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Abstract: We consider nonparametric estimation of coefficient functions in a vary-

ing coefficient model of the form Yij = XT
i (tij)β(tij)+εi(tij) based on longitudinal

observations {(Yij , Xi(tij), tij), i = 1, . . . , n, j = 1, . . . , ni}, where tij and ni are

the time of the jth measurement and the number of repeated measurements for the

ith subject, and Yij and Xi(tij) = (Xi0(tij), . . . , XiL(tij))
T for L ≥ 0 are the ith

subject’s observed outcome and covariates at tij . We approximate each coefficient

function by a polynomial spline and employ the least squares method to do the

estimation. An asymptotic theory for the resulting estimates is established, includ-

ing consistency, rate of convergence and asymptotic distribution. The asymptotic

distribution results are used as a guideline to construct approximate confidence

intervals and confidence bands for components of β(t). We also propose a polyno-

mial spline estimate of the covariance structure of ε(t), which is used to estimate

the variance of the spline estimate β̂(t). A data example in epidemiology and a

simulation study are used to demonstrate our methods.

Key words and phrases: Asymptotic normality, confidence intervals, nonparametric

regression, repeated measurements, varying coefficient models.

1. Introduction

Longitudinal data occur frequently in medical and epidemiological studies. A
convenient setup for such data is that the observed sequence of measurements on
an individual is sampled from a realization of a continuous-time stochastic process
{(Y (t),X(t)), t ∈ T }, where Y (t) and X(t) = (X0(t), . . . ,XL(t))′ denote, respec-
tively, the real valued outcome of interest and the R

L+1, L ≥ 1, valued covariate,
and T denotes the time interval on which the measurements are taken. Suppose
there are n randomly selected subjects and let tij, j = 1, . . . , ni, be the observa-
tion times of the ith individual, i = 1, . . . , n. The observed measurements for the
ith individual are (Yij = Yi(tij),X ij = (Xij0, . . . ,XijL)′ = Xi(tij), tij), where
{(Yi(t),X i(t))} are independent copies of the stochastic process {(Y (t),X(t))}.

Statistical analyses with this type of data are usually concerned with mod-
eling the mean curves of Y (t) and the effects of the covariates on Y (t), and
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developing the corresponding estimation and inference procedures. Theory and
methods for estimation and inferences based on parametric models have been
extensively studied and summarized in Diggle, Liang and Zeger (1994), Davidian
and Giltnan (1995), Vonesh and Chinchilli (1997) and Verbeke and Mollenberghs
(2000), among others. There has been substantial interest recently in extending
the parametric models to allow for nonparametric covariate effects; see, for ex-
ample, Hart and Wehrly (1986), Rice and Silverman (1991), Zeger and Diggle
(1994), Moyeed and Diggle (1994), Besse, Cardot and Ferraty (1997), Brumback
and Rice (1998), Staniswalis and Lee (1998), Cheng and Wei (2000) and Lin and
Carroll (2000).

It is well known that nonparametric methods suffer from the “curse of di-
mensionality” when there are many covariates, hence dimensionality reduction
techniques are desired in practice. A useful dimensionality reduction approach
for longitudinal data is the time-varying coefficient model:

Y (t) = X ′(t)β(t) + ε(t), t ∈ T , (1.1)

where X(t) = (X0(t), . . . ,XL(t))′, β(t) = (β0(t), . . . , βL(t))′, X0(t) ≡ 1, β0(t)
represents the baseline effect, ε(t) is a mean 0 stochastic process with variance
function σ2

ε (t) and covariance function Cε(t1, t2) for t1 �= t2, and X(t) and ε(t)
are independent. Model (1.1) assumes a linear model for each fixed time t but
allows the coefficients to vary with time. This model is attractive because it
has a meaningful interpretation and still retains certain general nonparametric
characteristics. Estimation of this model using the local polynomial method and
smoothing splines has been studied in Hoover, Rice, Wu and Yang (1998), Fan
and Zhang (2000), Wu and Chiang (2000), Wu, Yu and Chiang (2000), Chiang,
Rice and Wu (2001) and others.

Recently, Huang, Wu and Zhou (2002) proposed a class of global estimation
methods for the varying coefficient model based on basis approximations. The
idea is to approximate the coefficient functions by a basis expansion, such as an
expansion with B-splines, and employ the least squares method. This approach
provides a simple universal solution to estimation and inference for the vary-
ing coefficient model with longitudinal data: It can handle both time-invariant
and time-dependent covariates; no data binning is needed when observations are
sparse at distinct observation time points; flexibility can be obtained by using
different basis approximations when approximating different coefficient functions.
Huang, Wu and Zhou (2002) established the consistency and convergence rates
for a general class of basis choices including polynomials, trigonometric polyno-
mials and B-splines. Rice and Wu (2001) also proposed a B-spline method for a
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different class of nonparametric models with time-invariant covariates, but have
not investigated the theoretical properties of their estimation procedures.

The aim of this paper is to derive the asymptotic distributions of the poly-
nomial spline estimators of the coefficient functions βl(t) in model (1.1), and to
investigate their applications in statistical inferences. We show that the spline es-
timators are asymptotically normal, and use this result to develop approximate
pointwise and simultaneous confidence intervals. Comparing with the asymp-
totic results for the local polynomial kernel methods of Wu, Chiang and Hoover
(1998), our polynomial spline method can adjust the individual smoothing needs
desired by different components of β(t) through the use of multiple smoothing pa-
rameters. The nonparametric inference procedures developed from our method
are also much simpler than those proposed in Wu et al. (1998), as we do not
rely on estimating the underlying density of the measurement time and the joint
moments E[Xl(t)Xl′(t)] of the covariates. Unlike Huang et al. (2002), which con-
siders general basis approximations, we restrict our attention to B-splines and
establish rates of convergence for estimators under weaker conditions.

Section 2 describes the estimation method. Section 3 presents the asymptotic
theory including consistency, rate of convergence and asymptotic distribution
of the spline estimates. Section 4 develops approximate pointwise confidence
intervals and simultaneous confidence bands. Section 5 presents the application
of our procedures to a CD4 depletion dataset from the Multicenter AIDS Cohort
Study and reports the results from a small simulation study. The Appendix
contains proofs of all theoretical results.

2. The Estimation Method

2.1. Spline approximation and least squares estimation

Polynomial splines are piecewise polynomials with the polynomial pieces
jointing together smoothly at a set of interior knot points. A (polynomial) spline
of degree d ≥ 0 on T with knot sequence ξ0 < ξ1 < · · · < ξM+1, where ξ0 and
ξM+1 are the two end points of the interval T , is a function that is a polynomial
of degree d on each of the intervals [ξm, ξm+1), 0 ≤ m ≤ M − 1, and [ξM , ξM+1],
and globally has continuous d − 1 continuous derivatives for d ≥ 1. A piecewise
constant function, linear spline, quadratic spline and cubic spline corresponds
to d = 0, 1, 2, 3, respectively. The collection of spline functions of a particular
degree and knot sequence form a linear space. The books by de Boor (1978) and
Schumaker (1980) are good references for spline functions.
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Suppose that each βl(t), l = 1, . . . , L, can be approximated by some spline
function, that is,

βl(t) ≈
Kl∑

k=1

γlkBlk(t), l = 0, . . . , L, (2.1)

where, for each l = 0, . . . , L, {Blk(·), k = 1, . . . ,Kl} is a basis for a linear space
Gl of spline functions on T with a fixed degree and knot sequence. In our appli-
cations we use the B-spline basis for its good numerical properties. The approx-
imation sign in (2.1) will be replaced by a strict equality with a fixed and known
Kl when βl(t) belongs to the linear space Gl. For the general case that βl(t)
may not be restricted to Gl, it is natural to allow Kl to increase with the sample
size, allowing a more accurate approximation when the sample size increases.
Following (1.1) and (2.1), we have

