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Abstract: In epidemiology, bio-environmental research, and many other scientific

areas, the possible long-term cumulative effect of certain factors has been well ac-

knowledged, air pollution on public health, exposure to radiation as a possible

cause of cancer, among others. However, there is no known statistical method

to model these effects. To fill this gap, we propose a semi-parametric time series

model, called the functional additive cumulative time series (FACTS) model, and

investigate its statistical properties. We develop an estimation procedure that com-

bines the advantages of kernel smoothing and polynomial spline smoothing. As two

case studies, we analyze the effect of air pollutants on respiratory diseases in Hong

Kong, and human immunity against influenza in France. Based on the results, some

important issues in epidemiology are addressed.
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1. Introduction

In epidemiology, cumulative effect refers to the fact that long-term exposures
to harmful environments impair public health. The cumulative effect has been
noted to be the main cause of many diseases for which short-term/individual
effects may be insignificant. For example, continual exposure to air pollution
affects the lungs of growing children and may aggravate or complicate medical
conditions in the elderly (Galizia and Kinney (1999)). The extent to which an
individual is harmed by air pollution usually depends on the total exposure to
the damaging chemicals. Another example is the cumulative effect of ultraviolet
radiation as a major cause of skin cancer (Young (1990)). Cumulative effects are
also observed in many other areas, examples include loss of wetland habitats,
climate change, and increased risk of flooding. In fact, assessing cumulative
effects is an essential mission of the Environmental Protection Agency (Report -
Considering Cumulative Effects Under NEPA http://www.epa.gov), the World
Health Organization (WHO), and other similar organizations. Investigations
on specific cumulative effects can be found in the existing literature. See, for

http://www.epa.gov
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example, Smith and Spaling (1995) and Ceriello et al. (2002), Dubé et al. (2006),
and the references therein.

Long-term cumulative effects, although recognized as important, have not
been properly modelled or quantified by existing methodologies, and are thus
often ignored before they become serious and, by then, it is too late to act. In
fact, most existing time series models focus on the effects of a few individual
historical data points that might fail to capture the cumulative effect. As a
motivating example, we consider the effect of air pollution on the number of
daily hospital admissions in Hong Kong. Figure 1 presents several aspects of
the data collected in Hong Kong from January 1, 1994 to December 31, 1998.
To make our point, consider for the moment the effect of the daily average level
of nitrogen dioxide (NO2,t, in ppb) on the number of daily hospital admissions
of patients suffering from respiratory problems. The daily average level of NO2

on any single day does not have much explanatory power over the daily number
of admissions as suggested in Figure 1(a) and Figure 1(c). On the other hand,
a much larger portion of its variation can be explained by the overall pollution
level of NO2 in the past 220 days,

∑220
τ=0 NO2,t−τ , as shown in Figure 1(b) and

Figure 1(d).
Here we adopt a semi-parametric approach to analyze cumulative effect. As

suggested by Figure 1(b), the cumulative effect of NO2 tends to be nonlinear
and to increase more rapidly as the cumulation level increases. A nonparametric
function is introduced as the link function; a nonparametric smoothing method
is used for the estimation. In the example, the upper limit in the summation,∑D

τ=1 NO2,t−τ , is obtained by maximizing, with respect to D, the correlation
coefficient between the summation (as a function of D) and the number of hos-
pital admissions on day t. It is more appropriate to consider a set of data-driven
weights in the summation, i.e.

∑D
τ=1 wτNO2,t−τ , where D should be data adap-

tive and the weight wτ need to be estimated subject to
∑D

τ=1 wτ = 1. In the
Hong Kong data example, it is very likely that, besides NO2, other pollutants and
weather conditions contribute to the variation in the number of hospital admis-
sions. To incorporate these factors, one option is to adopt an additive structure,
e.g., Hastie and Tibshirani (1990) and Dominici et al. (2002). As suggested by
Figure 1(b), higher levels of cumulative pollution tend to result in more hospi-
tal admissions. This motivates us to impose a monotone constraint on the link
function. Similar assumptions could also be imposed on the weight function wτ ,
if suggested by empirical evidence.

Among the various smoothing methods of estimating a semi-parametric mo-
del, polynomial spline and kernel smoothing appear to be dominant, with re-
spective advantages. Thus polynomial spline smoothing is more convenient for
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Figure 1. The level of NO2 and number of patients suffering from respiratory
diseases in Hong Kong. Panel (a) is the plot of the number of patients on
day t against the level of NO2 on day t− 5, the latter day having the largest
correlation coefficient with the number of patients among all past days; (b)
is that against the total/cumulated levels of NO2 over the past 220 days. (c)
is the fitted number of patients based on the level of NO2 on day t− 5 using
a kernel smoothing; (d) is that based on the total/cumulated level of NO2.
over the past 220 days

incorporating global constraints on the functions, while kernel smoothing is more
convenient for local Taylor expansion and approximation. In this paper we use
polynomial spline for function estimation and kernel smoothing for local approx-
imation in estimating the cumulative weights. By doing so, computations are
simplified to a standard quadratic programming problem for which very efficient
and fast algorithms exist.

The rest of the paper is organized as follows. In Section 2, we propose the
functional additive cumulative time series (FACTS) model. Through a penalized
spline smoothing approach, we derive the asymptotic properties of the penalized
least squares estimator of the new model. To implement the estimation, a semi-
parametric procedure that combines polynomial spline and kernel smoothing is
developed in Section 4. In Section 5, we are back to the study of the cumulative
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effect of air pollution on respiratory diseases in Hong Kong. Some of the questions
posed by WHO are answered based on the study. Section 6 is another case study
on infectious diseases and human immunity, a proper modeling of the two being
essential for policy decision making relating to vaccination and disease control,
see e.g., Ferguson, Galvani and Bush (2003). Based on the weekly influenza cases
in France (www.sentiweb.org), a decreasing pattern of immunity is revealed.

2. A Semi-Parametric Model for the Cumulative Effect

Suppose Yti
def
= Y (ti), i = 1, . . . , n, is a (discrete) response time series

and {Z(t),X(t)}, t ≥ 0, are multivariate (continuous) time series with Z(t) =
(1, Z1(t), . . . , Zp(t))> and X(t) = (X1(t), . . . , Xq(t))>. The semiparametric ad-
ditive model of interest has

E{Y (ti)|Z(s), X(s), s≤ ti}=β>Z(ti)+g1(X1(ti−τ1))+· · ·+gq(Xq(ti−τq)), (2.1)

where β is an unknown p−dimensional parameter vector, gk, k = 1, . . . , q, are
unknown link functions and τk, k = 1, . . . , q, are lags. See, e.g., Hastie and
Tibshirani (1990), Liu and Stengos (1999), and Dominici et al. (2002).

As noticed from the Hong Kong data, the effect of pollution on any single
day is not significant. However, persistent pollution over a relatively long period
can explain much of the variation in the number of daily hospital admissions.
In other words, cumulative effects result from individually minor but collectively
significant covariates over a period of time. However, in (2.1) it is assumed that
the expected value of Y (t) depends on only a finite number of the historical values
of X(t) without reference to the cumulative and continuous effects discussed
above. Specifically, for the Hong Kong data, empirical study suggests that the
semiparametric additive model (2.1) typically does not lead to a good fit; see
Figure 5(a) in Section 6. A straightforward extension of model (2.1) to enlarge
the number of additive components is infeasible, as the resulted model tends to
be plagued by unstable estimation and difficult interpretation in practice.

