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Abstract: We apply the modified likelihood ratio test to two binomial mixture

models arising in genetic linkage analysis. The limiting distribution of the test

statistic for both models is shown to be a mixture of chi-squared distributions. A

consideration of random family sizes for both models gives similar results. We also

explore the power properties under local alternatives. Simulation studies show that

the modified likelihood ratio test is more powerful than other methods under a

variety of model specifications.
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1. Introduction

One goal of human genetic linkage analysis is to locate the gene or genes that

are responsible for a given disease. This is done by linking the disease gene to

genetic markers. When the loci of two genes are close to each other on the same

chromosome, the two corresponding maternal (or paternal) alleles tend to stay

in the same gamete after meiosis. The closer they are, the smaller the chance

of being separated. A gamete with only one of the two maternal (or paternal)

alleles at these two loci is called recombinant, and the recombination fraction,

denoted as θ, is a useful measure of distance. When θ is close to 0, the two loci

are tightly linked and located close to each other on the same chromosome. When

two loci are not linked, the recombination fraction takes the maximum possible

value, θ = 0.5. Recombination data can be obtained by collecting pedigree

information.

A family of three generations with many siblings can provide good informa-

tion about the recombination fraction between two loci of interest. Nevertheless,

except for some animal populations, it is rarely possible to find a sufficiently

large and informative pedigree from which to obtain a precise enough estimate

of the recombination fraction. Instead, geneticists collect recombination infor-

mation from a large number of human families that exhibit the specific disease

under investigation. In simple situations, for example, the disease has a single
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genetic cause and the recombination fraction between the disease locus and the
marker locus is the same across the entire population; in this case, the number

of recombinants in n independent meioses has a binomial distribution. In the
presence of genetic heterogeneity (Smith (1963)), however, the disease in some
families may be caused by different disease genes at different loci. In this case,
the number of recombinants among siblings has a binomial mixture distribution.

In more complicated situations, we may not be able to determine which of the
two groups of siblings are recombinant. Additional binomial components have to
be introduced to the mixture model.

In this paper, we consider a testing problem that is often encountered in
linkage analysis, see Shoukri and Lathrop (1993), Lemdani and Pons (1995),
Chiano and Yates (1995), Chen (1998), Liang and Rathouz (1999), and Abreu,
Hodge and Greenberg (2002). As is well known, the likelihood ratio statis-

tic to test the order of a mixture model does not have the usual asymptotic
chi-squared distribution. In particular, for a class of binomial mixture models,
Chernoff and Lander (1995) show that the limiting distribution of the likelihood

ratio statistic is that of the supremum of a Gaussian process. The null limiting
distribution, however, depends on the binomial parameters. Davies (1977, 1987)
applies an upper bound to the null tail probabilities of the supremum of the

asymptotic Gaussian processes for the purpose of statistical inference. His result
has been used in the linkage analysis context, but the asymptotic upper bound
depends on family structure and is relatively complicated.

A number of other strategies have also been proposed. Chen and Cheng

(1995) Lemdani and Pons (1995) suggest restricting the range of the mixing
proportions. This approach restores the chi-squared limiting distribution for
many simple mixture models but requires specification of an arbitrary threshold.

Liang and Rathouz (1999) define a score function which is sensitive toward a
given alternative. This method also has nice mathematical and statistical prop-
erties, though choice of the alternative is somewhat arbitrary.

In this paper, we propose the modified likelihood approach discussed in
Chen (1998), Chen, Chen and Kalbfleisch (2001, 2004) and Chen and Kalbfleisch
(2005). The limiting distribution of the modified likelihood ratio statistic is chi-
squared or a mixture of chi-squared distributions for a large variety of mixture

models, and simulations suggest that this approach performs well while avoid-
ing many of the drawbacks of other approaches. This gives a natural and quite
general approach to testing problems in mixture models.

We consider two types of binomial mixture models, as in Liang and Rathouz
(1999), and show that the modified likelihood ratio statistic has a mixture of chi-
squared distributions in both cases. This method has better power in detecting

linkages than other methods as demonstrated in our theoretical investigation and
simulation experiments.



TESTING FOR HOMOGENEITY IN GENETIC LINKAGE ANALYSIS 807

2. Binomial Mixture Models in Pedigree Studies

In human pedigree studies, it is sometimes not possible to ascertain whether
or not a child is recombinant. One crucial piece of information is the genotype of

the parent who carries the disease gene. We restrict attention to the autosomal
genes, so that each individual has two alleles at the disease locus and two alleles

at the A marker locus. The parental genotype is called phase known (PK) if, for

the parent carrying the disease, it is known which allele of the marker locus shares
the same chromosome as the disease allele. This information can sometimes be

inferred from the genetic information of the grandparents. If it is not possible
to determine this genotyping for the parent, the parental genotype is said to be

phase unknown (PU).
Depending on the availability of the phase information, we have two kinds

of mixture models.

