjects. Then we assume
that these two parameters are known and we focus on the estimation of param-
eters λ, ρ, and N in model (2.3). Assume that the underlying decomposition of
random coefficients α0i, α1i, and α2i, are, respectively,

α0i = α0 + b0i, α1i = α1 + b1i, α2i = α2 + b2i, (4.2)

where α0, α2, and α2 are fixed effects, and b0i, b1i, and b2i are random effects.
From (2.3), we first estimate the population parameters α0, α1, and α2 and
individual parameters α0i, α1i, and α2i using the proposed MPL method. Then
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Table 1. The estimates (95% confidence intervals) of λi, ρi and Ni for
individual patients and the fixed effects λ, ρ, and N using the MPL method.

Patient λi cells/day ρi day−1 Ni virions/cell
1 37.8 (29.43, 272.37) 0.043 (0.034, 0.308) 497.2 (63.53, 776.38)
2 21.9 (13.17, 157.56) 0.043 (0.026, 0.323) 447.9 (24.16, 981.60)
3 43.5 (21.78, 296.14) 0.047 (0.022, 0.324) 553.6 (45.96, 1189.65)
4 28.8 (21.69, 224.34) 0.047 (0.035, 0.323) 474.4 (33.44, 713.35)

fixed effects λ ρ N
33.5 [22.83, 215.27] 0.045 [0.030, 0.291] 497.2 [33.44, 740.45]

we recover the estimates of (λ, ρ, N) using the relationships (Liang and Wu
(2008)): λ̂i = −α̂0i/α̂2i, ρ̂i = α̂1i/α̂2i, N̂i = α̂1i/δi − α̂2i, and for population
parameters λ̂ = −α̂0/α̂2, ρ̂ = α̂1/α̂2, N̂ = α̂1/δ − α̂2.

Some outliers and the early data due to the shoulder effect (Wu and Ding
(1999)) were excluded from the model fitting. We report the estimation results
for both population (fixed-effects) and individual parameters in Table 1. The
95% bootstrap confidence interval estimates are also given in the table.

From Table 1, we can see that the MPL estimates for individual patients are
close to each other, which is not surprising since the mixed-effects model shrinks
the estimates toward the mean. The estimation results show that the proliferation
rate of uninfected CD4+ T cells is about 34 cells per day per ml blood, the death
rate of uninfected CD4+ T cells is some 0.045 with a corresponding half-life of
about 15 days, and the virus burst size (the number of virions produced per
infected cell) is about 497. These results are consistent with some of the earlier
estimates in the literature (Hellerstein et al. (1999), Haase et al. (1996)). To
our best knowledge, investigators have not been able to estimate the HIV viral
dynamic parameters from clinical data directly. Liang and Wu (2008) have made
an effort to estimate the parameters from two patients of this study, but they were
not able to estimate these parameters for all patients due to insufficient data and
convergence problem for some patients. In contrast, the proposed method allows
us to borrow information across-subjects using mixed-effects modeling approach
so that we can estimate these parameters for all patients in the study. This is
important for individualizing treatment and supporting clinical decisions.

5. Simulation Study

In this section, we report on the evaluation of the performance of the pro-
posed MPL estimate using Monte Carlo simulations based on the HIV dynamic
model (2.3). To evaluate the estimation performance, we take the average relative
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Table 2. The AREs (%) of the MPL estimates for individual parameters
α0i, α1i, α2i and fixed effects α0, α1, α2 for the first simulation scheme in
Section 5. (n = 4, ni = 36).

γ∗
1 γ∗

2 α0i α1i α2i α0 α1 α2

100 10 5.68 34.17 22.93 4.81 32.17 22.84
400 10 5.61 34.12 22.99 4.89 32.73 22.89
100 20 6.37 35.22 22.36 5.74 34.43 22.62
400 20 6.30 35.18 22.42 5.67 34.80 22.32

estimation error (ARE) of θ as

ARE =
1

Ns

Ns∑
i=1

|θ̂ − θ|
|θ|

× 100%,

where θ̂ is the estimate of θ and Ns is the number of simulation runs. Two
simulation schemes were designed as suggested by the referee.