We propose to model the cumulative effect of a single covariate, X1(τ) say,
by

∫ ∆
0 X1(t − τ)θ(τ)dτ for some ∆ > 0, where θ(τ) ≥ 0 is a weight function

defined over [0, ∆]. When incorporated with the additive structure, one has

Y (ti) = Z>(t)β0 +
q∑

k=1

gk

(∫ ∆

0
Xk(ti − τ)θk(τ)dτ

)
+ ε(ti), i = 1, . . . , n, (2.2)

where ε(ti) is a martingale difference with E(ε(ti)2|Z(t),X(s) : s ≤ ti) = σ2, and
gk(·) and θk(·) > 0, k = 1, . . . , q, are unknown smooth functions with

E{gk

(∫ ∆

0
Xk(t − τ)θk(τ)dτ

)
} = 0,

∫ ∆

0
θk(τ)dτ = 1, k = 1, . . . , q, (2.3)
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for identification purposes. Alternative identification conditions can be imposed
depending on the purpose of the modeling. We call (2.2) the functional additive
cumulative time series (FACTS) model. In it, gk(·) is referred to as an effect or
link function, θk(·) is a weight function.

Based on the discussion in Section 1, if warranted by empirical evidence, a
monotonicity constraint could be imposed on either θk(·) or gk(·), k = 1, . . . , q,
or both. To obtain estimates at (2.2) that are consistent with such a constraint
is an important goal of this paper.

Proposition 2.1. Suppose X is a multivariate stationary process with contin-
uous joint probability density functions. Let Z̃(t) = E{Z(t)|X(τ), τ ≤ t}. If
E[{Z(t) − Z̃(t)}{Z(t) − Z̃(t)}>] is invertible, then model (2.2) is identifiable: if
there exists another set of parameters β̃0 and functions g̃k(·), θ̃k(·) such that (2.2)
and (2.3) hold, then β̃0 ≡ β0, g̃k(·) ≡ gk(·), θ̃k(·) ≡ θk(·), k = 1, . . . , q.

The FACTS model is closely linked with functional regression models. See
for example Ramsay and Silverman (1997) and James and Silverman (2005). If
Xk(t) has a step sample path, then the integration component of model (2.2)
reduces to a summation, leading to the discretized version

Y (t) = Z>(t)β0 +
q∑

k=1

gk

( D∑
`=1

Xk(t − `)θk(`)
)

+ εt, (2.4)

where θk(`), ` = 1, . . . , D, k = 1, . . . , p are unknown parameters. This is a
partially linear additive single-index model. A special case is the partially linear
single-index model; see e.g., Carroll et al. (1997) and Yu and Ruppert (2002).

3. Estimation of FACTS Model

As in Yu and Ruppert (2002), we adopt a spline smoothing approach to
estimate both the unknown link function gk(·) and the weight function θk. Sup-
pose for each k = 1, . . . , q, there exist vectors η0

k and γ0
k such that, approx-

imately, gk(ν) = A(ν)>η0
k, and θk(τ) = B(τ)>γ0

k , where A(ν) and B(τ) are
finite r−dimensional bases functions, e.g., cubic splines. Let b = (b1, . . . , br)> =∫ ∆
0 B(τ)dτ , a column vector of length r with first component b1 nonzero. Then

the second equation in (2.3) can be approximately rewritten as

b>γ0
k = 1, 1 ≤ k ≤ q. (3.1)

Write γ0
k = (γ0

k,1, . . . , γ
0
k,r)

> and define

Xk
ti =

∫ ∆

0
Xk(ti − τ)B(τ)dτ, vi = (Z(ti)>, X1

ti , . . . , X
q
ti
),

ξ = (β>, η>1 , . . . , η>q , γ>1 , . . . , γ>q )>,
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where ηi, γi, i = 1, . . . , q are r × 1 vectors. Define the mean function

m(vi; ξ) = Z>(ti)β +
q∑

k=1

η>kA(γ>k Xk
ti). (3.2)

Existing methods, such as the penalized spline method in Yu and Ruppert (2002),
can be used to estimate ξ0 = (β0>, η0

1
>
, . . . , η0

q
>
, γ0

1
>
, . . . , γ0

q
>)> if the value of Xk

ti

is available. However, this is usually not the case in practice, as quite often {X(t)}
can only be observed at discrete time points, although not necessarily with the
same frequency as Yti . Suppose {X(t̃j), j = 1, . . . , } is the observed discrete time
series of {X(t)}. If as specified in (A2) in the Appendix, maxj≥1 |t̃j − t̃j+1| is
sufficiently small relative to n, the total number of observations on Y (t), then
based on the continuous property of B(·) and the sample path of Xk(·), we can
approximate Xk

ti by

Xn,k
ti

=
∑

j:ti−∆<t̃j≤ti

Xk(t̃j)(t̃j − t̃j−1)B(ti − t̃j),

which, when substituted for Xk
ti in (3.2), leads to the approximation

mn(vi; ξ) = Z>(ti)β +
q∑

k=1

η>kA(γ>k Xn,k
ti

). (3.3)

Parameter ξ0 can thus be estimated by the penalized least squares estimator
(PLSE) that minimizes

Qn,λ(ξ)
def
= n−1

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ>Σ δ, (3.4)

where D = min{i|ti − t̃1 ≥ ∆}, δ = (η>1 , . . . , η>q , γ>1 , . . . , γ>q )>, λn is a penalty
parameter, and Σ is an appropriate positive semidefinite symmetric matrix; see
Yu and Ruppert (2002).

3.1. Re-parameterization and asymptotic properties

The constraint (3.1) on γk makes reparameterization necessary in proving
the consistency and asymptotic normality of the PLSE. Let b̃ = (b2, . . . , br)>,
φk = (φk,1, . . . , φk,r−1)>, and

γk(φk) = (b−1
1 (1 − b̃>φk), φk,1, . . . , φk,r−1)>. (3.5)

Let φ0
k = (γ0

k,2, . . . , γ
0
k,r)

> denote a subvector of γ0
k . By (3.1), we have γk(φ0

k) =
γ0

k . It is easy to see that γk(φk) is infinitely differentiable in a neighborhood of
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φ0
k, with the gradient matrix given by

γ
(1)
k (φk) =

(
−b−1

1 b̃
... Ir−1

)>
, k = 1, . . . , q,

where Ir is the r × r identity matrix. Following the above notations, we take

ξγ ≡ ξ = (β>, η>1 , . . . , η>q , γ>1 , . . . , γ>q )>, ξφ = (β>, η>1 , . . . , η>q , φ>1 , . . . , φ>q )>,

where ξφ is of lower dimension than ξγ . Consequently, the regression mean func-
tion (3.2) and its approximation (3.3) can be reparameterized as

m(vi; ξφ) = Z>(ti)β +
q∑

k=1

η>kA(γk(φk)>Xk
ti),

mn(vi; ξφ) = Z>(ti)β +
q∑

k=1

η>kA(γk(φk)>Xn,k
ti

).

To state the asymptotic results, let

m(1)
η (vi; ξφ) =

A
(
γ>1 (φ1)X1

ti

)
...

A
(
γ>q (φq)X

q
ti

)
 ,

m
(1)
φ (vi; ξφ) =


η1

>A(1)
(
γ>1 (φ1)X1

ti

)
γ

(1)
1 (φ1)

>
X1

ti
...

ηk
>A(1)

(
γ>q (φq)X

q
ti

)
γ

(1)
q (φq)

>
Xq

ti

 .