Yij ≈
L∑

l=0

Kl∑
k=1

XijlBlk(tij)γlk + εij,

and can estimate γlk, hence βl(t), based on (2.1) with any given Kl by minimizing

� =
n∑

i=1

wi

ni∑
j=1

(
Yij −

L∑
l=0

Kl∑
k=1

XijlBlk(tij)γlk

)2

with respect to γlk. Usual choices of wi include wi ≡ 1 and wi ≡ 1/ni, which
correspond to providing equal weight to each single observation and equal weight
to each subject, respectively. For i = 1, . . . , n, j = 1, . . . , ni and l = 0, . . . , L, set
γl = (γl0, . . . , γlKl

)′, γ = (γ′
0, . . . ,γ

′
L)′,

B(t) =


B01(t) · · · B0K0(t) 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 BL1(t) · · · BLKL

(t)

 ,

U′
ij = X ′

i(tij)B(tij), Ui = (Ui1, . . . ,Uini)
′, Wi = diag(wi, . . . , wi), and Yi =

(Yi1, . . . , Yini)
′. We have � = �(γ) =

∑n
i=1(Yi − Uiγ)′Wi(Yi − Uiγ). If∑

i U
′
iWiUi is invertible, a condition that is satisfied under mild conditions (see

Lemma A.3), then �(γ) has a unique minimizer

γ̂ =
(∑

i

U′
iWiUi

)−1 ∑
i

U′
iWiYi. (2.2)

Write γ̂ = (γ̂ ′
0, . . . , γ̂

′
L)′ with γ̂l = (γ̂l0, . . . , γ̂lKl

)′ for l = 0, . . . , L. The spline es-
timate of β(t) is β̂(t) = B(t)γ̂ = (β̂0(t), . . . , β̂L(t))′, where β̂l(t) =

∑
k γ̂lkBlk(t).
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2.2. Expression of the conditional variance of the spline estimators

Let X = {(X i(tij), tij); i = 1, . . . , n, j = 1, . . . , ni}. It is easily seen from
(2.2) that the variance-covariance matrix of γ̂ conditioning on X is

var(γ̂) =
(∑

i

U′
iWiUi

)−1(∑
i

U′
iWiViWiUi

)(∑
i

U′
iWiUi

)−1

,

where Vi = var(Yi) = (Cε(tij, tij′)) and Cε(t, s) is the variance-covariance func-
tion of ε(t). For simplicity, we omit symbols for conditioning on X in our notation.
The variance-covariance matrix of β̂(t) conditioning on X is

var(β̂(t)) = B(t)
(∑

i

U′
iWiUi

)−1(∑
i

U′
iWiViWiUi

)(∑
i

U′
iWiUi

)−1

B′(t).

(2.3)
Let el+1 be the (L + 1)-dimensional vector with the (l + 1)th element taken to
be 1 and zero elsewhere. The conditional variance of β̂l(t) is

var(β̂l(t)) = e′l+1var(β̂(t))el+1, l = 0, . . . , L. (2.4)

Note that the only unknown quantity in (2.4) is Vi = (Cε(tij , tij′)).

2.3. Automatic selection of smoothing parameters

Because of computational complexity, it is often impractical to automatically
select all three components involved in the smoothing parameters: the degrees of
splines and the numbers and locations of knots. Similar to Rice and Wu (2001),
we use splines with equally spaced knots and fixed degrees and select only Kl, the
numbers of knots, using the data. Here Kl is the dimension of Gl and is related
to the number Ml of interior knots through Kl = Ml + 1 + d, where d is the
degree of the spline. We use “leave-one-subject-out” cross-validation (Rice and
Silverman (1991), Hart and Wehrly (1993) and Hoover et al. (1998)). Specifically,

let β̂
(−i)

(t) be the spline estimator obtained by deleting the measurements of the
ith subject and

CV =
n∑

i=1

ni∑
j=1

{
wi

(
Yij − XT

i (tij)β̂
(−i)

(tij)
)2}

(2.5)

be the cross-validation score. We select (K0, . . . ,KL) by minimizing this cross-
validation score. One advantage of this approach is that, by deleting the entire
measurements of the subject one at a time, it is expected to preserve the intra-
subject correlation.

When there are a large number of subjects, calculating the “leave-one-
subject-out” cross-validation score can be computationally intensive. In such
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a case, we can use the “leave-subjects-out” K-fold cross-validation by splitting
the subjects into K roughly equal-sized parts. Let k[i] be the part containing

subject i and denote by β̂
−k[i]

the estimate of β with the measurements of the
k[i]th part of the subjects removed. Then the K-fold cross-validation score is

CV∗ =
n∑

i=1

ni∑
j=1

{
wi

(
Yij − XT

i (tij)β̂
(−k[i])

(tij)
)2}

,

and we select (K0, . . . ,KL) by minimizing this K-fold cross-validation score. The
difference of the “delete-subjects-out” K-fold cross-validation and the ordinary
K-fold cross-validation is that the measurements corresponding to the same sub-
jects are deleted altogether.

Remark 2.1. In this paper we restrict our attention to splines with equally
spaced knots. This worked well for the applications we considered. It might be
worthwhile to investigate using the data to decide the knot positions (free-knot
splines). There has been considerable work on free-knot splines for i.i.d. data; see
Stone, Hansen, Kooperberg and Truong (1997), Hansen and Kooperberg (2002)
and Stone and Huang (2002). Extension of the methodology and theory of free-
knot splines to longitudinal data is beyond the scope of this paper.

3. Asymptotic Theory

We now describe the asymptotic properties of the spline estimates β̂l when
the number of subjects n tends to infinity while, for each subject i, the number
of observations ni may or may not tend to infinity and, for l = 0, . . . , L, the
dimensionality Kl = Kln of the spline space Gl may or may not tend to infinity.
We only present results for the weight scheme wi ≡ 1/ni. Results for other
choices of wi can be obtained using the same arguments.

We first introduce some technical conditions.
(C1) The observation times tij, j = 1, . . . , ni, i = 1, . . . , n, are chosen inde-

pendently according to a distribution FT on T ; moreover, they are independent
of the response and covariate processes {(Yi(t),X i(t))}, i = 1, . . . , n. The dis-
tribution FT has a Lebesgue density fT (t) which is bounded away from 0 and
infinity uniformly over t ∈ T .

(C2) The eigenvalues λ0(t) ≤ · · · ≤ λL(t) of Σ(t) = E[X(t)X ′(t)] are
bounded away from 0 and infinity uniformly in t ∈ T ; that is, there are pos-
itive constants M1 and M2 such that M1 ≤ λ0(t) ≤ · · · ≤ λL(t) ≤ M2 for t ∈ T .

(C3) There is a positive constant M3 such that |Xl(t)| ≤ M3 for t ∈ T and
l = 0, . . . , L.

(C4) There is a constant M4 such that E[ε(t)2] ≤ M4 < ∞ for t ∈ T .
(C5) lim supn(maxl Kl/minl Kl) < ∞.
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(C6) The process ε(t) can be decomposed as the sum of two independent
stochastic processes, ε(1)(t) and ε(2)(t), where ε(1) is an arbitrary mean zero
process and ε(2) is a process of measurement errors that are independent at
different time points and have mean zero and constant variance σ2.

These are mild conditions that are satisfied in many practical situations.
Condition (C1) guarantees that the observation times are randomly scattered
and can be modified or weakened (Remarks 3.1 and 3.2). Let ‖a‖L2 denote
the L2 norm of a square integrable function a(t) on T . We define β̂l(·) to be
a consistent estimator of βl(·) if limn→∞ ‖β̂l − βl‖L2 = 0 holds in probability.
Let Kn = max0≤l≤L Kl and dist(βl, Gl) = infg∈Gl

supt∈T |βl(t) − g(t)| be the L∞
distance between βl(·) and Gl.