2.1. Phase known case

Suppose that the linkage between a disease locus and a marker locus is under
investigation and that the disease is autosomal dominant with full penetrance.

Figure 1 shows an example of pedigree with phase known. In this example,
marker A and the disease status of each individual in the three generations are

shown. It is seen that the mother inherited both the disease allele D and marker
allele A1 from the grandmother. The disease allele D and A1 are on the same

chromosome and the phase of the mother is known. Hence the mating is of the
form dA3|dA4 ×DA1|dA2. Based on this information, the first two offspring are

non-recombinant and the third offspring is recombinant. The third child received
the disease allele D but not the marker allele A1.

~

A1A6 A2A5

← grandparents

A3A4

~

A1A2

← parents

n

A2A4 A1A3

~ ← offspring

A2A3

Figure 1. An example of the phase known pedigree: Circles represent females
and squares represent males. Solid symbols indicate affected individuals.
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When there is a single disease-causing gene and the phase of the parent is
known, the number of recombinants among m offspring is observable and has a

simple binomial distribution Bi(m, θ).

In many situations, the disease is complex and can be caused by different
disease loci on different chromosomes. Suppose that only for a proportion α of

families is the disease locus linked with the marker under consideration. The
number of recombinants, Y , from a family with m offspring then has a mixture

distribution with two components,

αBi(m, θ) + (1− α)Bi(m, 0.5). (1)

The corresponding mixing distribution is

G(t) = αI(t ≥ θ) + (1− α)I(t ≥ 0.5), (2)

where I is an indicator function. The probability function of Y is

fK(y;G) =

(

m

y

)

{

αθy(1− θ)m−y + (1− α)(0.5)m
}

.

2.2. Phase unknown case

When the phase of the parent is unknown, it is not possible to determine
whether an offspring is recombinant. However, it may still be possible to divide

the offspring into two groups, one recombinant and one non-recombinant. But,
in this case, which group is which is unknown.

Figure 2 shows the same pedigree as Figure 1 except that the grandparental
genotypes are unknown. For the mother, the disease allele D could be on the

chromosome with either marker A1 or A2 and, under linkage equilibrium, these
two possibilities would be equally likely. If the disease allele D and marker allele

A1 are on the same chromosome, the first two offspring are non-recombinant and
the third is recombinant. In the other case, the first two offspring are recombinant

and the third is non-recombinant.

Let Y be the number of offspring in the group identified as recombinant
when D and A1 are assumed to be on the same maternal chromosome. Then

Y has a binomial mixture distribution Bi(m, θ)/2 + Bi(m, 1 − θ)/2. If only a
proportion α of families in the population with the disease has the gene linked

to this marker, then the distribution of Y is

α{1
2
Bi(m, θ) +

1

2
Bi(m, 1− θ)}+ (1− α)Bi(m, 0.5). (3)

The corresponding mixing distribution and probability function are respectively

G(t) = α{1
2
I(t ≥ θ) +

1

2
I(t ≥ 1− θ)}+ (1− α)I(t ≥ 0.5) (4)
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fU(y;G) =

(

m

y

)

[α{1
2
θy(1− θ)m−y +

1

2
θm−y(1− θ)y}+ (1− α)(0.5)m].

~

A3A4

~

A1A2

n

A2A4 A1A3

~

A2A3

← grandparents

← parents

← offspring

Figure 2. An example of phase unknown pedigree: Circles represent females
and squares represent males. Solid symbols indicate affected individuals.

3. Linkage Analysis

We consider testing the hypothesis of no linkage, H0 : α = 0 or θ = 0.5,
against the alternative, H1 : 0 < α ≤ 1 and 0 ≤ θ < 0.5.

3.1. Existing methods

For both PK and PU cases, the likelihood function based on independent
family data can be easily constructed. However, the likelihood ratio statistic
does not have the usual chi-squared limiting distribution. For the PK case with
m ≥ 3, Chernoff and Lander (1995) show that the limiting distribution involves
the supremum of a Gaussian process. The conclusion can also be obtained from a
general result in Dacunha-Castelle and Gassiat (1999) In order to use this result
for the purpose of inference, we need to calculate quantiles of the supremum of
the Gaussian process. This could be done by simulations; however, the general
analytical result is still unknown (Adler (1990)).

The cause of this non-regular behavior is the loss of identifiability under
the null hypothesis; many alternative approaches have been suggested to re-
solve this non-regularity. In independent papers, Chen and Cheng (1995) and
Lemdani and Pons (1995) suggest imposing a restriction α ≥ γ for some given
γ > 0. Liang and Rathouz (1999) discuss a procedure which initially fixes the
parameter value α = 1 in the alternative model and develop a score test.