Simulation Scheme 1. To get the performance of the proposed MPL
estimate in the application in Section 4, the first simulation experiment mimics
the study. We used the estimated parameters and the estimated initial values
V̂i(0) and T̂i(0) for individual subjects in Section 4 to generate data. Since we can
only estimate Ti(0), we assumed that the ratio of TUi(0) and TIi(0) is 1 : 10 to
obtain the initial values for TUi(0) and TIi(0). The time varying infection rate η(t)
of T cells was set at 9×10−5(1−0.9 cos(πt/100)). The measurement errors ε1i(t)
and ε2i(t) were independently generated from normal distributions with means
zero and variances γε1(t, t) = 400 and 100 and γε2(t, t) = 20 and 10, respectively.
We generated our data by numerically solving the ODE system (2.1) via the
fourth-order Runge-Kutta algorithm, and then measurement errors were added
to the simulated data Vi(t) and Ti(t). For simplicity, we took 36 measurements for
each of the four patients as designed by this application study. We simulated 500
data sets and applied the proposed MPL estimation method to these simulated
data sets. Note that the Epanechnikov kernel K(u) = (3/4)(1 − u2)I(|u| ≤ 1)
and the bandwidth selection method proposed in Section 2.1 were used in the
estimation. The fixed-effect parameters α0, α1, α2 and the individual parameters
α0i, α1i, α2i in (4.2) were estimated and their ARE’s are reported in Table 2.

From Table 2, we can see that the AREs of the MPL estimates for fixed
effects and individual parameters, ranging from 5% to 35%, are quite reasonable.
This suggests that our estimates of these kinetic parameters for these patients
are reliable.

Simulation Scheme 2. To further illustrate the performance for different
sample sizes, we designed the second simulation scheme as follows. First we
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chose the fixed-effect parameters as (α0, α1, α2) = (45,918, -138, -1,276), then
the random effects of parameters (b0i, b1i, b2i) were generated independently from
a multivariate normal distribution with mean 0 and variance diag(104, 4, 36),
based on the data analysis results in Section 4. Thus the parameters α0i, α1i,
α2i, and ci for individual subjects in model (2.3) were obtained by adding the
fixed effects and random effects, together as in (4.2) . Secondly, we calculated
the parameters λi, ρi, and Ni for the i-th individual in original ODE model
(2.1) based on their relationships with α0i, α1i, α2i and ci (see Section 4). The
fixed effects of initial values for the state variables (TU (0), TI(0), V (0)) were set
as (30, 600, 105). The random effects of initial values (bUi(0), bIi(0), bV i(0)) were
independently generated from a multivariate normal distribution with mean 0
and variance diag(4, 40, 106). The time-varying infection rate of T cells for each
individual was ηi(t) = 9×10−5(1−0.9 cos(πt/1, 000)). The death rate of infected
CD4+ T cells is fixed as δi = 0.5/day and the clearance rate of virus is fixed as
ci = 3 based on the estimates from the literature (Perelson et al. (1996)). The
measurement errors ε1i(t) and ε2i(t) are independently generated from normal
distributions with means zero and variances γε1(t, t) = γ∗

1 [1 + 0.75 cos(t/40)] and
γε2(t, t) = γ∗

1 [1+0.1 sin(t/80)] with γ∗
1 = (50, 200) and γ∗

2 = (10, 40), respectively.
Finally, we simulated our data by numerically solving the ODE system (2.1) via
the fourth-order Runge-Kutta algorithm, and then the measurement errors were
added to the simulated data Vi(t) and Ti(t).