Theorem 1.(Consistency) Suppose conditions (C1)−(C5) hold, limn dist(βl,
Gl) = 0, l = 0, . . . , L, and limn Kn log Kn/n = 0. Then β̂l, l = 0, . . . , L, are
uniquely defined with probability tending to one. Moreover, β̂l, l = 0, . . . , L, are
consistent.

Let β̃l(t) = E[β̂l(t)] be the mean of β̂l(t) conditioning on X . It is useful
to consider the decomposition β̂l(t) − βl(t) = β̂l(t) − β̃l(t) + β̃l(t) − βl(t), where
β̂l(t)−β̃l(t) and β̃l(t)−βl(t) contribute to the variance and bias terms respectively.
Let ρn = max0≤l≤L dist(βl, Gl).

Theorem 2.(Rates of Convergence) Suppose conditions (C1)−(C5) hold. If
limn Kn log Kn/n = 0, then ‖β̃l − βl‖L2 = OP (ρn) and ‖β̂l − β̃l‖2

L2
= OP (1/n +

Knn−2 ∑
i n−1

i ); consequently, ‖β̂l − βl‖2
L2

= OP (1/n + Knn−2 ∑
i n

−1
i + ρ2

n).

This theorem implies that the magnitude of the bias term is bounded in
probability by the best approximation rates obtainable by the spaces Gl. When
the number of observations for each subject is bounded, that is, ni ≤ C, 1 ≤
i ≤ n, for some constant C, the rate of convergence of ‖β̃l − βl‖2

L2
reduces to

OP (Kn/n + ρ2
n), the same rate for i.i.d. data (Huang (1998) and (2001)).

By condition (C5), the approximation rate ρn can be determined in terms
of Kn under commonly used smoothness conditions on the βl. When the βl have
bounded second derivatives, we have ρn = O(K−2

n ) (Schumaker (1981, Theo-
rem 6.27)), and the rates of convergence in Theorem 2 become ‖β̂l − βl‖2

L2
=

OP (Knn−2 ∑
i n

−1
i + K−4

n ). Choosing Kn ∼ (n−2 ∑
i n

−1
i )−1/5, we find ‖β̂l −

βl‖2
L2

= OP ((n−2 ∑
i n

−1
i )4/5). When the number of observations for each sub-

ject is bounded, we get ‖β̂l − βl‖2
L2

= OP (n−4/5), the same optimal rate as for
i.i.d. data (Stone (1982)). When ni is bounded by a fixed constant, the require-
ment on Kn to achieve the n−4/5 rate reduces to Kn ∼ n1/5. Huang et al. (2002)
established consistency and rates of convergence of general basis estimators. The
conditions on Kn required in Theorems 1 and 2 are less stringent than those in
Huang et al. (2002).
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For positive definite matrices A and B, let B1/2 denote the unique square
root of B and let A−1/2 = (A−1)1/2.

Theorem 3.(Asymptotic Normality) Suppose conditions (C1)−(C6) hold. If
limn Kn log Kn/n = 0 and limn Kn maxi ni/n = 0, then {var(β̂(t))}−1/2(β̂(t) −
β̃(t)) −→ N(0, I) in distribution, where β̃(t) = (β̃0(t), . . . , β̃L(t))′, and in partic-
ular, for l = 0, . . . , L, {var(β̂l(t))}−1/2(β̂l(t) − β̃l(t)) −→ N(0, 1) in distribution.

The above result extends similar result of Huang (2003) for i.i.d. data. It can
be used to construct asymptotic confidence intervals; see, for example, Section
3.5 of Hart (1997). One sensible approach is to think of β̃l(t) as the estimable
part of βl(t) and construct an asymptotic confidence interval for β̃l(t). Note that
β̃l(t) can be interpreted as the best approximation in the estimation space Gl

to βl(t). Another approach is to undersmooth so that the squared bias term
(β̃l(t) − βl(t))2 is asymptotically negligible relative to the variance.

Theorem 4.(Bias) Suppose conditions (C1)−(C5) hold and limn Kn log Kn/n =
0. Then supt∈T |β̃l(t) − βl(t)| = OP (ρn), l = 0, . . . , L.

We now give a sufficient condition for the bias term to be negligible relative
to the variance term.

Corollary 1. Suppose assumptions in Theorem 4 hold and condition (C6) holds.
In addition, suppose βl(t), 0 ≤ l ≤ L, have bounded second derivatives. If
limn K5

n/(n maxi ni) = ∞, then supt∈T |{var(β̂l(t))}−1/2(β̃l(t) − βl(t))| = oP (1),
l = 0, . . . , L.

Remark 3.1. The results in this section still hold when the observation times
{tij} are deterministic. In this case we need to replace condition (C1) by the
following.

(i′) There are constants M1 and M2 such that

M1‖g‖2
L2

≤ 1
n

∑
i

1
ni

∑
j

g2(tij) ≤ M2‖g‖2
L2

, g ∈ Gl, l = 0, . . . , L. (3.1)

See Appendix A.9 for some technical details. A sufficient condition for (i′) to
hold is that

sup
t∈T

|Fn(t) − FT (t)| = o(1/Kn) (3.2)

for some distribution function FT (t) which has a Lebesgue density fT (t) that
is bounded away from 0 and infinity uniformly over t ∈ T , where Fn(t) =
(1/n)

∑
i(1/ni)

∑
j 1{tij≤t} and 1{·} is the indicator function; see Appendix A.10

for a proof.

Remark 3.2. The requirement in condition (C1) that the tij are independent of
each other can be relaxed. In light of Remark 3.1, condition (C1) can be replaced
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by the requirement that (3.1) or, sufficiently, (3.2) holds with probability tending
to one.

4. Asymptotic Confidence Intervals and Confidence Bands

4.1. Pointwise confidence intervals

Under regularity conditions, for 0 ≤ l ≤ L and t ∈ T ,

{var(β̂l(t))}−1/2(β̂l(t) − E[β̂l(t)]) −→ N(0, 1) in distribution (4.1)

as n tends to infinity, where E[β̂l(t)] and var(β̂l(t)) are the mean and variance of
β̂l(t) conditioning on X . Suppose that there is an estimate v̂ar(β̂l(t)) of var(β̂l(t))
such that v̂ar(β̂l(t))/var(β̂l(t)) → 1 in probability as n → ∞. It follows from (4.1)
and Slutzky’s Theorem that, as n → ∞, {v̂ar(β̂l(t))}−1/2(β̂l(t) − E[β̂l(t)]) −→
N(0, 1) in distribution, so that an approximate (1 − α) asymptotic confidence
interval for E[β̂l(t)] has end points

β̂l(t) ± zα/2(v̂ar(β̂l(t)))1/2, (4.2)

where zα/2 is the (1−α/2)th quantile value of the standard Gaussian distribution.
If the bias E[β̂l(t)] − βl(t) is asymptotically negligible relative to the variance of
β̂l(t) (see Section 3 for specific conditions), then β̂l(t)± zα/2(v̂ar(β̂l(t)))1/2 is also
a (1 − α) asymptotic confidence interval for βl(t).

The procedure for constructing confidence intervals given here is simpler than
the kernel based method of Wu et al. (1998), since the construction of estimates
of var(β̂l) requires only estimation of the variance and covariance functions of
ε(t). This is in contrast to the asymptotic normality result for the kernel method
(Theorem 1 of Wu et al. (1998)), where the asymptotic variance of the estimate
depends not only on the variance-covariance structure of ε(t) but also on the de-
sign density fT (t) of the observation time and the joint moments E(Xl(t)Xl′(t))
of the covariate process. The plug-in type approximate confidence intervals sug-
gested by Wu et al. (1998) rely on estimating the extra quantities involving fT (t)
and E(Xl(t)Xl′(t)) through kernel smoothing methods.