Chen (1998), Chen, Chen and Kalbfleisch (2001, 2004) and Chen and

Kalbfleisch (2005) discuss inference in mixture models and, in other contexts,
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suggest a modified likelihood function in which a penalty function is placed on

small and/or large value of α so as to restore identifiability in the model. A

resulting advantage is that the modified likelihood ratio test statistic often has

a known and simple limiting distribution under the null hypothesis. That is,

the limiting distribution does not depend on which particular null distribution is

true. Our aim in this paper is to illustrate the modified likelihood approach in

the PK and PU cases.

3.2. Modified likelihood method

Let y1, . . . , yn be independent observations, where the density function of yi

is αfi(y; θ) + (1 − α)fi(y; 0.5), 0 ≤ α ≤ 1 and 0 ≤ θ ≤ 0.5. The log-likelihood

function is

ln(α, θ) =

n
∑

i=1

log{αfi(yi; θ) + (1− α)fi(yi; 0.5)}.

We consider the modified log-likelihood function pln(α, θ) = ln(α, θ) + C log(α)

for some chosen constant C. The main goal of the modified likelihood function

is to discourage the fit with α close to 0 and so avoid the alternative represen-

tation α = 0 of the null hypothesis θ = 0.5. We often take C = 1, which has

been found to be satisfactory for the data with multinomial component distri-

butions with moderate significance levels, and it works reasonably well for all

cases considered in this paper; see the simulation results in Section 4 and Chen

(1998). The simulation results in Table 1, however, suggest that C = 2 is a

better choice for the smaller significance level, 0.5%. For other mixture mod-

els, the appropriate choice of C depends on the size of the parameter space.

For example, Chen, Chen and Kalbfleisch (2001) suggest C = log(M) when the

parameter space of the component distribution is given by [−M,M ], see also

Zhu and Zhang (2004). In general, the best choice of C depends on the model

and the significance level of interest. Further investigation is needed.

For the PK case, fi(y; θ) is Bi(m, θ), whereas for the PU case, fi(y; θ) is

Bi(m, θ)/2 + Bi(m, 1− θ)/2, for all i.

The maximum modified log-likelihood estimators α̂ and θ̂ are the maximizers

of the modified log-likelihood function pln(α, θ). For the problem under consid-

eration, the null model is completely specified as θ = 0.5 with any value of α. If

θ = 0.5, pln(α, θ) is maximized at α = 1 and, for simplicity, we regard α = 1 as

the null value of α. The modified likelihood ratio statistic is defined as

Rn = 2[ln(α̂, θ̂)− ln(1, 0.5)]. (5)

In the modified likelihood ratio test (MLRT), the observed value of Rn is assessed

against the null distribution or asymptotic distribution of Rn.
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Table 1. Simulated null rejection rates (in %) of seven test statistics for
detecting linkage: PK case.

Nominal
n m level% T ∗

0.5 T ∗

1 MR(1) MR(2) MR(3) L0.5 L0.0

50 2 10 10.16 9.81 10.00 9.82 9.80 10.38 13.71

5 5.23 5.40 4.90 4.62 4.60 5.45 7.37

1 1.33 1.17 1.33 1.14 1.10 1.12 1.51

0.5 0.68 0.51 0.78 0.59 0.57 0.62 0.95

50 4 10 10.30 10.05 9.41 8.99 8.92 10.21 15.90

5 5.52 5.29 5.90 5.40 5.32 5.86 8.26

1 1.46 1.10 1.63 1.08 0.98 1.15 2.09
0.5 0.77 0.59 0.75 0.55 0.44 0.58 0.89

50 8 10 10.18 9.98 11.05 10.59 10.53 11.05 25.5
5 5.48 5.21 5.68 5.09 5.02 5.59 8.83

1 1.39 1.08 1.53 1.07 0.97 1.13 2.97

0.5 0.81 0.60 0.78 0.63 0.53 0.64 1.01

100 2 10 10.55 10.26 9.42 9.34 9.33 10.29 13.75

5 5.19 5.33 5.53 5.42 5.41 5.63 7.17

1 1.16 1.03 1.17 0.96 0.96 1.08 1.61

0.5 0.63 0.53 0.63 0.45 0.45 0.55 0.80

100 4 10 10.42 10.30 11.13 10.85 10.82 11.03 17.28

5 5.31 5.22 5.45 5.07 5.05 5.45 8.94
1 1.18 1.12 1.45 1.04 1.00 1.10 1.87

0.5 0.59 0.60 0.83 0.64 0.60 0.66 0.96

100 8 10 10.13 10.09 10.14 9.60 9.58 10.37 17.45
5 5.45 5.28 5.65 5.06 5.03 5.51 11.47

1 1.22 0.99 1.71 1.09 1.06 1.14 2.29

0.5 0.64 0.54 1.01 0.56 0.52 0.59 1.45

3.3. Large sample properties of the MLRT

We present some asymptotic results for Rn in this section; proofs are given
in the Appendix. We first consider the case when all the families have the same
number of offspring, m.