We chose three different sample sizes for the simulated data: a) n = 8,
ni = 30+Poisson(8); b) n = 8, ni = 60+Poisson(16); and c) n = 16, ni =
30+Poisson(8), where a Poisson distribution was used to mimic the unbalanced
data for individual subjects. The observation time points were equally-spaced
for simplicity: tij = 0.1 × j with j = 1, 2, . . . , ni. We carried out Ns = 500 sim-
ulation runs. Similarly, we used the proposed MPL to estimate the fixed-effect
parameters (α0, α1, α2) and individual parameters (α0i, α1i, α2i). We report the
ARE’s of these estimates in Table 3. From Table 3, we can see that the overall
performance for both population parameter estimates and individual parame-
ter estimates were reasonably good for the proposed MPL method. For larger
sample sizes, the performance of the estimator of fixed effects was better. Also,
with ni larger, the ARE’s of the MPL estimator for both fixed and individual
parameters are smaller, which suggests the importance of the sample size for
individual subjects for the proposed method, since it is necessary to obtain good
nonparametric estimates for the state variables in the first stage. The ARE’s
of individual parameter estimates are generally larger than those of fixed effects
estimates, as expected. Additional simulations were performed for the data with
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Table 3. The AREs (%) of the MPL estimates for individual parameters
α0i, α1i, α2i and fixed effects α0, α1, α2 for the second simulation scheme
in Section 5.

n ni γ∗
1 γ∗

2 α0i α1i α2i α0 α1 α2

8 30+Poisson(8) 50 10 11.23 14.03 10.51 7.56 11.85 8.85
200 10 11.33 14.43 10.80 7.53 12.15 9.12
50 40 18.63 25.01 19.73 13.39 20.57 17.10
200 40 18.67 25.26 20.29 13.53 21.26 17.97

8 60+Poisson(16) 50 10 4.98 11.43 6.44 3.85 9.52 5.71
200 10 4.99 11.44 6.43 3.83 9.58 5.74
50 40 8.55 18.43 9.04 7.06 15.48 7.34
200 40 8.65 18.66 9.18 7.16 15.59 7.42

16 30+Poisson(8) 50 10 7.51 10.00 8.27 5.99 9.59 7.46
200 10 7.73 9.95 8.27 6.34 9.56 7.52
50 40 9.14 17.38 11.69 6.59 15.76 9.75
200 40 9.25 17.71 11.93 5.68 15.85 9.64

missing completely at random (MCAR) and with outliers, the results and con-
clusions are similar to the data with random early drop-out. These simulation
results are not shown here.

6. Discussion

Differential equation models have been widely used to describe dynamic
processes. However, the statistical literature is scant on the problems of param-
eter estimation and statistical inference for ODE models. Recently this field
has started to attract more attention from the statistical research community
(Putter et al. (2002), Lahiri (2003), Huang, Liu, and Wu (2006), Guedj, Thiébaut,
and Commenges (2007) Ramsay et al. (2007), Chen and Wu (2008a,b) Liang and
Wu (2008); Miao et al. (2009)). However, the statistical research for ODE models
is still in its infancy and there are many unresolved methodological problems. In
particular, the theory is not well established for many proposed statistical meth-
ods. We have extended the two-stage approach (Varah (1982), Chen and Wu
(2008a,b), Liang and Wu (2008)) to fit longitudinal data to random coefficient
ODE models. We derived the maximum pseudo-likelihood estimator (MPLE)
and established its asymptotic properties.

The proposed method has some advantages that have been listed in the
Introduction, but our approach also inherits some limitations of the two-stage
methods. These include a reduced estimation efficiency since the estimated state
variables from the first stage, instead of the data, are used in the ODE parameter
estimation in the second stage. This is the price that the proposed method has
to pay in order to achieve computational efficiency. In fact, the proposed method
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can be combined with the exact maximum likelihood approach (Guedj, Thiébaut,
and Commenges (2007)) to improve the estimation efficiency, which is a worthy
topic for future research.