4.2. Simultaneous variability bands

We present here a simple approach that extends the above pointwise confi-
dence intervals to simultaneous bands for E[β̂l(t)] and βl(t) over a given subin-
terval [a, b] of T . Our approach is similar to the ones used in Knafl, Sacks and
Ylvisaker (1985), Hall and Titterington (1988) and Wu et al. (1998). Partition-
ing [a, b] according to M + 1 equally spaced grid points a = ξ1 < · · · < ξM+1 = b

for some integer M ≥ 1, we get a set of approximate (1 − α) simultaneous con-
fidence intervals (ll,α(ξr), ul,α(ξr)) for E[β̂l(ξr)], such that limn→∞ P (ll,α(ξr) ≤
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E[β̂l(ξr)] ≤ ul,α(ξr), for all r = 1, . . . ,M + 1) ≥ 1−α. A simple approach based
on the Bonferroni adjustment is to choose (ll,α(ξr), ul,α(ξr)) to be

β̂l(ξr) ± zα/[2(M+1)](v̂ar(β̂l(ξr)))1/2. (4.3)

Let E(I)[β̂l(t)] be the linear interpolation of E[β̂l(ξr)] and E[β̂l(ξr+1)], ξr ≤ t ≤
ξr+1:

E(I)[β̂l(t)] = M

(
ξr+1 − t

b − a

)
E[β̂l(ξr)] + M

(
t − ξr

b − a

)
E[β̂l(ξr+1)].

Similarly, let l
(I)
l,α(t) and u

(I)
l,α(t) be the linear interpolations of ll,α(ξr) and ul,α(ξr),

respectively. Then, (l(I)
l,α(t), u(I)

l,α(t)) is an approximate (1−α) confidence band for

E(I)[β̂l(t)] in the sense that limn→∞ P (l(I)
l,α(t) ≤ E(I)[β̂l(t)] ≤ u

(I)
l,α(t), for all t ∈

[a, b]) ≥ 1 − α.
To construct the bands for E[β̂l(t)], we assume one of

sup
t∈[a,b]

∣∣∣{E[β̂l(t)]}′
∣∣∣ ≤ c1, for a known constant c1 > 0, (4.4)

sup
t∈[a,b]

∣∣∣{E[β̂l(t)]}′′
∣∣∣ ≤ c2, for a known constant c2 > 0. (4.5)

Direct calculation using Taylor’s expansions shows that, for ξr ≤ t ≤ ξr+1,

∣∣∣E[β̂l(t)] − E(I)[β̂l(t)]
∣∣∣ ≤

2c1M
(

(ξr+1−t)(t−ξr)
b−a

)
, if (4.4) holds;

1
2c2 (ξr+1 − t) (t − ξr) , if (4.5) holds.

Adjusting the bands for E(I)[β̂l(t)], our approximate (1 − α) confidence bands
for E[β̂l(t)] are(

l
(I)
l,α(t) − 2c1M

((ξr+1 − t)(t − ξr)
b − a

)
, u

(I)
l,α(t) + 2c1M

((ξr+1 − t)(t − ξr)
b − a

))
(4.6)

under (4.4) or, under (4.5),(
l
(I)
l,α(t) − 1

2
c2(ξr+1 − t)(t − ξr), u

(I)
l,α(t) +

1
2
c2(ξr+1 − t)(t − ξr)

)
. (4.7)

When the bias E[β̂l(t)] − βl(t) is asymptotically negligible (a sufficient condi-
tion is given in Corollary 1 in Section 3) and either supt∈[a,b] |β′

l(t)| ≤ c1 or
supt∈[a,b] |β′′

l (t)| ≤ c2 holds for known positive constants c1 or c2, then (4.6) or
(4.7) are the corresponding asymptotic confidence bands for βl(t), 0 ≤ l ≤ L.

Remark 4.1. The Bonferroni adjustment (4.3), although simple, often leads to
conservative bands. For refinements, one may use the inclusion-exclusion identi-
ties to calculate (ll,α(ξr), ul,α(ξr)) with more accurate coverage probabilities; see,
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for example, Naiman and Wynn (1997). These refinements, however, usually
involve extensive computations and may not be practical for large longitudinal
studies. Another related issue is the choice of M . Although some heuristic
suggestions for the simple case of kernel regression with independent identically
distributed samples have been provided by Hall and Titterington (1988), theo-
retical guidelines for the choice of M under the current situation is still unknown.

4.3. Estimation of the covariance structure

Since the conditional variance of β̂l(t) is determined by the covariance struc-
ture of the process ε(t) (see (2.3) and (2.4)), a crucial step in estimating the
conditional variance of β̂l(t) is to estimate the covariance function Cε(t, s) of
ε(t). Diggle and Verbyla (1998) developed a local smoothing method to estimate
the covariance structure. However, local smoothing could be computationally
expensive in the current context, since the estimated covariance function needs
to be evaluated at each distinct pair of observation times. We propose here a
spline based estimate of the covariance function.

To estimate Cε(t, s), we approximate it by a tensor product spline on T ×T ,
that is,

Cε(t, s) ≈
∑
k

∑
l

uklBk(t)Bl(s), t, s ∈ T , t �= s,

where {Bk} is a spline basis on T with a fixed knot sequence. The above ap-
proximation is only required to hold when t �= s, since, in most practical lon-
gitudinal settings, the correlation function Cε(t, s) is not necessarily continuous
at t = s, that is, lims→t Cε(t, s) �= Cε(t, t); see, for example, Diggle (1988) and
Diggle and Verbyla (1998). Note that E[ε(tij)ε(tij′)] = Cε(tij , tij′) for j �= j′ and
C(t, s) = C(s, t). If {εi(tij), i = 1, . . . , n, j = 1, . . . , ni} were observed, Cε(t, s),
t �= s, could be estimated by finding {ukl : ukl = ulk} which minimize

n∑
i=1

ni∑
j,j′=1,j<j′

(
εi(tij)εi(tij′) −

∑
k

∑
l

uklBk(tij)Bl(tij′)
)2

. (4.8)

Since εi(tij) are not observed, we minimize (4.8) with εi(tij) replaced by the
residuals ε̂i(tij) = Yij − X ′

iβ̂(tij). Denoting the minimizers as ûkl, the spline
estimate of Cε(t, s) for t �= s is

Ĉε(t, s) =
∑
k

∑
l

ûklBk(t)Bl(s), t, s ∈ T , t �= s.

For the estimation of σ2
ε (t) = Cε(t, t), we use the spline approximation Cε(t, t) ≈∑

k vkBk(t) and define σ̂2(t) =
∑

k v̂kBk(t) to be the spline estimate, where the



774 JIANHUA Z. HUANG, COLIN O. WU AND LAN ZHOU

v̂k minimize
n∑

i=1

ni∑
j=1

(
ε̂2
i (tij) −

∑
k

vkBk(tij)
)2

.

Our spline estimates of var(β(t)) and var(βl(t)) are then obtained by substituting
Cε(t, s) and σε(t) with Ĉε(t, s) and σ̂ε(t) in (2.3) and (2.4), respectively.

The estimation of Cε(t, s) and σε(t) relies on choosing the appropriate spline
spaces. In practice, we can use equally spaced knot sequences and select the
numbers of knots either subjectively or through the cross-validation procedures
described in Section 2.3. However, such data-driven choices are often very com-
putationally intensive. In our simulation study, we found that a number of knots
between 5 and 10 gave satisfactory results.