Theorem 1. Suppose Y1, . . . , Yn are independent and identically distributed ran-

dom variables from either the PK case (1) or the PU case (3). For fixed m ≥ 1

in the PK case, or m ≥ 2 in the PU case, Rn
d−→ χ2

0/2 + χ2
1/2 under the null

hypothesis, θ = 0.5.

Note that χ2
0 is the degenerate distribution at 0, and χ2

1 is the chi-squared
distribution with 1 degree of freedom.
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In most applications, geneticists obtain families with various number of off-

spring. The modified likelihood method turns out to be just as convenient here.

Let (Mi, Yi) represent the data from the ith family, i = 1, . . . , n. Here Mi de-

notes the number of offspring and Yi is defined earlier in the PK and PU cases.

Conditional on the Mi’s, the log-likelihood function is

ln(α, θ) =
n

∑

i=1

log P (Yi = yi|Mi). (6)

The modified log-likelihood function is

pln(α, θ) = ln(α, θ) + C log(α), (7)

with the modified likelihood ratio statistic

Rn = 2[ln(α̂, θ̂)− ln(1, 0.5)]. (8)

Suppose (Mi, Yi), i = 1, . . . , n are independent and identically distributed, with

all phase known, or all phase unknown. Assume also that Mi has an upper

bound, then Rn
d−→ χ2

0/2 + χ2
1/2 under the null hypothesis, θ = 0.5.

The asymptotic results for the MLRT can also be extended to the situation

where there are both PK and PU observations, and the MLRT can still be used

in that situation, see Fu (2004). If the numbers of PK and PU observations

are comparable, PK observations dominate the asymptotic expansions of the

MLRT under the null hypothesis. The asymptotic results under the null hypoth-

esis remain the same. Nonetheless, there can be large efficiency gains in finite

observations through adding PU observations to PK observations. Additional

discussion will be given in the section of simulation studies.

Theorem 1 provides a convenient tool to determine the critical values for the

test. They do not tell us the power properties of the test which can be assessed

by simulation. A theoretical approach which gives some insight is to assess the

asymptotic power of the test against local alternatives.

Consider the asymptotic power based on observations from the PK case

against the following sequence of local alternatives:

Hn
a : α = α0, θ = 0.5 − n−

1

2 τ, (9)

where 0 < α0 ≤ 1 and τ > 0. Note that the value of θ approaches 0.5 as n

increases at the rate of n−1/2 in Hn
a . This choice of local alternatives is based on

the knowledge that the convergence rate of θ̂ is n−1/2 in the PK case.

The local alternative Hn
a is contiguous to the null distribution (see Le Cam

and Yang (1990)). By Le Cam’s contiguity theory, the limiting distribution
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of Rn under Hn
a can be determined by the null limiting joint distribution of

(Rn,Λn), where Λn = ln(α0, 0.5−n−1/2τ)− ln(1, 0.5), which is the log-likelihood

ratio evaluated at Hn
a . The technical details of deriving the limiting distribution

under Hn
a are given in Appendix B. First, we state the result as follows.

Theorem 2. In the PK case, the limiting distribution of Rn under Hn
a is

{(Z + σ12)
+}2, where Z has the standard normal distribution and σ12 =

2τα0

√

E(M1).

Suppose we have n′ out of n observations from families with more than one

offspring. If we only use these n′ observations to test the local alternative Hn
a ,

the limiting distribution of Rn becomes {(Z + σ′

12)
+}2, where

σ′2
12

σ2
12

=
E[M1I(M1 > 1)]

E(M1)
< 1.

For example, suppose M1 has the probability function shown below.

m 1 2 3 4 5

P (M1 = m) 0.35 0.35 0.15 0.10 0.05

Note that E(M1) = 2.15 and E[M1I(M1 > 1)] = 1.8. This gives a relative

efficiency of σ′2
12/σ

2
12 = 83.7%. Although families of size one do not by themselves

provide information on θ, they do provide information about θα + (1 − α)/2.

Together with larger families, they still provide useful information for detecting

linkage.

The problem with the PU case is different. It can be seen that the Fisher

information at θ = 0.5 degenerates. It follows that the rate of estimating θ is

slower than n−1/2 and, in fact, we find that θ̂ converges at rate n−1/4. This

explains our choice of the local alternatives,

Hn
a : α = α0, θ = 0.5 − n−

1

4 τ, (10)

where 0 < α0 ≤ 1 and τ > 0. In the PU case, the limiting distribution of

Rn under Hn
a is {(Z + σ12)

+}2, where σ12 = 2τ2α0

√

E{2M1(M1 − 1)}. Here,

families of size two but not of size one contribute to the inference.

We have also investigated the asymptotic power of the generalized score test

discussed in Liang and Rathouz (1999). The test turns out to have the same

asymptotic power as the MLRT under the same local alternatives. The proof is

omitted here.