We have worked under the assumption that the second stage parametric
model is linear in unknown parameters so that the linear mixed-effects (LME)
model can be used. However, the proposed estimation procedure is applicable to
a general nonlinear model in the second stage. In this case, however, the nonlin-
ear mixed-effects model (Davidian and Giltinan (1993), Davidian and Giltinan
(1995), Vonesh and Chinchilli (1996)) instead of LME model, should be fitted in
the second stage. The theoretical development is also more tedious in the nonlin-
ear model case. We considered a single ODE model for notational simplicity and
computational convenience, but our method can be generalized to multivariate
ODE models. It is still an open question how to use the two-stage approach
to deal with latent (unmeasurable) state variables. In this paper, we employed
the local polynomial nonparametric approach in the first stage. In fact, many
other nonparametric smoothing methods such as regression splines, smoothing
splines, and penalized splines (Wu and Zhang (2006)) can be used to fit the non-
parametric mixed-effects model in the first stage. Also note that the standard
regression estimation for each individual subject, instead of a mixed-effects re-
gression model, can be used to estimate the unknown parameters in the second
stage, though this may fail if the data from some individual subjects are too
sparse. Our methodological development is motivated by HIV dynamic studies,
but we also expect that our method can be applied to other ODE models with
longitudinal data.
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Appendix

Proof of Lemma 2.1. For estimating the derivatives u′(t) and v′i(t), a local
quadratic (p = 2) linear mixed-effects (LME) model is used, i.e.,

Gi =

si,0 si,1 si,2

si,1 si,2 si,3

si,2 si,3 si,4

 =
f(t)
σ2(t)

ni 0 nih
2B(K)

0 nih
2B(K) 0

nih
2B(K) 0 nih

4E(K)


×[1 + Op((nih)−1/2)]. (A.1)

Since (C9), D = diag(d2
1(t), d

2
2(t), d

2
3(t)), it follows that

G−1
i D−1 =

σ2(t)
f(t)


E(K)d2

1(t)
ni(E(K)−B2(K))

0 nih
2B(K)

0 d2
2(t)

nih2B(K)
0

nih
2B(K) 0 d2

3(t)
nih4(E(K)−B2(K))


×[1 + Op((nih)−1/2)]. (A.2)

When different bandwidths, h11 and h12, are used to estimate u′(t) and v′i(t), the
h in (A.1) and (A.2) can be replaced by h11 and h12. We prove the lemma in the
following three steps.
Step 1. By the proof of Theorem 1 in Wu and Zhang (2002), we have

eτ
2{

n∑
k=1

(I + GkD)−1G−1
k }−1 × (I + GiD)−1Gi =

1
n

[1 + Op(n−1
i )]eτ

2 . (A.3)

Recall the expression for û(t) in (2.15). We have

û′(t) − u′(t)

=:

{
n−1

n∑
i=1

ni∑
j=1

eτ
2G

−1
i Hij,2(t)

Kh,11(tij − t)
σ2(t)

×
[
u(tij) − u(t) − (tij − t)u′(t) − (tij − t)2

2
u(2)(t)

]
+n−1

n∑
i=1

ni∑
j=1

eτ
2G

−1
i Hij,2(t)

Kh,11(tij − t)
σ2(t)

[vi(tij) + ei(tij)]

}
[1 + op(1)]

=:

[
h2

11u
(3)(t)E(K)
3!B(K)

+ n−1
n∑

i=1

ξ1i(t)

]
[1 + op(1)]. (A.4)

The {ξ1i(t), i = 1, . . . , n} are independent. Here Hij,2(t) = (1, (tij − t), (tij − t)2)τ

and Kh,11(·) = h−1
11 K(·/h11).
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Step 2. By the proof of Theorem 1 in Wu and Zhang (2002), we have eτ
2D(I +

GiD)−1Gi = eτ
2 + op(1). Then, based on v̂′(t) given in (2.15) in Section 2, we

obtain that

v̂′i(t) =
ni∑

j=1

eτ
2G

−1
i Hij,2(t)

Kh,12(tij − t)
σ2(tij)

×

{
Yij − Hτ

ij,2(t)
1
n

n∑
i=1

ni∑
l=1

eτ
2G

−1
i Hij,2(t)

Kh,12(til − t)
σ2(til)

Yij

}

=

{
ni∑

j=1

eτ
2G

−1
i Hij,2(t)

Kh,12(tij − t)
σ2(tij)

[vi(tij) + ei(tij)]

−n−1
n∑

i=1

ni∑
j=1

eτ
2G

−1
i Hij,2(t)

Kh,12(tij − t)
σ2(t)

[vi(tij)+ei(tij)]

}
[1+Op(m̃−1)]

=:
[
ξ2i(t) −

1
n

n∑
i=1

ξ2i(t)
]
[1 + op(1)].