Remark 4.2. Our estimator of the covariance function is motivated by a moment
condition similar to the ones used in Section 2. The same arguments as in the
proofs of Theorems 1 and 2 can be used to show the consistency of the proposed
covariance function estimator under mild regularity conditions. In fact, one can
view Zijj′ = εi(tij)εi(tij′) as a longitudinal observation on the product domain
T × T , with the mean function Cε(tij , tij′). This is a setup analogous to that in
Theorems 1 and 2, except there is no covariate.

Remark 4.3. Similar to the local polynomial estimator of Diggle and Ver-
byla (1998), the proposed spline estimator of the covariance function need not
be positive definite for a given finite sample, although, by its consistency, it is
asymptotically positive definite. So far, there is no satisfactory solution to the
problem of constructing a nonparametric covariance function estimator that is
positive definite under finite longitudinal samples. How to impose the finite sam-
ple positive definiteness constraint to the current spline estimator is an important
problem that deserves futher investigation.

5. Numerical Results

5.1. Application to CD4 depletion in HIV infection

We analyze a subset of the Multicenter AIDS Cohort Study, which includes
cigarette smoking status (smoking versus non-smoking), age at HIV infection,
pre-HIV infection CD4 cell percent (CD4 cell count divided by the total number
of lymphocites) and repeatedly measured post-infection CD4 cell percent of 283
homosexual men who were infected by HIV during the study period between
1984 and 1991. Details about the design, methods and medical implications
of the Multicenter AIDS Cohort Study can be found in Kaslow et al. (1987).
Although all the individuals were scheduled to have their measurements made
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at semi-annual visits, due to the missing visits and the fact that HIV infections
occurred randomly during the study, not all the individuals were observed at a
common set of time points. The number of repeated measurements per subject
ranged from 1 to 14, with a median of 6 and a mean of 6.57. The number of
distinct measurement time points was 59.

Define tij to be the time (in years) of the jth measurement of the ith in-
dividual after HIV infection; Yij the ith individual’s CD4 percent measured at
time tij; X

(1)
i the ith individual’s smoking status, taken to be 1 or 0 if the ith

individual ever or never smoked cigarettes, respectively, after his infection; X
(2)
i

the ith individual’s centered age at HIV infection, computed by subtracting the
sample average age at the infection from the ith individual’s age at the infection;
and X

(3)
i the ith individual’s centered pre-infection CD4 percent, computed by

subtracting the average pre-infection CD4 percent of the sample from the ith
individual’s observed pre-infection CD4 percent. We consider the time-varying
coefficient model

Yij = β0(tij) + X
(1)
i β1(tij) + X

(2)
i β2(tij) + X

(3)
i β3(tij) + εij , (5.1)

where the baseline CD4 percent β0(t) represents the mean CD4 percent at t years
after the infection for a non-smoker with average pre-infection CD4 percent and
average age at the infection, β1(t), β2(t) and β3(t) describe the time-varying ef-
fects for cigarette smoking, age at HIV infection and pre-infection CD4 percent,
respectively, on the post-infection CD4 percent at time t. The centered covari-
ates, X

(2)
i and X

(3)
i , are used in (5.1) to ensure a clear biological interpretation

of the baseline coefficient function β0(t). This model is appropriate for an initial
exploration analysis because there have been no known parametric models that
have been justified for this situation, while a high dimensional nonparametric
fitting would be unrealistic for the given sample size.

We fitted (5.1) using cubic splines with equally spaced knots and wi = 1/ni.
Using the cross-validation of Section 2.3, the numbers of interior knots for β̂0(·),
β̂1(·), β̂2(·) and β̂3(·) were chosen to be 0, 5, 1 and 3, respectively. Pointwise
confidence intervals and simultaneous confidence bands were constructed using
the procedures of Section 4. The covariance structure of ε(t) was estimated using
the method of Section 4.3 with cubic splines and five equally spaced knots. The
Bonferroni bands were computed using (4.6) with c1 = 3 and M = 60.

Figure 1 shows the fitted coefficient functions (solid curves), their 95% point-
wise confidence intervals (dotted curves) and Bonferroni bands (dashed curves).
These curves imply that (a) the baseline CD4 percent of the population depletes
with time, but the rate of depletion appears to be gradually slowing down; (b)
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cigarette smoking and age of HIV infection do not show any significant effect on
the post-infection CD4 percent; (c) pre-infection CD4 percent appears to be posi-
tively associated with high post-infection CD4 percent. These findings agree with
the ones obtained in Wu and Chiang (2000) and Fan and Zhang (2000). Note
that the asymptotic confidence intervals in Figure 1 are similar to the boostrap
confidence intervals in Huang et al. (2002).
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Figure 1. CD4 Cell Data. Estimated coefficient curves (solid), their 95%
pointwise confidence intervals (dotted), and 95% conservative Bonferroni-
type simultaneous bands (dashed). (a) baseline CD4 percentage, (b) smoking
effect, (c) age effect, (d) pre-infection CD4 percentage effect.

5.2. Monte Carlo simulation

In each simulation run, we generated a simple random sample of 200 subjects
according to the model

Yij = β0(tij) + Xi(tij)β1(tij) + εi(tij), j = 1, . . . , ni, i = 1, . . . , 200,

where Xi(t) was the ith subject’s realization of the random variable X(t) from
the Gaussian distribution with mean 3 exp(t/30) and variance 1,

β0(t) = 15 + 20 sin
(

tπ

60

)
and β1(t) = 2 − 3 cos

(
(t − 25)π

15

)
. (5.2)
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Each individual was assigned a set of “scheduled” time points {0, 1, . . . , 30}, and
each “scheduled” time, except time 0, had a probability of 60% being skipped, so
that the actual observation time points were the non-skipped “scheduled” ones.
This led to unequal numbers of repeated measurements ni and different observed
time points tij per subject. The random errors εij = εi(tij) were independent
from the covariates and given by εij = Zi(tij)+Eij , where Zi(tij) were generated
from a stationary Gaussian process with zero mean and a covariance function

cov(Zi1(ti1j1), Zi2(ti1j2)) =

{
4 exp (−|ti1j1 − ti2j2|) , if i1 = i2,

0, if i1 �= i2,

and the Eij were independent measurement errors from a N(0, 4) distribution.
We repeated this simulation process 500 times. For each simulated data set,

we computed the spline estimators using cubic splines with five equally spaced
interior knots and weights wi ≡ 1/ni. The procedure in Section 4.3 was used to
estimate the covariance structure, also using cubic splines with five equally spaced
interior knots. Asymptotic 95% pointwise confidence intervals were constructed
at 61 equally spaced points on the interval [0, 30] according to the procedure
in Section 4.1. The empirical coverage probabilities of these pointwise intervals
are close to the nominal level, as shown in Figures 2 (the standard errors of the
empirical coverage probabilities were approximately 0.01). Asymptotic 95% con-
fidence bands (4.6) were constructed with M = 60 and c1 = 3. The simultaneous
coverage probabilities were 99.2% and 98.2% for β0(t) and β1(t) respectively. As
espected, the Bonferroni-type bands were conservative.
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Figure 2. Empirical Coverage Probabilities of asymptotic pointwise confi-
dence intervals for β0(t) (left) and β1(t) (right).
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Appendix. Proofs

A.1. Notation

Let |a| denote the Euclidean norm of a real valued vector a. For a ma-
trix A = (aij), ‖A‖∞ = maxi

∑
j |aij|. For a real valued function g on T ,

‖g‖∞ = supt∈T |g(t)| denotes its supreme norm. For a vector valued function g =
(g0, . . . , gL), denote ‖g‖L2 = {∑0≤l≤L ‖gl‖2

L2
}1/2 and ‖g‖∞ = max0≤l≤L ‖gl‖∞.

Given sequences of positive numbers an and bn, an � bn and bn � an mean an/bn

is bounded, and an � bn means both an � bn and an � bn hold.