Then the gradient of m(vi; ξφ) with respect to parameter ξφ is

m(1)(vi; ξφ) =

 Z(ti)
m

(1)
η (vi; ξφ)

m
(1)
φ (vi; ξφ)

 ,

and the Jacobian matrix of ξγ with respect to ξφ is given by

J(φ) = ξ(1)
γ (ξφ) =


Iqr+p O · · · O
O γ

(1)
1 (φ1) · · · O

...
...

. . .
...

O O · · · γ(1)
q (φq)

 , (3.6)

where O is the r × (r − 1) matrix with entries zero. Let

Ω(ξ) = lim
n

1
n

n∑
i=1

m(1)(vi; ξφ)m(1)(vi; ξφ)>. (3.7)
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Theorem 3.1. Under (A1)−(A7) in the Appendix, if the smoothing parameter
λn = o(n−1/2), the PLSE ξ̂γ = (β̂>, η̂>1 , . . . , η̂>q , γ̂>1 , . . . , γ̂>q )> with constraints
b>γ̂k = 1, k = 1, . . . , q, is strongly consistent and

√
n(ξ̂γ − ξ0) D→ N

{
0, σ2J(φ0)Ω−1(ξ0

φ)J>(φ0)
}

.

Remark. Note that the above asymptotic distribution is obtained without a
monotonicity constraint imposed on either the estimated link function or the
weight function ĝk(ν) = A(ν)>η̂0

k, θ̂k(τ) = B(τ)>γ̂0
k , k = 1, . . . , q. However, as

the PLSE estimator is strongly consistent, the aforementioned estimated function
without constraint will automatically satisfy the nonnegative requirement, with
probability 1, if n is large enough. Therefore, the same asymptotic property holds
for estimators both with and without constraint. More details on constrained
minimization can be found in e.g., Liew (1976).

3.2. A semi-parametric implementation

In this section, we focus on estimating ξ0 through minimizing (3.4) with
respect to ξ, with λn fixed as 0. There are two reasons for such a choice of λn.
First, as indicated in Theorem 3.1, for the estimate to be asymptotically normal
we need λn = o(n−1/2). Second, the Monte Carlo study of Yu and Ruppert (2002)
found that confidence bands using λ = 0 resemble the Monte Carlo confidence
bands more than those using the true value of λ. Moreover, based on both
simulation and data analysis in this paper, such a prefixed value of λn has not
caused any serious over-fitting problem.

Minimizing (3.4) is in no way trivial, especially if any monotonicity con-
straint is imposed. As noted in Yu and Ruppert (2002), the performance of their
estimation algorithm quite often depends on the starting value and, in some
cases, the least squares estimator does not result from the iterations unless the
distribution of the predictor is close to normal. Since there are many efficient
algorithms for quadratic programming problems, we propose to transform the
minimization problem into two separate quadratic programming problems, and
to obtain the estimator by iterating between the two programming problems.

Let L denote the number of iterations. As an initial step with L = 0, we
select γ

(0)
k such that θk(ti− ti−τ ) ∝ 1− τ/D for k = 1, 2, . . . , q. Thus, to estimate

the FACTS model we need to estimate β and ηk, k = 1, . . . , q. The minimization
in (3.4) is a simple linear regression estimation for β and ηk, k = 1, . . . , q. Denote
them by β(0) and η

(0)
k , k = 1, . . . , q, respectively. Thus, gk is estimated by g

(0)
k (·) =

A(·)>η
(0)
k . After this initial step, we can follow the idea of the back-fitting

algorithm to estimate model (2.2). See Hastie and Tibshirani (1990) for more
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details. Here we only discuss how to update the nonlinear components in the
model.

Let yn,k
ti

= Yti − Z(ti)>β(L) −
∑

ι6=k g
(L)
ι ((Xn,ι

ti
)>γ(L)). To update the esti-

mators of gk and γk, we can consider a nominal single-index model

yn,k
ti

= gk(γ>
k Xn,k

ti
) + εn,k

ti
, (3.8)

where gk(·) = η>k A(·). For ease of exposition, denote yn,k
ti

, Xn,k
ti

, γk, ηk, and εn,k
ti

by ỹi, X̃i, γ̃, η̃, and ε̃i respectively. Without constraints, many easily implemented
estimation methods are available for model (3.8). See for example Härdle and
Stoker (1989), Yu and Ruppert (2002), Yin and Cook (2005), and Xia (2006),
among others. Consider a local expansion of gk(γ̃>X̃i) at x. If (X̃i−x)>γ̃ = o(1),
we have the Taylor expansion

gk(γ̃>X̃i) = gk(γ̃>x) + g′k(γ̃
>x)(X̃i − x)>γ̃ + O[{(X̃i − x)>γ̃}2]

= η̃>{A(γ̃>x) + A′(γ̃>x)(X̃i − x)>γ̃} + O[{(X̃i − x)>γ̃}2].

Following Fan, Yao and Tong (1996), for given γ̃ and η̃, the local discrepancy or
conditional variance σ2(x) = E[ε̃2i |Xi = x] can be estimated by the local linear
smoother as

σ̂2(x|γ̃, η̃) =
n∑

i=1

[
ỹi − η̃>{A(γ̃>x) + A′(γ̃>x)(X̃i − x)>γ̃}

]2
K((X̃i − x)>γ̃)

/
n∑

i=1

K((X̃i − x)>γ̃),

where K(v) is a symmetric probability density function, h is a bandwidth, and
Kh(v) = h−1K(v/h). Obviously, the best approximation of γ̃ and η̃ should min-
imize the overall discrepancy for all x = X̃j , j = 1, . . . , n. Thus, our estimation
procedure is to minimize

n∑
j=1

σ̂2(X̃j |γ̃, η̃) =
n∑

j=1

n∑
i=1

[
ỹi − η̃>{A(γ̃>X̃j) + A′(γ̃>X̃j)γ̃>X̃ij}

]2
wij (3.9)

with respect to γ̃ and η̃, where wij = K(γ̃>X̃ij)/
∑n

i=1 K(γ̃>X̃ij), and X̃ij =
X̃i − X̃j . A similar idea was used in Xia et al. (2002).

Without constraints, we can implement the minimization of (3.9) easily, as
follows. Note that with fixed wij , the minimization can be decomposed into two
separate quadratic programming problems with unknown parameters η̃ and γ̃, re-
spectively. We can solve (3.9) by iteration as follows. Set the number of iteration
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` = 0. With initial value γ̃(0) = γ
(L)
k and w

(`)
ij = K(X̃>

ij γ̃
(`))/

∑n
i=1 K(X̃>

ij γ̃
(`)),

the minimization in (3.9) is equivalent to

min
η̃

η̃>Dnη̃ − 2C>
n η̃, (3.10)

where

Dn =
n∑

j=1

n∑
i=1

w
(`)
ij A(`)

ij (A(`)
ij )>, Cn =

n∑
j=1

n∑
i=1

w
(`)
ij A(`)

ij ỹi,

with A(`)
ij = A(X̃>

j γ̃(`)) + A′(X̃>
j γ̃(`))X>

ij γ̃
(`). The solution is η̃(`) = D−1

n Cn.
With the updated η̃(`), minimizing (3.9) with respect to γ̃ is equivalent to

min
γ̃

γ̃>D′
nγ̃ − 2C ′

n
>
γ̃, (3.11)

where

D′
n =

n∑
j=1

n∑
i=1

w
(`)
ij C(`)

ij (C(`)
ij )>, C ′

n =
n∑

j=1

n∑
i=1

w
(`)
ij C(`)

ij [yi − (η̃(`))>A(X̃>
j γ̃(`))],

with C(`)
ij = (η̃(`))>A′(X̃>

j γ̃(`))X̃ij . The solution to (3.11) is γ̃(`+1) = {D′
n}−1C ′

n.
Set ` = `+1. Repeat (3.10) and (3.11) until convergence. Denote the final values

by ˜̃γ and ˜̃η respectively. Finally, we update g
(L)
k (·) by g

(L+1)
k (·) def

= A(·)> ˜̃η and

γ
(L)
k by γ

(L+1)
k

def
= ˜̃γ.