Step 3. In summary,

∆i(t) =

[
h2

11u
(3)(t)E(K)
3!B(K)

+ξ2i(t)−v′i(t)+n−1
n∑

i=1

ξ1i(t) −
1
n

n∑
i=1

ξ2i(t)

]
[1+op(1)],

where {ξ1i(t), i = 1, . . . , n} and {ξ2i(t), i = 1, . . . , n} are series of i.i.d. random
variables with mean 0. We have

Var (ξ2i(t)|D) = d2
2(t) +

τ2(t)C(K)
nih3

12B
2(K)f(t)

+ op[(nih
3
12)

−1]. (A.5)

Consequently, Var (n−1
∑n

i=1 ξ2i(t)−n−1
∑n

i=1 ξ2i(t)|D) = Op[(nnih
3)−1]. Under

(C7), similarly, n−1
∑n

i=1 ξ2i(t) − n−1
∑n

i=1 ξ2i(t) = Op[(nnih
3)−1/2]. On the

other hand,

Var (ξ2i(t) − v′i(t|D) =
τ2(t)C(K)

nih3
12B

2(K)f(t)
+ op[(nih

3
12)

−1/2]. (A.6)

Therefore, by (C7), n−1
∑n

i=1 ξ1i(t) − n−1
∑n

i=1 ξ2i(t) is of higher order than
ξ2i(t) − v′i(t). Finally,

∆i(t) =
h2

11u
(3)(t)E(K)
3!B(K)

+ ξ2i(t) − v′i(t) + op[h2
11 + (nih

3
12)

−1/2], (A.7)
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By (A.7) and (A.6), we conclude that

E[∆i(t)|D] =
h2

11u
(3)(t)E(K)
3!B(K)

+ op(h2
11),

Var [∆i(t)|D] =
τ2(t)C(K)

nih3
12B

2(K)f(t)
+ op[(nih

3
12)

−1/2].
(A.8)

This completes the proof of Lemma 2.1.

Proof of Lemma 2.2. By (A.7) in the proof of Lemma 2.1, it is easy to de-
rive that Cov(∆i(t1),∆j(t2)|D) = op[(nih

3
12)

−1]. Let µ(t) = (3!B(K)−1)h2
11E(K)

u(3)(t). Note that ∆i(t1) and ∆j(t2) are normal vectors. Thus(√
nih3

12[∆i(t1) − µ(t1)],
√

njh3
12[∆j(t2) − µ(t2)]|D

)
d−→ N

(
0,

C(K)
B2(K)

diag

(
τ2(t1)
f(t1)

,
τ2(t2)
f(t2)

))
.

By Definition 2.1, under the design D, ∆i(t1) and ∆j(t2) are asymptotically
independent for i 6= j. Then it is obvious that the vectors ∆i and ∆j are
asymptotically conditionally independent.

Proof of Lemma 3.1. Let Hij,1(t) = (1, tij − t)τ . Similar to proof of Lemma
2.1, we have

Λi(t) =

{
1
n

n∑
i=1

ni∑
j=1

eτ
2G

−1
i Hij,1(t)

Kh,01(tij − t)
σ2(t)

[
u(tij) − u(t) − (tij − t)u′(t)

]

+ξ3i(t) − vi(t)

}
[1 + op(1)]

=

[
h2

01u
(2)(t)B(K)

2
+ ξ3i(t) − vi(t)

]
[1 + op(1)],

where

ξ3i(t) =
ni∑

j=1

eτ
1G

−1
i Hij,1(t)

Kh,02(tij − t)
σ2(tij)

[vi(tij) + ei(tij)].