4. Simulation studies

We carry out simulation studies to compare the performance of the MLRT

with other testing procedures. The method of Chen and Cheng (1995) and
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Lemdani and Pons (1995) requires α ≥ γ for some γ > 0. We denote this class

of restricted likelihood ratio statistics by {Lγ , 0 < γ < 1}. We denote Liang and
Rathouz’s test statistic as {T ∗

λ , 0 < λ ≤ 1}. The constant λ is often set at 1,

but other choices are possible. We use {MR(C), C > 0} for the MLRT statistics

with the level of modification being C. As discussed earlier, C = 1 seems to work

well in the context of binomial mixture models with moderate significance levels;
increasing C makes the test more conservative.

Samples of size n(= 50, 100) were generated from binomial mixture models

(1) or (3) corresponding to the PK and PU situations, and in each case families

of size m(= 2, 4, 8) were considered. The parameter values of α and θ were
chosen from the combinations of α(= 0, 0.1, 0.2, 0.5) and θ(= 0.1, 0.01). These

combinations cover the null model as well as alternatives with moderate and

strong linkages.

For each given sample size n and family size m, the true null rejection rates
were estimated using 20,000 replications. The outcomes are presented in Tables

1 and 3. In all cases except L0, the mixture of chi-squared distributions with zero

and one degree of freedom is the null limiting distribution and hence was used
to determine the critical values of the tests. It is obvious that the mixture of

chi-squared distributions was not a good approximation to the usual likelihood

ratio statistic, L0. In all other cases, the approximations were reasonable.

We generated 10,000 samples from alternative models to evaluate the power
of the different testing procedures. To make the power comparison meaningful

and fair, the critical values were calculated from the 20,000 samples from the null

models, rather than the chi-squared mixture limiting distribution. The results

are presented in Tables 2 and 4. It is interesting to note that the simulated null
rejection rates of all tests are almost the same when m = 2 in the PU case. The

binomial mixture model is not identifiable in this case, so that the value of θ or

α can be fixed in the tests. It follows that the restrictions in the methods of Lγ

and T ∗

λ have no effect. In fact, when m = 3, the model is also not identifiable in
the PU case as shown by Abreu, Hodge and Greenberg (2002).

Overall the MLRT has comparable and higher power under various alterna-

tive models. For example, in Table 2, when n = 50, m = 4, θ = 0.01 and α = 0.2,

MR(1) improves on competitors T ∗

0.5 by 6%, T ∗

1 by 23% and L0.5 by 16%.
Table 5 shows the simulated null rejection rates and statistical power for

MR(1) and T ∗

1 in the PK case with sample size n = 100 and a selected family

size distribution. All the results were based on 20,000 repetitions. In this case,

the simulated null rejection rates approximate the nominal levels satisfactorily
and, although the power of MR(1) is comparable to T ∗

1 when θ = 0.2, it has

considerably larger power when θ is 0.1 or 0.05. The comparison between MR(1)

and T ∗

1 in the PU case with random family sizes was similar. The results are not

presented here.
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Table 2. Simulated power (in %) of seven test statistics for detecting linkage:

PK case. Upper entry: α = 0.1; middle entry: α = 0.2; lower entry: α = 0.5.

The nominal level is 0.005.

n m θ T ∗

0.5 T ∗

1 MR(1) MR(2) MR(3) L0.5 L0.0

5 5 6 5 5 5 5

50 2 0.10 22 19 23 21 20 21 22

95 93 95 94 93 94 95

8 7 9 8 7 8 8

50 2 0.01 38 32 37 34 32 34 37

100 100 100 100 99 100 100

15 11 17 13 12 11 17

50 4 0.10 60 46 59 51 48 49 61

100 100 100 100 100 100 100

29 18 35 26 21 20 36

50 4 0.01 82 65 88 81 74 72 89

100 100 100 100 100 100 100

45 27 57 49 37 31 58

50 8 0.10 92 78 95 92 88 84 95

100 100 100 100 100 100 100

67 41 88 82 72 51 88

50 8 0.01 98 90 100 100 100 96 100

100 100 100 100 100 100 100

10 9 9 10 10 9 10

100 2 0.10 45 41 43 43 42 42 46

100 100 100 100 100 100 100

16 14 16 16 15 14 17

100 2 0.01 69 61 68 65 62 63 71

100 100 100 100 100 100 100

30 21 33 24 21 22 35

100 4 0.10 87 76 89 82 78 79 91

100 100 100 100 100 100 100

50 33 64 49 40 37 64

100 4 0.01 97 91 99 98 96 94 99

100 100 100 100 100 100 100

69 47 85 77 65 55 86

100 8 0.10 99 96 100 100 100 98 100

100 100 100 100 100 100 100

87 67 99 98 95 76 99
100 8 0.01 100 99 100 100 100 100 100

100 100 100 100 100 100 100
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Table 3. Simulated null rejection rates (in% ) of seven test statistics for

detecting linkage: PU case.