In situations where it is deemed reasonable to assume monotonicity for either
the link function or the weight function or both, monotone estimates can be
obtained by applying estimation procedures discussed above with bases function
A(ν) and B(τ) chosen from the monotone spline bases (Ramsay (1988)), for a
monotone function can always be constructed as nonnegative linear combination
of monotone spline bases. In this case, the minimization of (3.9) is realized again
through alternatively solving two quadratic programming problems. With initial
value γ̃(`) = γ

(L)
k and ` = 0, we solve

min
η̃

η̃>Dnη̃ − 2C>
n η̃, subject to : η̃2, . . . , η̃r ≥ 0, (3.12)

where η̃ = (η̃1, . . . , η̃r)> and denote the solution by η̃(`). Solve

min
γ̃

γ̃>D′
nγ̃ − 2C ′

n
>
γ̃, subject to : γ̃ ≥ 0, (3.13)

and denote the solution to (3.13) by γ̃(`+1). Set ` = ` + 1. Repeat (3.12) and
(3.13) until convergence. Although we do not have a closed form for the solutions
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of (3.12) and (3.13), they are typically quadratic programming problems. There
are many efficient algorithms. See for example Nocedal and Wright (1999).

Regarding the convergence of the algorithm proposed here, Xia (2006) proved
that it converges at a geometric rate under mild conditions in the case of no
constraint. Furthermore, he showed that the asymptotic efficiency is the same
as in the case of parametric estimation methods if the covariates are normally
distributed. The same efficiency is applicable to estimation under constraints,
which follows from the arguments in Liew (1976).

3.3. Selection of pilot parameters

Suitable values of two pilot parameters, the number of the knots of the
spline base function and the bandwidth h, need to be selected. As we now
explain, we only need to choose the number of knots, since the bandwidth h can
be decided based on a well-known result of the optimal bandwidth and the plug-
in idea in Ruppert, Sheather and Wand (1995). For a pre-specified number of
knots, the knots are placed at equally-spaced sample quantiles of the predictors
(γ̃(`))>X̃i, i = 1, . . . , n. We can estimate the link function gk(·) by A(·)>η̂, where
η̂ = (A>

nAn)−1A>
n Y with An = (A(X̃>

1 γ̃(`)), . . . ,A(X̃>
n γ̃(`)))>. The fitted value

of the response at the n points is Ŷ = An(A>
nAn)−1A>

n Y. Following Craven and
Wahba (1979), we define the generalized cross-validation as

GCV (N) =
||Ŷ − Y ||2/n

(1 − tr(Sn)/n)2
,

where Sn = An(A>
nAn)−1A>

n . The selected number of knots minimizes GCV (N).
As noticed in Yu and Ruppert (2002), the possible range for N can be 5-10 in
minimizing GCV (N). When N is selected, the bandwidth can be calculated by
the plug-in method proposed by Ruppert, Sheather and Wand (1995),

h =
[ 4

∫
K2(v)dvσ̂2∫

K(v)v2dvm̄2
nn

]1/5
,

where σ̂2 = ||Ŷ − Y ||2/n and

m̄2
n = n−1

n∑
i=1

{g′′k(X̃>
i γ̃(`))}2 = n−1

n∑
i=1

{A′′(X̃>
i γ̃(`))>η(`)}2.

Another bandwidth selection approach is the simple rule-of-thumb of Silverman
(1986). By the rule, the bandwidth is h=cnn−1/5, where cn =1.06{

∑n
i=1(X̃

>
i γ̃(`)

−c̄)2/n}1/2 and c̄ = n−1
∑n

i=1 X̃>
i γ̃(`). This rule has proved efficient in our

computations.
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Figure 2. Results for Example 4. The black curve in each panel is the true
link functions gk or the true weight functions θk; the grey curves are the
corresponding estimated functions.

4. Statistical Simulations of Finite Samples

To assess the performance of our algorithm with finite sample sizes, we con-
sidered two simulated examples. In the first, the X(t) are deterministic smooth
functions, while the sample paths of X in the second example are step functions.

Consider the following model

Yt = β>Zt + g1(
∫ 1

0
X1(t − τ)θ1(τ)dτ) + g2(

∫ 1

0
X2(t − τ)θ2(τ)dτ) + 0.5εt,

where εt ∼ N(0, 1) and β = (0.5,−1, 0.5)>. Covariates Zt = (Z1t, Z2t, Z3t)
are independent random vectors with independent elements and P (Zkt = 1) =
P (Zkt = 0) = 0.5, k = 1, 2, 3, X1(t) = sin(t) + 1, X2(t) = sin(3t) + 1, and

g1(v)=v1/2−0.62, g2(v)=(v−1)2−0.25, θ1(τ)=4(1−τ)3+, θ2(τ)=1.5(1−τ2)+,

where τ ≥ 0. A monotone decreasing requirement is imposed on estimators of
the weight functions θ1(τ) and θ2(τ), and on the link function g1(v).

Five hundred equally spaced observations were drawn from [0, 16π]. With
100 replications, the mean and standard deviation of the estimated β were respec-
tively, (0.5034, -1.0042, 0.4955) and (0.0403, 0.0362, 0.0425). The estimator was
quite accurate and stable. The estimated weight functions θk(·) and link func-
tions gk(·) are shown in Figure 2. All functions were estimated with reasonable
accuracy.
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Figure 3. Calculation results for Example 4.1. The black curve in each panel
is the true link function gk or the true weight parameters θk, k = 1, 2, 3; the
grey curves are the corresponding estimated functions.

Example 4.1. In this example, X has step sample paths with equal steps, and
all steps are observed once. The integration in the FACTS model can be written
as summations. Thus, the model was

Yti = β1Z1,ti + β2Z2,ti +g1(
D∑

τ=0

θ1(ti − ti−τ )X1,ti−τ )+g2(
D∑

τ=0

θ2(ti − ti−τ )X2,ti−τ )

+g3(
D∑

τ=0

θ3(ti − ti−τ )X3,ti−τ ) + 0.2εt,

where β1 = 1, β2 = −1, g1(v) = cos(3v) − 0.54, g2(v) = 1 − exp(−v2) −
0.47, g3(v) = 2 exp(40v)/{1 + exp(40v)} − 0.5, and the weight functions θk(τ)
were given by the black curves as shown in the first three panels of Figure 3.
Covariates Z1,ti , Z2,ti , i = 1, . . . , n, were IID with P (Z1,ti = 1) = P (Z1,ti =
0) = 0.5, while X1,ti = 0.8X1,ti−1 + e1,ti , X2,ti = 0.6X2,ti−1 + 0.3X2,ti−2 + e2,ti ,

X3,ti = −0.5X3,ti−1 +e3,ti where {εti}, {e1,ti}, {e2,ti}, and {e3,ti} were IID N(0,1).
There are two unknown parameters and six unknown functions. With n =

500 and D = 100, it is obviously difficult to obtain efficient estimates unless
useful prior knowledge is available. For example, if we were aware that g3(·)
was monotone increasing and all weight functions were monotone decreasing, we
could estimate the functions with unexpected degree of accuracy; as shown by
Figure 3. As for parameters, the mean and standard deviation of estimated β

were respectively, (1.0020,−1.0016)> and (0.0324, 0.0300)>.
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Figure 4. The observed time series of average levels of SO2 (in ppb, parts
per billion), NO2 (in ppb), PM10 (in µg/m3), ozone (in ppb), average of
temperature (in oC) and average of humidity (in %), in Hong Kong.