Obviously E(ξ3i(t)|D) = 0, and the conditional variance of ξ3i(t) is

Var (ξ3i(t) − vi(t)|D) =
τ2(t)V (K)
nih02f(t)

+ op[(nih02)−1].

So in summary, we find

E(Λi(t)|D) =
h2

01u
(2)(t)B(K)

2
+ op(h2

01),
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V ar(Λi(t)|D) =
τ2(t)V (K)
nih02f(t)

+ op[(nih02)−1].

The proof of Lemma 3.1 is completed.

Proof of Theorem 3.1. Note that θ̂ = [
∑n

i=1 F̂τ
i V̂

−1
i F̂i]−1[

∑n
i=1 F̂τ

i V̂
−1
i X̂′

i] in
(2.27), where F̂i = (F (X̂i(ti1)), . . . , F (X̂i(tini)))

τ , V̂i = F̂iDθF̂τ
i + Ri. First, for

the matrix, V̂−1
i , we have

V̂−1
i = R−1

i − R−1
i F̂i(D−1

θ + F̂τ
i R

−1
i F̂i)−1F̂τ

i R
−1
i . (A.9)

Then

F̂τ
i V̂

−1
i F̂i

= F̂τ
i R

−1
i F̂i − F̂τ

i R
−1
i F̂i

{
D−1

θ + F̂τ
i R

−1
i F̂i

}−1
F̂τ

i R
−1
i F̂i

= F̂τ
i R

−1
i F̂i − (F̂τ

i R
−1
i F̂i)1/2

×
{

(F̂τ
i R

−1
i F̂i)−1/2D

−1/2
θ D

−1/2
θ (F̂τ

i R
−1
i F̂i)−1/2 + I

}−1
(F̂τ

i R
−1
i F̂i)1/2,(A.10)

and furthermore,{
(F̂τ

i R
−1
i F̂i)−1/2D

−1/2
θ D

−1/2
θ (F̂τ

i R
−1
i F̂i)−1/2 + I

}−1

= I − (F̂τ
i R

−1
i F̂i)−1/2D

−1/2
θ

[
I + D

−1/2
θ (F̂τ

i R
−1
i F̂i)−1D

−1/2
θ

]−1

×D
−1/2
θ (F̂τ

i R
−1
i F̂i)−1/2. (A.11)

Substitute (A.11) into (A.10). Note that Ri is the variance-covariance matrix of
∆i and each element of Ri is op(1). F̂ is a ni × q matrix. So each element of
(F̂τ

i R
−1
i F̂i)−1 goes to +∞ as ni → +∞. With (F̂τ

i R
−1
i F̂i)−1 = op(1), we have

F̂τ
i V̂

−1
i F̂i = D

−1/2
θ

[
I + D

−1/2
θ (F̂τ

i R
−1
i F̂i)−1D

−1/2
θ

]−1
D

−1/2
θ

= D
−1/2
θ [I + op(1)]−1D

−1/2
θ = D−1

θ + op(1). (A.12)

Similarly, F̂τ
i V̂

−1
i Fi = D−1

θ + op(1). So we have
∑n

i=1 F̂τ
i V̂

−1
i F̂i = nD−1

θ + op(n).
For notation simplicity, we use bi to represent the random component of θi.
Moreover, we have

n∑
i=1

F̂τ
i V̂

−1
i X̂′

i =
∑
i=1

F̂τ
i V̂

−1
i [Fiθ + Fibi + ∆i]

= [nD−1
θ θ + D−1

θ

n∑
i=1

bi +
n∑

i=1

F̂τ
i V̂

−1
i ∆i][1 + op(1)].
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Consequently, it is obvious that

θ̂ =
{
D−1

θ + op(1)
}−1

×

{
D−1

θ θ + D−1
θ

1
n

n∑
i=1

bi +
1
n

n∑
i=1

F̂τ
i V̂

−1
i ∆i

}
[1 + op(1)]. (A.13)

By a similar procedure from (A.10) to (A.12),

1
n

n∑
i=1

F̂τ
i V̂

−1
i ∆i =

1
n

n∑
i=1

D−1
θ (F̂iR−1

i F̂i)−1F̂iR−1
i ∆i[1 + op(1)].