Nominal

n m level% T ∗

0.5 T ∗

1 MR(0.5) MR(1) MR(2) L0.2 L0.0

50 2 10 10.10 10.10 10.12 10.12 10.12 10.12 10.12

5 5.90 5.90 5.89 5.89 5.89 5.89 5.89

1 0.76 0.76 0.76 0.76 0.76 0.76 0.76

0.5 0.37 0.37 0.37 0.37 0.37 0.37 0.37

50 4 10 10.26 10.10 9.77 9.64 9.64 10.36 11.48

5 5.60 5.60 4.76 4.46 4.46 5.17 5.58
1 1.40 1.30 0.99 0.87 0.86 1.04 1.04

0.5 0.73 0.74 0.49 0.45 0.44 0.54 0.76

50 8 10 10.50 10.40 10.71 9.45 9.24 10.50 13.70

5 5.60 5.60 6.19 4.72 4.46 5.41 9.30

1 1.60 1.50 1.36 1.08 0.80 1.05 1.50

0.5 0.93 0.79 0.94 0.69 0.39 0.52 1.10

100 2 10 9.54 9.54 9.54 9.54 9.54 9.54 9.54

5 4.46 4.46 4.46 4.46 4.46 4.46 4.46

1 1.05 1.05 1.05 1.05 1.05 1.05 1.05
0.5 0.56 0.56 0.56 0.56 0.56 0.56 0.56

100 4 10 10.40 10.15 9.73 9.66 9.66 10.00 13.56
5 5.17 5.46 4.84 4.73 4.72 5.26 5.74

1 1.28 1.29 1.07 0.93 0.92 1.09 1.42

0.5 0.74 0.73 0.56 0.49 0.47 0.59 0.74

100 8 10 10.01 10.02 9.97 9.27 9.21 9.95 13.45

5 5.60 5.56 5.54 4.67 4.59 5.27 8.28

1 1.46 1.42 1.59 1.12 0.99 1.17 1.76

0.5 0.97 0.91 1.11 0.64 0.54 0.66 1.25

We further investigated the informativeness of the samples from families with

only one offspring in the PK case, and families with two offspring in the PU case.

The MR(1)+ and MR(1)− denote the MLRT with or without these samples.

Table 6 shows the result for a PU example. As expected, the power of the test

was improved when including the samples from families with two offspring. The

results of the PK cases were similar and therefore omitted.

In applications, the data may contain both PK and PU observations. The

presence of PU observations does not change the null limiting distribution of the

MLRT but improves the power of the test, sometimes substantially. As shown

in Chen (1998), the Kullback-Leibler (KL) information is the determining factor

of the testing power. To examine the contribution of the PU observations to the
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Table 4. Simulated power (in%) of seven test statistics for detecting linkage:

PU case. Upper entry: α = 0.1; middle entry: α = 0.2; lower entry: α = 0.5.
The nominal level is 0.005.

n m θ T ∗

0.5 T ∗

1 MR(0.5) MR(1) MR(2) L0.2 L0.0

2 2 2 2 2 3 3

50 2 0.10 6 6 6 6 6 6 6

45 45 45 45 45 45 45

4 4 4 4 4 4 4

50 2 0.01 14 14 14 14 14 14 14

87 86 87 87 87 87 87

8 8 8 8 8 9 9

50 4 0.10 33 32 33 32 33 34 34

98 98 98 98 98 98 98

19 18 19 18 18 19 19

50 4 0.01 67 65 68 66 66 69 69

100 100 100 100 100 100 100

40 34 48 42 34 42 46

50 8 0.10 87 83 89 87 83 88 90

100 100 100 100 100 100 100

70 61 85 82 69 75 82

50 8 0.01 98 97 100 100 99 100 100

100 100 100 100 100 100 100

3 3 3 3 3 3 3

100 2 0.10 11 10 11 11 11 11 11

76 75 77 76 76 76 76

6 6 6 6 6 6 6

100 2 0.01 27 27 28 27 27 27 27

99 99 100 100 99 99 99

16 15 16 15 15 16 16

100 4 0.10 63 62 63 62 62 64 64

100 100 100 100 100 100 100

38 36 39 38 36 40 40

100 4 0.01 94 93 94 93 93 94 95

100 100 100 100 100 100 100

64 60 72 67 60 67 72

100 8 0.10 99 98 100 100 99 100 99

100 100 100 100 100 100 100

91 87 98 97 93 94 98

100 8 0.01 100 100 100 100 100 100 100
100 100 100 100 100 100 100
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Table 5. Simulated null rejection rates and statistical power for MR(1) and

T ∗

1 , α = 0.2; n=100: PK case.