5. Effects of Air Pollution on the Respiratory Diseases

As applications of the proposed methodology, we first consider the motivating
example of the cumulative effect of air pollution on the respiratory diseases in
Hong Kong. The data has been analyzed in the literature, e.g., Cai, Fan and Li
(2000a), Cai, Fan and Yao (2000b) and Fan and Zhang (1999). However, they
did not consider the cumulative effect. All associated pollutants and weather
conditions are shown in Figure 4, while the number of hospital admissions of
patients suffering from respiratory diseases is shown in Figure 1(c). We take
yti = log(number of hospital admissions of patients suffering from respiratory
diseases on day i) to render the distribution closer to symmetry. For simplicity,
we assume that the population remained largely unchanged. Since the data were
observed at equal time intervals, we consider the discrete FACTS model

log(yti) =
7∑

d=1

βdDti,d + g1(
D∑

τ=0

θ1,τNti−τ ) + g2(
D∑

τ=0

θ2,τSti−τ ) + g3(
D∑

τ=0

θ3,τPti−τ )

+g4(
D∑

τ=0

θ4,τOti−τ ) + g5(
D∑

τ=0

θ5,τTti−τ ) + g6(
D∑

τ=0

θ6,τHti−τ ) + εt, (5.1)

where Nti , Sti , Pti , Oti , Tti , and Hti are, respectively, the average levels of NO2,
SO2, PM10, O3, temperature and humidity on day i; Dd,ti , d = 1, . . . , 7, are
dummy variables representing the day of the week. Here, θk,τ = θk(∆τ ) with
∆τ = ti − ti−τ for all i ≥ τ > 0.
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Figure 5. Fitted results of the additive model and FACTS model. In panel
(a), the grey line is the observed numbers of hospital admissions and the
black line is the fitted numbers by the additive model. In panel (b), the
grey line is the observed number of hospital admissions and the black line
the fitted numbers by the FACTS model.

With D = 300, (5.1) had fitted values as shown in Figure 5(b). As a com-
parison, the fitted values of the additive model with lags that give the best fit are
shown in Figure 5(a). These figures suggest that (5.1) can capture the main sig-
natures of the effects of pollution on the respiratory diseases in Hong Kong, while
the additive model is wide off the mark. We have tried different D > 300 and
found estimated weights quite stable in that they tended to be practically zero
after some specific lag. The estimation results are shown in Figure 6. Instead of
single-past-day effects as noticed in Dominici et al. (2002), all the pollutants and
adverse weather conditions exhibit cumulative effects for the Hong Kong data, in
that a weighted average of pollutants and weather conditions over the past 50-300
days has a strong effect on hospital admission. As we can see, FACTS can throw
light on how the pollutants affect the diseases. In Hong Kong, most of the ad-
mitted patients of respiratory diseases were not serious sufferers. At the notified
levels of the relevant pollutants in Hong-Kong, the necessity for their admission
is mainly the result of cumulative exposure rather than single-day exposure to
the pollutants or adverse weather conditions. It is therefore not surprising that
the single-day-effect given by the additive model explains only 16.8% of the vari-
ation of the hospital admission in contrast to the 75.4% explained by the FACTS
model.

The parameters (β1, . . . , β7) in (5.1) were estimated as (5.38, 5.33, 5.33, 5.32,
5.25, 5.24, 5.24). Their corresponding standard errors are all around 0.0075, in-
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Figure 6. Calculation results for the pollution and respiratory diseases.
(a1)−(a6) are the estimated cumulative effect functions (the central line) and
corresponding 95% pointwise confidence intervals (upper and lower lines) for
the pollutants and weather conditions; (b1)−(b6) are correspondingly the es-
timated accumulation weight functions and 95% confidence intervals. The
solid vertical lines are roughly the thresholds above which the effect starts
to appear.

dicating that the day-of-the-week effect is significant: high admission at the be-
ginning of the week and low admission at the weekend. Of course, the “weekend-
effect” is mainly due to human behavior rather than the pollutants, as noticed in
Forster and Solomon (2003); the weather and pollution levels in Hong Kong show
no such effect. Pollutants NO2, O3, PM10, and weather conditions demonstrate
strong adverse effects on health, while the effect of SO2 is relatively small due to
the measures taken by the Hong Kong Government in the 1990’s to reduce the
level of SO2; see Hedley et al. (2002).

Based on the estimated effect functions gk(·), there are thresholds at
which the effects start to increase; see Figure 6(a1)−(a4). The thresholds are
listed in Table 1. For NO2 and PM10, our thresholds roughly coincide with
the National Ambient Air Quality Standards (NAAQS) in USA. However, our
analysis suggests that the cumulative effects of SO2 and O3 start to increase at
much lower levels than stipulated by NAAQS. Epidemiological studies suggested
that O3 affects the forced vital capacity at a much lower level; see Abelson
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Table 1. Threholds and National Ambient Air Quality Standards (NAAQS)
Standards NO2 SO2 O3 PM10

FACTS model 56ppb 18ppb 28ppb 46µg/m3

NAASQ∗ 53ppb 30ppb 80ppb 50µg/m3

(annual) (annual) (24 hours) (annual)
∗ these standards can be found at http : //www.epa.gov/air/criteria.html

(1997). Delfino et al. (1997) also suggested a threshold at 29ppb of O3 for old
people. Sunyer et al. (2003) demonstrated statistically that SO2 starts to increase
asthma hospital admissions at a very low level. In other words, our analysis lends
support to those epidemiology studies that suggest that the effect of SO2 and
O3 on the respiratory diseases is far more pronounced than suggested by the
current NAAQS. Therefore, we urge that the NAAQS standards be revised to
lower levels in the interest of public health.

For the weather conditions, both an unusually cold season and an unusually
hot season can aggravate the diseases; see Figure 6(a5). This statistical obser-
vation is consistent with the medical observation that unduly cold weather or
unduly hot weather is not favorable to disease sufferers: the transmission rate
for viruses and diseases is higher in cold season thus exacerbating other diseases;
hot weather increases the risk of dehydration and other adverse effects ; see Ras-
togi, Tanveer and Gupta (1998) and McGeehin and Mirabelli (2001). The wetter
weather causes more hospital admissions of respiratory diseases; see Figure 6(a6).
This statistical evidence is also consistent with the biological understanding that
wetter weather makes easier fungal colonization, thus worsening the air quality
and causing health problems; see Ezeonu et al. (1994).