A.2. Properties of splines

We can currently choose a convenient basis system in our technical arguments
and the results for the function estimates hold true for other basis choices of the
same function space. We use B-splines in our proofs. For each l = 0, . . . , L,
Blk, k = 1, . . . ,Kl, are the B-spline basis functions that span Gl. The B-splines
have the following properties (de Boor (1978)): Blk(t) ≥ 0,

∑Kl
k=1 Blk(t) = 1,

t ∈ T ;

M1

Kl

∑
k

γ2
lk dt ≤

∫
T

(∑
k

γlkBlk(t)
)2

≤ M2

Kl

∑
k

γ2
lk, γlk ∈ R, k = 1, . . . ,Kl.

Moreover, there is a constant M such that ‖g‖∞ ≤ M
√

Kl‖g‖ for g ∈ Gl, l =
0, . . . , L.

A.3. Inner products

For g(1)(t) = (g(1)
0 (t), . . . , g(1)

L (t))′ and g(2)(t) = (g(2)
0 (t), . . . , g(2)

L (t))′, define
the empirical inner product as

〈g(1),g(2)〉n =
1
n

∑
i

1
ni

∑
j

(∑
l

Xil(tij)g
(1)
l (tij)

)(∑
l

Xil(tij)g
(2)
l (tij)

)
,

the theoretical inner product as

〈g(1),g(2)〉 = E

[(∑
l

Xl(T )g(1)
l (T )

)(∑
l

Xl(T )g(2)
l (T )

)]
,

where T is the random observation time with distribution FT (·). Denote the
corresponding norms by ‖ · ‖n and ‖ · ‖. Note that E[〈g(1),g(2)〉n] = 〈g(1),g(2)〉.



POLYNOMIAL SPLINE ESTIMATION AND INFERENCE 779

Lemma A.1. Let gl(t) =
∑

k γlkBlk(t) and γl = (γl0, . . . , γlKl
)′ for l = 0, . . . , L,

and γ = (γ ′
0, . . . ,γ

′
L)′. Set g(t) = (g0(t), . . . , gL(t))′. Then ‖g‖2 � ∑L

l=0 ‖gl‖2
L2

� |γ|2/Kn.

Proof. Since T is independent of {X(t)},

E

[(∑
l

Xl(T )gl(T )
)2]

=
∫
T
E

(∑
l

Xl(t)gl(t)
)2

fT (t)dt=
∫
T
g′(t)Σ(t)g(t)fT (t)dt.

Thus, it follows from conditions (C1) and (C2) that,

‖g‖2 = E

[(∑
l

Xl(T )gl(T )
)2]

�
∫
T

g′(t)g(t) dt �
L∑

l=0

‖gl‖2
L2

,

uniformly in gl ∈ Gl, l = 0, . . . , L. By the properties of B-spline basis functions,
‖gl‖2

L2
� |γ l|2/Kl, l = 0, . . . , L. The conclusion then follows by condition (C5).

Lemma A.2. Let G denote the collection of vectors of functions g = (g0, . . . , gL)′

with gl ∈ Gl for l = 0, . . . , L. Then

P

(
sup

g1,g2∈G

|〈g1,g2〉n − 〈g1,g2〉|
‖g1‖‖g2‖

> s

)
≤ C1K

2
n exp

(
−C2

n

Kn

s2

1 + s

)
, s > 0.

Consequently, if limn Kn log Kn/n = 0, then supg∈G |‖g‖2
n/‖g‖2 − 1| = oP (1);

that is,

sup
gl∈Gl,l=0,...,L

∣∣∣∣∣
1
n

∑
i

1
ni

∑
j

(∑
l Xil(tij)gl(tij)

)2

E
(∑

l X(T )gl(T )
)2 − 1

∣∣∣∣∣ = oP (1).

Proof. Let Blk(t) be the (L + 1)-dimensional vector with the (l + 1)th entry
being Blk(t) and all other entries zero. Then Blk(·), k = 1, . . . ,Kl, l = 0, . . . , L,
constitute a basis of G. Note that

〈Blk,Bl′k′〉n =
1
n

∑
i

1
ni

∑
j

[Xil(tij)Blk(tij)Xil′(tij)Bl′k′(tij)].

It follows from condition (C3) and the boundedness of B-spline basis functions
that 〈Blk,Bl′k′〉n is bounded. Moreover, var(〈Blk,Bl′k′〉n) ≤ (1/n2)

∑
i maxj

E[X2
il(tij)B

2
lk(tij)X

2
il′(tij)B

2
l′k′(tij)]. By conditioning on tij and using Condi-

tion (C3), we see that the right-hand side of the inequality is bounded above
by a constant multiple of supl,l′,k,k′ E[B2

lk(tij)B
2
l′k′(tij)] � 1/Kn. Consequently,

var(〈Bjk,Bj′k′〉n) � 1/(nKn). Note that |Bjk(t)| ≤ 1 for all j, k. Applying
Bernstein’s inequality, we obtain that, for some constants C1, C2 and C3,

P (|〈Blk,Bl′k′〉n − 〈Blk,Bl′k′〉| > s) ≤ C1 exp
(
− (ns)2

C2(n/Kn) + C3ns

)
, s > 0.
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Hence, there is an event Ωn with P (Ωc
n) ≤ C4K

2
n exp(−C5(n/Kn)s2/(1 + s))

such that on Ωn, |〈Blk,Bl′k′〉n − 〈Blk,Bl′k′〉n| ≤ s/Kn for all k = 1, . . . ,Kl,
k′ = 1, . . . ,Kl′ and l, l′ = 0, . . . , L.

For g(1),g(2) ∈ G, write g(1) =
∑

l

∑
k γ

(1)
lk Blk and g(2) =

∑
l

∑
k γ

(2)
lk Blk.

Then

|〈g(1),g(2)〉n − 〈g(1),g(2)〉| =
∣∣∣∣∑

l,k

∑
l′,k′

γ
(1)
lk γ

(2)
l′k′(〈Blk,Bl′k′〉n − 〈Blk,Bl′k′〉)

∣∣∣∣.
Let (l′, k′) ∈ A(l, k) if the intersection of the supports of Bl′k′ and Blk contains an
open interval. Then 〈Blk,Bl′k′〉n = 〈Blk,Bl′k′〉 = 0 if (l′, k′) �∈ A(l, k). Moreover,
#{A(l, k)} ≤ C for some constant C for all l, k, and, on Ωn,

|〈g(1),g(2)〉n − 〈g(1),g(2)〉| ≤
∑
l,k

∑
l′,k′

|γ(1)
lk ||γ(2)

l′k′ |
s

Kn
ind{(l, k) ∈ A(l′, k′)}. (A.1)

Applying the Cauchy-Schwarz inequality twice, we see that the right-hand side
of the above display is bounded above by

s

Kn

∑
l,k

|γ(1)
lk |

{∑
l′,k′

|γ(2)
l′k′ |2 ind{(l, k) ∈ A(l′, k′)}

}1/2

C1/2

≤ s

Kn

(∑
l,k

|γ(1)
lk |2

)1/2(∑
l,k

∑
l′,k′

|γ(2)
l′k′ |2 ind{(l, k) ∈ A(l′, k′)}

)1/2

C1/2

≤ s

Kn
C|γ(1)||γ(2)|,

where γ(1) and γ(2) denote respectively the vectors with entries γ
(1)
lk and γ

(2)
lk . It

follows from Lemma A.1 that ‖g(i)‖2 � |γ(i)|2/Kn for i = 1, 2. Hence, on Ωn,
|〈g(1),g(2)〉n−〈g(1),g(2)〉| ≤ Cs‖g(1)‖‖g(2)‖ for some constant C. The conclusions
of the lemma follow.