Family size: 2 3 4 5 6

Probability: 0.35 0.35 0.15 0.10 0.05

Nominal Levels

θ Method 0.10 0.05 0.01 0.005

0.5 MR(1) 0.102 0.053 0.013 0.006

T ∗

1 0.101 0.053 0.013 0.006

0.2 MR(1) 0.795 0.690 0.440 0.368

T ∗

1 0.797 0.685 0.425 0.353

0.1 MR(1) 0.933 0.893 0.762 0.706

T ∗

1 0.926 0.871 0.705 0.637

0.05 MR(1) 0.969 0.952 0.882 0.848

T ∗

1 0.960 0.924 0.804 0.755

Table 6. Simulated null rejection rates and statistical power for MR(1)+ and

MR(1)−; α = 0.2, n=100: PU case.

Family size: 2 3 4 5 6
Probability: 0.35 0.35 0.15 0.10 0.05

Nominal Levels
θ Method 0.10 0.05 0.01 0.005

0.5 MR(1)+ 0.093 0.044 0.009 0.004

MR(1)− 0.090 0.046 0.008 0.004

0.2 MR(1)+ 0.538 0.408 0.176 0.135

MR(1)− 0.522 0.378 0.171 0.119

0.1 MR(1)+ 0.840 0.751 0.506 0.435
MR(1)− 0.811 0.705 0.478 0.390

power of the test, we could directly compute the KL information under various

alternative models. We present some simulation results as follows.

For simplicity, we considered the situation of 100 PK and 100 PU families

with equal family size 4. Let pkpu, pk and pu denote the tests using both PK

and PU observations, only PK, and only PU observations, respectively. Table

7 shows the simulated null rejection rates and power of the three test statistics.

The simulated null rejection rates are quite close to the nominal levels. Under

the alternative that is relatively close to the null, that is, 20% of the families

with recombination fraction θ = 0.4, the power of pkpu and pk is comparable.

However, under the distant alternative, when (α, θ) = (0.2, 0.2), only using the
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PK observations will result in a considerable loss of power. Another interesting

observation is the effectiveness of the KL information in determining the power

of the test. For example, the total KL information of 100 PK observations when

(α, θ) = (0.2, 0.3) is close to that of 100 PU observations when (α, θ) = (0.2, 0.2).

By inspection, the simulated power of the tests is almost the same.

Table 7. Simulated null rejection rates and statistical power for the tests

pkpu, pk and pu.

Nominal Levels

α θ Method Total KL 0.10 0.05 0.01 0.005

0.5 pkpu 0 0.100 0.050 0.012 0.006

0.2 0.4 pkpu 0.351 0.325 0.204 0.064 0.034

pk 0.332 0.322 0.196 0.063 0.033

pu 0.019 0.133 0.067 0.014 0.009

0.2 0.3 pkpu 1.777 0.655 0.535 0.272 0.194

pk 1.482 0.636 0.484 0.244 0.164

pu 0.295 0.294 0.178 0.049 0.028

0.2 0.2 pkpu 5.373 0.909 0.863 0.696 0.628

pk 3.937 0.866 0.792 0.573 0.481
pu 1.436 0.639 0.495 0.227 0.159

5. Discussion

For the problems considered here, the modified likelihood approach has the

advantage of giving a natural and quite general approach to testing problems in

mixture models. As shown in this paper, the MLRT has a simple asymptotic

null distribution in both PK and PU cases with fixed or random family sizes. In

stating the results in this paper, we assumed that the distribution of the family

size was bounded. As can be seen from the Appendix, however, this assumption

can be relaxed and we need only assume that E(sMi) is finite for |s| ≤ 2. The local

power properties of the MLRT are identical to those for T ∗

λ , but our simulation

studies show that the MLRT outperforms other methods against more distant

alternatives.

Typically, the modified likelihood can be maximized using an EM type al-

gorithm. The penalty term can be thought to have arisen through an auxiliary

experiment in which there are C Bernoulli trials with probability α of success,

each trial resulting in a success. With this additional “data”, the likelihood

is an ordinary likelihood and the EM methods for imputing the missing mix-

ture data can be applied directly. Further discussion of this can be found in
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Chen, Chen and Kalbfleisch (2001). Alternatively, general maximization tech-

niques can be implemented.
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Appendix A. Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 1. Suppose that when n → ∞, supα,θ{ln(α, θ) − ln(1, 0.5)} = Op(1).

Then, for the maximum modified likelihood estimator α̂, log(α̂) = Op(1).

Proof. This follows since, otherwise, the modified log-likelihood at α̂ would

diverge to negative infinity which contradicts the definition of α̂.

Proof of Theorem 1. It can be seen that the likelihood function in either model

satisfies the condition of Lemma 1. Hence, log(α̂) = Op(1). Consequently, for

any ε > 0, there exists δ > 0 such that P (α̂ > δ) > 1− ε for all n large enough.

As a consequence, we can assume α̂ > δ > 0 for the purpose of asymptotic

derivation. It then follows that θ̂→ 0.5 in probability under the null hypothesis

in either model.

Denote η = 2(0.5 − θ). In the PK case,

log fK(y;α, θ)− log fK(y; 1, 0.5) = log{1 + α[(1 − η)y(1 + η)m−y − 1]}.