6. Decay of Immunity Against Influenza

Influenza is an infectious disease arising as a series of seasonal epidemics. A
weekly notified time series of influenza-like cases in France is shown in Figure
7. In human influenza (type A), immunity to re-infection is finite, particularly
because the virus undergoes a combination of year-to-year antigenic drift and
occasional dramatic shift in haemagglutinin and neuraminidase surface protein;
see Nicholson, Webster and Hay (1998). Pease (1987) conjectured that immunity
to influenza decays linearly with time elapsed; Couch and Kasel (1983) argued
that immunity lasts for more than four years. However, there have been few
quantitative investigations of how immunity decays with time since recovery. It
is not difficult to see that the decaying of immunity is a “cumulative” procedure.
In the following, we focus on FACTS modeling of the decaying pattern of human
immunity against this particular disease.

Let p(τ) denote the probability that a host is susceptible at time τ after
his/her last recovery from the disease. For simplicity, we assume the value of
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Figure 7. Weekly notified cases of flu-like diseases in France

p(τ) depends only on the time, τ , elapsed after the last recovery from infection.
Note that p(τ) is an increasing function. Suppose that p0 is the limit of p(τ) as
τ → ∞. We call κ(τ) = 1 − p(τ)/p0 the relative immunity. It is easy to see that
0 ≤ κ(τ) ≤ 1 and κ(τ) is a decreasing function of τ . Let yt−τ denote the number
of hosts infected at time point t − τ ; each of them has the probability p(τ) at
time t to be re-infected, i.e. their immunity at t is κ(τ). We assume that when
recovering from the infection at time t, a person’s immunity is built up from this
infection alone. The expected number of susceptibles (within these yt−τ hosts)
is yt−τp(τ) = p0yt−τ (1 − κ(τ)). If a person has never been infected before, we
may simply take him/her as having been infected in the remotest past. Among
the population N =

∫ ∞
0 yt−τdτ , which is again assumed to be constant, the total

number of susceptibles at t, is then

St =
∫ ∞

0
yt−τp(τ)dτ = p0{N −

∫ ∞

0
yt−τκ(τ)dτ}.

The general susceptible-infected-recovered-susceptible (SIRS) mechanism sug-
gests the model

dyt

dt
= βty

α
t Sγ

t ; (6.1)

see Liu, Hethcote and Levin (1987), Anderson and May (1991), and Finkenstädt
and Grenfell (2000). In the model, βt describes the seasonal effect. We can make
the model more flexible by replacing Sα

t with ν(St) or µ(
∫ ∆
0 yt−τκ(τ)dτ}), where

ν(·) and µ(·) are unknown link functions. See Xia, Gog and Grenfell (2005). The
function µ(·) describes the functional relation between the expected number of
immune hosts and expected cases in the next time unit.

In practice, we can only observe the dynamics at discrete time. Let yti be
the cases in a time period ti − ti−1; the time period ti − ti−1 is usually one week.
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Following Finkenstädt and Grenfell (2000) and Xia, Gog and Grenfell (2005),
(6.1) can be approximated by

yti = βtiy
α
ti−1

µ(
D∑

τ=0

yti−τ κ(ti − ti−τ )).

With approximately 52 weeks in a year, dummy variables Dk,t are employed to
describe weekly seasonal variations in infection rate: Dk,ti = 1 if k = ti(mod52),
0 otherwise. Write βti = exp{

∑52
τ=1 %kDk,tτ }, where %k are seasonal force param-

eters. A convenient stochastic model is then a discrete time FACTS model

log(yti) =
52∑
i=1

%kDk,ti + α log(yti−1) + µ̃(
D∑

τ=0

yti−τ κ(ti − ti−τ )) + εti , (6.2)

where µ̃(·) = log{µ(·)}.
Results based on the weekly notified influenza cases in France are shown in

Figure 8. We have that α̂ = 0.93 (SE = 0.013) and that the variance of εti is
0.21. Note that the variance of zti = log(yti) is 2.46. The proportion of the
variance of {zti} that can be explained by the model is R2 = 91.5%. Therefore
FACTS model fit the dynamics quite well. We conclude that (I) the expected
number of immune hosts has a significant negative effect on the number of cases
in the next time unit; this is in line with the SIRS mechanism. However, the
quantitative relation between yti , yti−1 , and the expected number of susceptibles,
as shown in Figs 8(a)−(b), is more complicated than that assumed in (6.1). (II)
The estimated seasonal infection rates, as shown in Figure 8(c), are consistent
with the general medical observation that in the winter, the forces of infection are
stronger than those at other periods (Nicholson, Webster and Hay (1998)). (III)
The epidemics in France have a decay function of immunity as shown in Figure
8(d). It is noteworthy that the decay pattern of immunity is different from the
conjecture of Pease (1987). In the first few months, the recovered hosts have a
high level of immunity; after that, the immunity decreases quickly and after about
8-12 months (say 50 weeks), the immunity level is relatively low. However, this
low level of immunity will last for as long as another two years. To explain this
particular patter of decay of the immunity, two factors emerge. (1) The fast decay
of immunity at the beginning may partly reflect hospital notification biases–if
individuals are rapidly re-infected, they may not have clinical notification. It
might also reflect the fact that drift speed could in turn depend on the number
of cases; see Boni et al. (2004). Our result is consistent with the claim that
short-term immunity is ‘strain-transcending’; see Ferguson et al. (2003). (2) The
subsequent slow decay pattern could reflect gradual effects of drift, though this is
a complex picture because influenza-like illness subsumes influenza B, influenza
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Figure 8. Results for the influenza data in France. Panel (a) is log(yti)
plotted against the linear part in model (6.2). In panel (b), the dots are the
corresponding partial residuals after removing the linear part in model (6.2).
The x-axis is the expected immunized number

∑D
τ=0 yti−τ κ(ti − ti−τ ). The

solid line is the estimated link function, the dash lines are the 95% pointwise
confidence intervals for µ̃(·). Panel (c) is the estimated seasonal forces; the
dash lines are their corresponding 95% confidence intervals. Panel (d) is
the estimated decay function of immunity and its 95% confidence interval,
represented by a solid line and dashed lines respectively.

A subtypes, and possibly other respiratory infections. The overall immunity
can last as long as three years though it is relatively weak. In this sense, our
results lend support to the arguments of Couch and Kasel (1983) and Murphy
and Clements (1989).

Acknowledgement

The authors thank an associate editor and two referees for their very valu-
able comments. The research is supported by grant R-155-000-063-112, National
University of Singapore.

Appendix

For ease of exposition, denote ξφ by ξ and the corresponding parameter space
by Ξ. We need the following assumptions to prove the consistency of the least
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squares estimators.

(A1) The observations {Z(ti),X(ti), Yti}n
i=1 are strictly mixing. Specifically X(t)

= m(t)+B(t), where m(·) is continuous deterministic function of t and B(·)
is the standard Brownian motion.

(A2) δX:=max
i≥1

|t̃i+1 − t̃i| = O(n−1).

(A3) The parameter space Ξ is compact, and the mean function m(v; ξ) is con-
tinuous on Ξ for any fixed v.

(A4) The regression mean function m(v; ξ) is twice continuously differentiable in
a neighborhood of ξ0.

(A5) n−1
∑n

i=1{m(vi; ξ) − m(vi; ξ∗)}2 converges to a limit function uniformly in
ξ, ξ∗ ∈ Ξ, and

Q(ξ) = lim
n

1
n

n∑
i=1

{m(vi; ξ) − m(vi; ξ0)}2 (A.1)

has a unique minimum at ξ = ξ0.

(A6) The true parameter vector ξ0 is an interior point of Ξ.