By Lemma 2.1, E(∆i|D) = Op(h2
12), one has

E(
1
n

n∑
i=1

D−1
θ (F̂iR−1

i F̂i)−1F̂iR−1
i ∆i|D) = Op(h2

12). (A.14)

By Lemma 2.2, ∆i and ∆j are asymptotically independent. Since (F̂τ
i R

−1
i F̂i)−1

= op(1),

V ar
( 1

n

n∑
i=1

D−1
θ (F̂τ

i R
−1
i F̂i)−1F̂τ

i R
−1
i ∆i|D

)
=

1
n2

n∑
i=1

D−1
θ (F̂τ

i R
−1
i F̂i)−1D−1

θ

= op(n−1). (A.15)

Then based on (A.14) and (A.15),

1
n

n∑
i=1

F̂τ
i V̂

−1
i ∆i = Op(h2

11) + op(n−1/2). (A.16)

On the other hand, n−1
∑n

i=1 bi = Op(n−1/2). Then by (A.13), θ̂ = θ + op(1),
and θ̂ is a consistent estimator of θ.

Proof of Theorem 3.2. First, we can rewrite θ̂ = [n−1
∑n

i=1 F̂τ
i V̂

−1
i F̂i]−1

[n−1
∑n

i=1 F̂τ
i V̂

−1
i X̂′

i]. By (A.12), we have

θ̂ − θ (A.17)

= [n−1
n∑

i=1

F̂τ
i V̂

−1
i F̂i]−1[n−1

n∑
i=1

F̂τ
i V̂

−1
i X̂′

i − n−1
n∑

i=1

F̂τ
i V̂

−1
i F̂iθ]

= [D−1
θ + op(1)]−1[n−1

n∑
i=1

F̂τ
i V̂

−1
i (Fi − F̂i)θ + n−1

n∑
i=1

F̂τ
i V̂

−1
i ∆i

+n−1
n∑

i=1

F̂τ
i V̂

−1
i Fibi]
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= n−1
n∑

i=1

bi + op(n−1/2) + Dθ

[
1
n

n∑
i=1

F̂τ
i V

−1
i ∆i −

1
n

n∑
i=1

F̂iV−1
i ΛiF∗′

i θ

]
×[1 + op(1)], (A.18)

where F∗
i = (F (Xi(ti1) + φi1 ∗ Λi(ti1)), . . . , F (Xi(tini) + φini ∗ Λi(tini)))

τ , F∗′
i

denotes the derivative of F∗
i , and {φi1, . . . , φini} is a series of numbers between

0 and 1. Λi = diag(Λi(ti1)), . . . , Λi(tini))). Then by (A.16), we can obtain that

1
n

n∑
i=1

DθF̂τ
i V

−1
i ∆i = Op(h2

11) + op(n−1/2).

Similarly, we find

1
n

n∑
i=1

DθF̂iV−1
i ΛiF∗′

i θ = Op(h2
01) + op(n−1/2).

Under condition (C8), h01 = op(n−1/4), h11 = op(n−1/4), so

1
n

n∑
i=1

DθF̂τ
i V

−1
i ∆i = op(n−1/2),

1
n

n∑
i=1

DθF̂iV−1
i ΛiF∗′

i θ = op(n−1/2).

Thus, under (C8) and based on (A.18), we represent θ̂ − θ as

θ̂ − θ =
1
n

n∑
i=1

bi + op(n−1/2).

It is assumed that {bi, i = 1, . . . , n} are i.i.d. random vectors with mean 0 and
variance matrix Dθ. By Central Limit Theorem, we get

√
n(θ̂−θ) d−→ N(0, Dθ),

the conclusion of Theorem 3.2.
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