For all θ close to 0.5, the Taylor expansion about η = 0 gives

Rn = 2[ln(α̂, θ̂)− ln(1, 0.5)]

= 2α̂η̂

n
∑

i=1

(m− 2yi) + α̂η̂2
n

∑

i=1

(m2 − 4myi −m + 4y2
i )

−(α̂η̂)2
n

∑

i=1

(m− 2yi)
2 + op(nη̂2)

= 2α̂η̂
n

∑

i=1

(m− 2yi)− (α̂η̂)2
n

∑

i=1

(m− 2yi)
2 + op(nη̂2).

To get the last equality, note that E(m2 − 4mY −m + 4Y 2) = 0, which implies

α̂η̂2
∑n

i=1(m
2 − 4myi − m + 4y2

i ) = op(nη̂2). Because α̂ and η̂ maximize the
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modified log-likelihood with 0 ≤ η ≤ 1, we must have α̂ = 1 + op(1) and η̂ =

{[∑n
i=1(m−2yi)]

+/
∑n

i=1(m−2yi)
2}+op(n

−1/2), where [·]+ denotes the positive

part of the argument. Thus, the modified likelihood ratio statistic

Rn =
{[∑n

i=1(m− 2yi)]
+}2

∑n
i=1(m− 2yi)2

+ op(1)

has the claimed limiting distribution.

In the PU case, we have

log fU(y;α, θ) − log fU (y; 1, 0.5)

= log[1 + α{1
2
(1− η)y(1 + η)m−y +

1

2
(1− η)m−y(1 + η)y − 1}].

Note that this function is symmetric in η and its expansion contains only even

terms. The Taylor expansion at η = 0 is

Rn = 2[ln(α̂, θ̂)− ln(1, 0.5)]

= α̂η̂2
n

∑

i=1

(m2 − 4myi + 4y2
i −m)

−1

4
(α̂η̂2)2

n
∑

i=1

(m2 − 4myi + 4y2
i −m)2 + op(nη̂4).

A similar argument to that for the PK case leads to this result. Note that the

assumption m ≥ 2 is needed or m2 − 4myi + 4y2
i −m = 0 for all possible values

of y. This completes the proof of Theorem 1.

The proof for the model with random family size is similar. However, we

need to verify that the likelihood ratio statistic is of order 1 in probability. For

the PK case, let Xi(η) = η−1[(1 − η)Yi(1 + η)Mi−Yi − 1] for i = 1, . . . , n. Then

n−1/2
∑n

i=1 Xi(η) converges to a Gaussian process when the probability generat-

ing function of Mi, E(sMi), exists for |s| ≤ 2.

Since log(1 + x) ≤ x− x2/4 when |x| < 1, we have

n
∑

i=1

log(1 + αηXi(η)) ≤ αη

n
∑

i=1

Xi(η)− (αη)2

4

n
∑

i=1

X2
i (η)I(Xi(η) < 1)

≤ {n−
1

2

n
∑

i=1

Xi(η)}2{n−1
n

∑

i=1

X2
i (η)I(Xi(η) < 1)}−1

= Op(1)

uniformly in α and η.



822 YUEJIAO FU, JIAHUA CHEN AND JOHN D. KALBFLEISCH

The rest of the proof follows that of Theorem 1.

Appendix B. Proof of Theorem 2

Proof of Theorem 2. By Le Cam’s contiguity theory, the limiting distribution

of Rn under Hn
a in (9) is determined by the null limiting joint distribution of

(Rn,Λn), where

Λn = ln(α0, 0.5 − n−
1

2 τ)− ln(1, 0.5)

=
2τα0√

n

n
∑

i=1

(mi − 2yi)−
2τ2α2

0

n

n
∑

i=1

(mi − 2yi)
2 + op(1).

Let Vn =
∑n

i=1(mi − 2yi)/
√

∑n
i=1(mi − 2yi)2. Note that under H0, (1/n)

∑n
i=1

(mi − 2yi)
2 p−→ E(M1 − 2Y1)

2 = E(M1). The null limiting joint distribution of

(Vn,Λn) is bivariate normal:

L((Vn,Λn)T |H0)
d−→ N2

((

µ1

µ2

)

,

(

1 σ12

σ21 σ22

))

,

where (µ1, µ2)
T = (0,−2τ 2α2

0E(M1))
T , σ12 = σ21 = 2τα0

√

E(M1) and σ22 =

4τ2α2
0E(M1). Noting that µ2 = −σ22/2, by Le Cam’s third lemma (see Hájek

and S̆idák (1967)), the limiting distribution of Vn under Hn
a in (9) is N(σ12, 1).

Since Rn is asymptotically equivalent to {V +
n }2, the limiting distribution of Rn

under the local alternatives Hn
a is that of {(Z + σ12)

+}2.
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