(A7) Ω(ξ0) exists and is nonsingular, with

Ω(ξ) := lim
n

1
n

n∑
i=1

m(1)(vi; ξ)m(1)(vi; ξ)> (A.2)

and the n−1
∑n

i=1 ∂2m(vi; ξ)/(∂ξj1∂ξj2), j1, j2 = 1, . . . , 2qr + p, converge
uniformly in Ξ in a neighbourhood of ξ0.

Remark. To guarantee the consistency of the semi-parametric implementation,
the observations in (A1) need to be strongly mixing. See for example Fan, Yao
and Tong (1996) and Xia et al. (2002). (A2) is imposed to ensure the uniform
convergence of Xn,k

ti
to Xk

ti for all i = 1, . . . , n (Lemma A.1). Such a requirement
is commonly made in dealing with a continuous-time model but with only dis-
cretized data available, especially in finance and biology, see e.g., Fan and Zhang
(2003) and Fan and Jiang (2005). Assumptions (A3)−(A7) are similar to those
in Yu and Ruppert (2002), and the uniform convergence assumption is needed
to guarantee the continuity in ξ of the limit function.

Proof of Proposition 2.1. For ease of exposition, we only consider q = 2. Let
Z̃(t) = E{Z>(t)|X(s), s ≤ t}. We have

E{Yt|X(s), s ≤ t} = Z̃>(t)β0 +
q∑

k=1

gk

(∫ ∆

0
Xk(t − τ)θk(τ)dt

)
. (A.3)
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Subtracting (2.2) by (A.3), Yt − E{Yt|X(s), s ≤ t} = {Z(t) − Z̃(t)}>β0 + εt. By
the assumption of the invertibility of the matrix, it follows that

β0 = [E{Z(t)−Z̃(t)}{Z(t)−Z̃(t)}>]−1E[{Z(t)−Z̃(t)}{Yt−E(Yt|X(s), s ≤ t)}].

Therefore, β0 is uniquely determined. Let Ỹt = Yt−Z>(t)β0 and m(x1(s), x2(s) :
s ≤ t) = E{Ỹt|X1(s) = x1(s), X2(s) = x2(s) : s ≤ t}. It follows that

m(x1(s), x2(s) : s ≤ t) =
2∑

k=1

gk

( ∫ ∆

0
xk(t − τ)θk(τ)dτ

)
.

For any sample paths x̃2(s) and x2(s), define

∆2(x̃2(t), x2(t)) =
m(x1(s), x̃2(s) : s ≤ t) − m(x1(s), x2(s) : s ≤ t)∫ ∆

0 {x̃2(t − τ) − x2(t − τ)}dτ
.

Letting x̃a
2(s) = x2(s) + h{1 − (s − t)2/h2}I(|s − t| < h), we have

lim
h→0

∆2(x̃a
2(t), x2(t)) = θ2(0)g′2

( ∫ ∆

0
x2(t − τ)θ2(τ)dτ

)
. (A.4)

Letting x̃b
2(s) = x2(s) + h{1 − (s − t + v)2/h2}I(|s − t + v| < h), we have

lim
h→0

∆2(x̃b
2(t), x2(t)) = θ2(v)g′2

( ∫ ∆

0
x2(t − τ)θ2(τ)dτ

)
.

It follows that θ2(v)/θ2(0) = limh→0 ∆2(x̃b
2(t), x2(t))/ limh→0 ∆2(x̃a

2(t), x2(t)) is
determined by the conditional mean function m(·), which together with

∫
θ2(v)dv

= 1 establishes the identifiability of the function θ2(·). Similarly, the other weight
functions are identifiable.

By (A.4) and the identifiability of θ2(·), the derivative of g2(·) is identifiable.
By the first assumption in (2.3), g2(·) is identifiable. Similar arguments can be
applied to g1(·).

Lemma A.1. Under (A1) and (A2), we have

Xn,k
ti

− Xk
ti = O

(( n

log n

)−1/2
)

a.s. (A.5)

uniformly for all k = 1, . . . , q and i = 1, . . . , n.

Proof. For T
def
= tn, Brownian motion B(t), t ∈ (0, T ) and any fixed c >

1, with probability one there exists δ > 0, such that |B(t) − B(t + h)| ≤
c|h/ log h|−1/2 for any t ∈ [0, T ) and h < δ. Substitute n−1 for h and we have
(A.5), as m(t) is uniformly continuous on [0, T ].

Let Ωn(ξ) = lim
n

n−1
∑n

i=1 m
(1)
n (vi; ξ)m

(1)
n (vi; ξ)>. The following Lemma

shows that Ωn(ξ) is a good approximation of Ω(ξ).
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Lemma A.2. Under (A2)−(A4) and (A7), we have Ωn(ξφ) − Ω(ξφ) → 0 and

n−1
n∑

i=1

∂2mn(vi; ξφ)
∂ξj1∂ξj2

− n−1
n∑

i=1

∂2m(vi; ξφ)
∂ξj1∂ξj2

→ 0

almost surely and uniformly in Ξ in a neighborhood of ξ0, for j1, j2 = 1, . . .,
2qr + p.

Proof. The result follows directly from Lemma A.1 and an application of the
Cauchy-Schwartz Inequality.

Proof of Theorem 3.1. Following the proof of Yu and Ruppert (2002), write

Qn,λ(ξ) =
1
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ>Σδ

=
1
n

n∑
i=D+1

{
Yti−m(vi; ξ0)+m(vi; ξ0)−m(vi; ξ)+m(vi; ξ)−mn(vi; ξ)

}2

+λnδ>Σδ

=
1
n

n∑
i=D+1

ε2
ti +

2
n

n∑
i=D+1

{m(vi; ξ0) − m(vi; ξ)}εti

+
1
n

n∑
i=D+1

{m(vi; ξ0) − m(vi; ξ)}2

+
2
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}εti +
1
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}2

+
2
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}{m(vi; ξ0) − m(vi; ξ)} + λnδ>Σδ

=
1
n

n∑
i=D+1

ε2
ti + T1 + T2 + T3 + T4 + T5 + T6. (A.6)

All following convergence is uniform for all ξ ∈ Ξ almost surely, taken when
n → ∞ with δn → 0 unless otherwise stated. First note that by Lemma A.1,
we have Tk → 0, k = 3, 4, 5 under (A3)−(A5) and (A7). Under (A4) and (A5),
the remaining terms can be handled in exactly the same manner as in Yu and
Ruppert (2002). Therefore,

Qn,λ(ξ) → Q(ξ) + σ2 uniformly for all ξ ∈ Ξ. (A.7)

The strong consistency of the PLSE estimator ξ̂n,λ thus follows from arguments
parallel to those in Yu and Ruppert (2002).
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As ξ̂n,λ is a consistent estimate of ξ0 and mimimizes

Qn,λ(ξ) =
1
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ>Σδ,

Taylor expansion of Qn,λ(ξ) near ξ0 yields

0 =
∂Qn,λ

∂ξ

∣∣∣
ξ̂n,λ

=
∂Qn,λ

∂ξ

∣∣∣
ξ0

+
∂2Qn,λ

∂ξ∂ξ>

∣∣∣
ξ̃
(ξ̂n,λ − ξ0),

where ξ̃ is a vector between ξ̂n,λ and ξ0. Consequently, we have

√
n(ξ̂n,λ − ξ0) = −

{∂2Qn,λ

∂ξ∂ξ>

∣∣∣
ξ̃

}−1√
n

∂Qn,λ

∂ξ

∣∣∣
ξ0

.