A.4. Proof of Theorem 1: Consistency

The existence of γ and thus of β̂l, l = 0, . . . , L, follows from (2.2) and the
following Lemma. The consistency of β̂l is a consequence of Theorem 2.

Lemma A.3. There are positive constants M1 and M2 such that, except on an
event whose probability tends to zero, all the eigenvalues of (Kn/n)U′WU fall
between M1 and M2, and consequently, U′WU =

∑
i U

′
iWiUi is invertible.

Proof. Set gγ =
∑

l,k γlkBlk for γ = (γ ′
0, . . . ,γ

′
L)′ with γ l = (γl1, . . . , γlKl

)′.
By Lemmas A.1 and A.2, except on an event whose probability tends to zero,
‖gγ‖2

n � ‖gγ‖2 � |γ|2/Kn. Note that γ ′(U′WU/n)γ = ‖gγ‖2
n. The desired

result follows.
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A.5. Proof of Theorem 2: Rates of convergence

Set Ỹij = Xi(tij)′β(tij), Ỹi = (Ỹi1, . . . , Ỹini)
′, Ỹ = (Ỹi, . . . , Ỹn)′ and

γ̃ =
(∑

i

U′
iWiUi

)−1 ∑
i

U′
iWiỸi. (A.2)

Then E(γ̂) = γ̃ and E(β̂(t)) = β̃(t) = B(t)γ̃, t ∈ T , where the expectation is
taken conditioning on X . By the triangle inequality, |β̂(t)−β(t)| ≤ |β̂(t)−β̃(t)|+
|β̃(t) − β(t)|. In Lemmas A.5 and A.7 we give upper bounds of the L2-norms of
β̂ − β̃ and β̃ − β, respectively, from which Theorem 2 follows.

Lemma A.4. |(U′WU)−1U′Wε|2 = OP ((K2
n/n2)

∑
i{(1/ni) + (1/Kn)(1 −

(1/ni))}).
Proof. Note that

|(U′WU)−1U′Wε|2 =
K2

n

n2
ε′WU

(
Kn

n
U′WU

)−1(Kn

n
U′WU

)−1

U′Wε.

It follows from Lemma A.3 that

|(U′WU)−1U′Wε|2 � K2
n

n2
ε′WUU′Wε =

K2
n

n2

(∑
i

U′
iWiεi

)′(∑
i

U′
iWiεi

)
,

except on an event whose probability tends to zero. Recall that Ui = (Ui1, . . .,
Uini)

′, Wi = diag(1/ni, . . . , 1/ni) and εi = (εi1, . . . , εini)
′. So, U′

iWiεi =
(1/ni)

∑
j Uijεij . Since

Uij = (Xi0(tij)B01(tij) · · ·Xi0(tij)B0k0(tij) · · ·XiL(tij)BL1(tij) · · ·
XiL(tij)BLkL

(tij))′,

we have that |U′
iWiεi|2 = (1/n2

i )
∑

l,k(
∑

j Xil(tij)Blk(tij)εij)2. By conditions
(C3) and (C4), and properties of B-splines, E[X2

il(tij)B
2
lk(tij)ε

2
ij ] ≤ C/Kn, and

E|Xil(tij)Blk(tij)εijXil(tij′)Blk(tij′)εij′ | ≤ CE[Blk(tij)]E[Blk(tij′)]

≤ C
1

K2
n

, j �= j′.

Thus, E(|U′
iWiεi|2) � 1/ni + (1/Kn)(1 − 1/ni). Consequently, E[ε′WUU′Wε]

=
∑

i E(|U′
iWiεi|2) �

∑
i{1/ni + (1/Kn)(1 − 1/ni)}. Hence, ε′WUU′Wε =

OP (
∑

i{1/ni + (1/Kn)(1 − 1/ni)}). The conclusion of the lemma follows.

Lemma A.5. ‖β̂ − β̃‖2
L2

= OP ((Kn/n2)
∑

i{(1/ni) + (1/Kn)(1 − (1/ni))}).

Proof. Since β̂(t) = B(t)γ̂ and β̃(t) = B(t)γ̃, ‖β̂ − β̃‖2
L2

� |γ̂ − γ̃|2/Kn. On
the other hand,

γ̂ − γ̃ =
(∑

i

U′
iWiUi

)−1 ∑
i

U′
iWi(Yi − Ỹi) =

(∑
i

U′
iWiUi

)−1 ∑
i

U′
iWiεi.
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Thus, the result follows from Lemma A.4.

Lemma A.6. If limn Kn log Kn/n = 0, then there is a constant C such that, ex-
cept on an event whose probability tends to zero, supl,k(1/n)

∑
i(1/ni)

∑
j Blk(tij)

≤ (C/Kn).

Proof. Observe that

var
(

1
n

∑
i

1
ni

∑
j

Blk(tij)
)

=
1
n2

∑
i

var
(

1
ni

∑
j

Blk(tij)
)
≤ 1

n
E[Blk(T )] �

1
nKn

.

Using the Bernstain inequality and the argument as in Lemma A.2, we obtain
that

P
(

sup
l,k

∣∣∣ 1
n

∑
i

1
ni

∑
j

Blk(tij)−E[Blk(T )]
∣∣∣> s

Kn

)
≤C1K

2
n exp

(
−C2

n

Kn

s2

1+s

)
, s>0.

Noting that E[Blk(T )] � 1/Kn, the result follows.

Let g∗ = (g∗0 , . . . , g∗L) ∈ G be such that ‖g∗ − β‖∞ = ρn = infg∈G ‖g −β‖∞.
Then there exists γ∗ = (γ∗

0
′, . . . ,γ∗

L
′)′ with γ∗

l = (γ∗
l1, . . . , γ

∗
lKl

)′ such that g∗(t) =
B(t)γ∗ =

∑
l,k γ∗

lkBlk(t). Recall that β̃(t) = B(t)γ̃ where γ̃ is given in (A.2). By
the triangle inequality, |β̃ − β| ≤ |β̃ − g∗| + |g∗ − β|.
Lemma A.7. ‖β̃ − g∗‖L2 = OP (ρn). Consequently, ‖β̃ − β‖L2 = OP (ρn).

Proof. By the properties of B-spline basis functions, ‖β̃ − g∗‖L2 = ‖Bγ̃ −
Bγ∗‖L2 � |γ̃ − γ∗|/

√
Kn. Note that

γ̃ − γ∗ =
(∑

i

U′
iWiUi

)−1 ∑
i

U′
iWiỸi −

(∑
i

U′
iWiUi

)−1 ∑
i

U′
iWiUiγ

∗.

Arguing as in the proof of Lemma A.4, we obtain that

|γ̃ − γ∗|2 � K2
n

n2

∣∣∣∣∑
i

U′
iWi(Ỹi − Uiγ

∗)
∣∣∣∣2

=
K2

n

n2

∑
l,k

(∑
i

1
ni

∑
j

Xil(tij)Blk(tij)(Ỹi − Uiγ
∗)j

)2

.

Since (Ỹi − Uiγ
∗)j = X ′

i(tij)β(tij) − U′
ijγ

∗ = X ′
i(tij)β(tij) − X ′

i(tij)B(tij)γ∗,

it follows from condition (C3) that |(Ỹi − Uiγ
∗)j | � ‖β − g∗‖∞ = ρn. Thus, by

the Cauchy–Schwarz inequality, Lemma A.6 and condition (C3),

|γ̃−γ∗|2 ≤ K2
nρ2

n

∑
l,k

(
1
n

∑
i

1
ni

∑
j

X2
il(tij)Blk(tij)

)(
1
n

∑
i

1
ni

∑
j

Blk(tij)
)
≤Knρ2

n.