It is sufficient to prove

√
n

∂Qn,λ

∂ξ

∣∣∣
ξ0

D→ N(0, 4σ2Ω(ξ0)), (A.8)

∂2Qn,λ

∂ξ∂ξ>

∣∣∣
ξ̃

P→ 2Ω(ξ0). (A.9)

To prove (A.8), notice that

∂Qn,λ

∂ξ
= − 2

n

n∑
i=D+1

{
Yti − mn(vi; φ)

}
m(1)

n (vi; ξ) + 2λn[0, δ>Σ]>,

∂Qn,λ

∂ξ

∣∣∣
ξ0

= − 2
n

n∑
i=D+1

{
εti +

q∑
k=1

η0
k
>[A(η0

k
>
Xk

ti) − A(η0
k
>
Xn,k

ti
)]

}
m(1)

n (vi; ξ0)

+2λn[0, {δ0}>Σ]>.

As λn = o(n−1/2), the last term can be ignored. Under (A2) and (A3), it follows
that A(η0

k
>
Xk

ti)−A(η0
k
>
Xn,k

ti
) = o(n−1/2), uniformly in i and k, which, together

with Lemma A.2, leads to

2√
n

n∑
i=D+1

q∑
k=1

η0
k
>[A(η0

k
>
Xk

ti) − A(η0
k
>
Xn,k

ti
)]m(1)

n (vi; ξ0)→0. (A.10)

By (A1) and the Central Limit Theorem for martingale differences, we have

1√
n

n∑
i=D+1

εtim
(1)
n (vi; ξ0) D→ N(0, σ2Ω(ξ0)). (A.11)

Combining (A.10) and (A.11) yields (A.8).



STATISTICAL MODELLING OF NONLINEAR LONG-TERM CUMULATIVE EFFECTS 1121

For (A.9), we have

∂2Qn,λ

∂ξ∂ξ>
|ξ̃ =

2
n

n∑
i=D+1

m(1)
n (vi; ξ)m(1)

n (vi; ξ)>|ξ̃

− 2
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃ + 2λnΣ

= 2Ωn(ξ̃) − 2
n

n∑
i=D+1

{
Yti − m(vi; ξ̃)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃

− 2
n

n∑
i=D+1

{
m(vi; ξ̃) − mn(vi; ξ̃)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃ + 2λnΣ.

The first term on the right side goes to 2Ω(ξ0) by Lemma A.2, (A7), and the
fact that ξ̃→ξ0 almost surely. The second term is op(1) as argued in Yu and
Ruppert (2002). By Lemma A.1 and (A3), the last two term are also op(1). This
completes the proof of (A.9).
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Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by method of

average derivatives. J. Amer. Statist. Assoc. 84, 986-995.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London.

Hedley, A. J., Wong, C. M., Thach, T. Q., Ma, S., Lam, T. H. and Anderson, H. R. (2002).

Cardiorespiratory and all-cause mortality after restrictions on sulphur content of fuel in

Hong Kong: an intervention study. The Lancet 360, 1646-1652.

James, G. M. and Silverman, B. W. (2005). Functional adaptive model estimation. J. Amer.

Statist. Assoc., 100, 565-575.

Liew, C. K. (1976). Inequality constrained least-squares estimation. J. Amer. Statist. Assoc.

71, 746-751.

Liu, R. M., Hethcote, H. W. and Levin, S. A. (1987). Dynamical behaviour of epidemiological

models with nonlinear indendence rates. J. Math. Biol. 98, 543-468.

Liu, Z. and Stengos, T. (1999). Non-linearities in Cross-Country Growth Regressions: A Semi-

parametric Approach. J. Appl. Econometrics 14, 527-38.

McGeehin, M. A. and Mirabelli, M. (2001). The potential impacts of climate variability and

change on temperature-realted morbidity and mortality in the United States. Environ.

Health Perspect. 109, 185-189.

Murphy, B. R. and Clements, M. L. (1989). The systemic and mucosal immune response of

humans to influenza A virus. Curr. Top. Microbiol. Immunol. 146, 107-116.



STATISTICAL MODELLING OF NONLINEAR LONG-TERM CUMULATIVE EFFECTS 1123

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer, New York.

Nicholson, K. G., Webster, R. G. and Hay, A. J. (1998). Textbook of Influenza. Blackwell Science.

Pease, C. M. (1987). An evolutionary epidemiocological mechanism, with applications to type

A influenza. Theoretical Population Biology, 31, 422-452.

Ramsay, J. O. (1988). Monotone regression splines in action. Statist. Sci. 3, 425-461.

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer, New York.

Rastogi, S. K., Tanveer, H. and Gupta, B. N. (1998). Pulmonary diseases caused by organic

dusts in agricultural workers-a review. Indian J. of Occup. and Envir. Medic. 2, 190-194.

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local

least squares regression, J. Amer. Statist. Assoc. 90, 1257-1270.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and

Hall, London.

Smith, B. and Spaling, H. (1995). Methods for cumulative effects assessment. Environmental

Impact Assessment Review 15, 81-106.

Sunyer, J., Atkinson, R., Ballester, F., Le Tertre, A, Ayres, J. G., Forastiere, F., Forsberg,

B., Vonk, J. M., Bisanti, L., Anderson, R. H., Schwartz, J., and Katsouyanni, K. (2003).

Respiratory effects of sulphur dioxide: a hierarchical multicity analysis in the APHEA-2

study. Occupational and Environmental Medicine 60, e2.

World Health Organization (2003). Reports on a WHO/HEI working group, Bonn, Germany.

Available at www.euro.who.int/document/e78992.pdf.

Xia, Y. (2006). Asymptotic distributions for two estimators of the single-index model. Econo-

metric Theory 22, 1112-1137.

Xia, Y., Gog, J. and Grenfell, B. T. (2005). Semiparametric estimation of the duration of

immunity from infectious disease time-series: influenza as a case study. Appl. Statist. 54,

659-672.

Xia, Y., Tong, H., Li, W. K. and Zhu, L. (2002). An adaptive estimation of dimension reduction

space (with discussion). J. Roy. Statist. Soc. B 64, 363-410.

Young, A. R. (1990). Cumulative effects of ultraviolet radiation on the skin: cancer and pho-

toaging. Seminars in Dermatology 9, 25-31.

Yin, X. and Cook, R. D. (2005). Direction estimation in single-index regressions. Biometrika

92, 371-384.

Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index

models. J. Amer. Statist. Assoc. 97, 1042-1054.

chool of Mathematics, Statistics and Actuarial Science, The University of Kent, Canterbury,

Kent, CT2 7NZ, UK.

E-mail: E.Kong@kent.ac.uk

Department of Statistics, Columbia House, London School of Economics, Houghton Street,

London WC2A 2AE, UK.

E-mail: h.tong@lse.ac.uk

Department of Statistics and Applied Probability, National University of Singapore, Singapore.

E-mail: staxyc@nus.edu.sg

(Received May 2008; accepted February 2009)

www.euro.who.int/document/e78992.pdf
file:E.Kong@kent.ac.uk
file:h.tong@lse.ac.uk
file:staxyc@nus.edu.sg

	1. Introduction
	2. A Semi-Parametric Model for the Cumulative Effect
	3. Estimation of FACTS Model
	3.1. Re-parameterization and asymptotic properties
	3.2. A semi-parametric implementation
	3.3. Selection of pilot parameters

	4. Statistical Simulations of Finite Samples
	5. Effects of Air Pollution on the Respiratory Diseases
	6. Decay of Immunity Against Influenza
	Appendix