The desired result follows.
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A.6. Proof of Theorem 3: Asymptotic normality

Lemma A.8. If limn Kn maxi ni/n = 0, then for any cn whose components are
not all zero, c′n(γ̂ − γ̃)/SD{c′n(γ̂ − γ̃)} −→ N(0, 1) in distribution, where

SD{c′n(γ̂ − γ̃)} = c′n

(∑
i

U′
iWiUi

)−1 ∑
i

U′
iWiViWiUi

(∑
i

U′
iWiUi

)−1

cn.

Proof. Note that c′n(γ̂ − γ̃) =
∑

i c′n(
∑

i U
′
iWiUi)−1U′

iWiεi =
∑

i aiξi, where
a2

i = c′n(
∑

i U
′
iWiUi)−1 U ′

iWiViWiUi(
∑

i U
′
iWiUi)−1cn and, conditioning on

{Xi(t), i = 1, . . . , n}, ξi are independent with mean zero and variance one. It
follows easily by checking Lindeberg condition that if

maxi a
2
i∑

i a
2
i

→P 0, (A.3)

then
∑

i aiξi/
√∑

i a
2
i is asymptotically N(0, 1).

We only need to show that (A.3) holds. Since E[ε2(t)] ≤ C, it follows that,
for θi = (θi1, . . . , θini)

′,

θiViθi = E

[(∑
j

θijεi(tij)
)2]

≤ |θi|2
∑
j

E[ε2
i (tij)] ≤ Cni|θi|2.

Hence, for any λ = (λ1, . . . ,λL)′ with λl = (λl1, . . . , λl,Kl
)′,

λ′U′
iWiViWiUiλ � niλ

′U′
iWiWiUiλ =

1
ni

∑
j

λ′UijU′
ijλ

=
1
ni

∑
j

(∑
l

Xil(tij)gλ,l(tij)
)2

,

where gλ,l(t) =
∑

k λlkBlk(t) for l = 0, . . . , L. Observe that

(∑
l

Xil(tij)gλ,l(tij)
)2

≤
∑

l

X2
il(tij)

∑
l

g2
λ,l

(tij) �
∑

l

‖gλ,l‖
2
∞

� Kn

∑
l

‖gλ,l‖
2 � |λ|2.

Consequently,
λ′U′

iWiViWiUiλ � |λ|2. (A.4)

Under condition (C6), we have that Vi = σ2Ii + Ṽi, where Ii is the ni × ni

identity matrix and Ṽi is the ni×ni matrix with (j, j′) entry E[ε(2)(tij)ε(2)(tij′)].
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Note that Ṽi is nonnegative definite,

λ′
(∑

i

U′
iWiViWiUi

)
λ ≥ σ2λ′

(∑
i

U′
iWiWiUi

)
λ

= nσ2
{

1
n

∑
i

1
n2

i

∑
j

(∑
l

Xil(tij)gλ,l(tij)
)2}

≥ σ2 min
i

n

ni
‖gλ‖2

n,

where gλ = (gλ,0, . . . , gλ,L)′. By Lemmas A.1 and A.2, there is an event Ωn

with P (Ωn) → 1 such that on Ωn, ‖gλ‖2
n � ‖gλ‖2 � |λ|2/Kn. Thus, on Ωn,

λ′
(∑

i

U′
iWiViWiUi

)
λ �

n

maxi ni

1
Kn

|λ|2. (A.5)

Combining (A.4) and (A.5), we obtain that

maxi λ
′U′

iWiViWiUiλ

λ′
(∑

i

U′
iWiViWiUi

)
λ

� max
i

ni
Kn

n
,

except on an event whose probability tends to zero. Hence (A.3) follows from the
requirement that limn Kn maxi ni/n = 0. The proof of Lemma A.8 is complete.

A.7. Proof of Theorem 4: Bound in L∞-norm of the bias term

The proof of Theorem 4 is broken up into three lemmas: Lemmas A.9−A.11.
Note the following identity

γ̃ − γ∗ = Kn

(
Kn

n

∑
i

U′
iWiUi

)−1 1
n

∑
i

U′
iWi(Ỹi − Uiγ

∗). (A.6)

Lemma A.9. There is an absolute constant C that does not depend on n such
that ∥∥∥∥(

Kn

n

∑
i

U′
iWiUi

)−1∥∥∥∥
∞

≤ C,

except on an event whose probability tends to zero as n → ∞.

Proof. We use the following result of Demko (1977). If A is a symmetric
matrix such that As has no more than Ms nonzero entries in each row for ev-
ery positive integer s, then ‖A−1‖∞ ≤ 33

√
M‖A−1‖5/4

2 ‖A‖1/4
2 ; here ‖A‖2 =

(supu{|Au|/|u|})1/2 is a matrix norm.
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Set A = (Kn/n)
∑

i U
′
iWiUi. It follows from Lemma A.3 that both ‖A‖2

and ‖A−1‖2 are bounded. We say that two B-splines Blk and Bl′k′ overlap if
the collection of t such that Blk(t)Bl′k′(t) �= 0 contains an open interval. Since∑

i U
′
iWiUi =

∑
i(1/ni)

∑
j UijU′

ij , the (lk, l′k′)-element of A is (Kn/n)
∑

i(1/ni)∑
j Xil(tij)Blk(tij)Xil′(tij)Bl′k′(tij), which is non-zero only when Blk and Bl′k′

overlap. Fix any positive integer s. The (lk, l′k′)-element of As is non-zero only
when there is a sequence of B-splines B(0) = Blk, B

(1), . . . , B(s−1), B(s) = Bl′k′

(not necessarily different) chosen from {Blk, k = 1, . . . ,Kl, l = 0, . . . , L} such
that B(i) and B(i+1) overlap for i = 0, . . . , s − 1. Hence, it follows from the
properties of B-splines that there is a positive constant M such that the number
of non-zero elements in each row of As is bounded above by Ms for every s. The
desired result now follows from the cited result of Demko.

Lemma A.10. |(1/n)
∑

i U
′
iWi(Ỹi −Uiγ

∗)|∞ = OP (ρn/Kn).

Proof. Observe that
∑

i U
′
iWi(Ỹi − Uiγ

∗) =
∑

i(1/ni)
∑

j Uij(Ỹi − Uiγ
∗)j.

Since U′
ij = X ′

i(tij)B(tij),∣∣∣∣ 1n ∑
i

U′
iWi(Ỹi − Uiγ

∗)
∣∣∣∣
∞

≤ max
l,k

∣∣∣∣ 1n ∑
i

1
ni

∑
j

Xil(tij)Blk(tij)(Ỹi − Uiγ
∗)j

∣∣∣∣
≤ max

l
sup

t
|Xil(t)|max

j
|(Ỹi − Uiγ

∗)j |max
l,k

(
1
n

∑
i

1
ni

∑
j

Blk(tij)
)

.

From the proof of Lemma A.7, maxj |(Ỹi − Uiγ
∗)j | = OP (ρn). The conclusion

then follows from Condition (C3) and Lemma A.6.

Lemma A.11. |γ̃ − γ∗|∞ = OP (ρn). Consequently, ‖β̂ − β‖∞ = OP (ρn).

Proof. It follows from (A.6), Lemmas A.9 and A.10 that |γ̂−γ∗|∞ = OP (ρn). By
properties of B-splines, ‖β̃−g∗‖∞=maxl supt |

∑
k(γ̃lk−γ∗

lk)Blk(t)|≤maxl supt

∑
k

Blk(t)|γ̃ − γ∗|∞ � |γ̃ − γ∗|∞. Thus, by the triangle inequality, ‖β̃ − β‖∞ ≤
‖β̃ − g∗‖∞ + ‖g∗ − β‖∞ = OP (ρn).

A.8. Proof of Corollary 1

It follows from (A.5), Lemma A.3, and the properties of B-splines that

var(β̂l(t))

= e′l+1B(t)
(∑

i

U′
iWiUi

)−1(∑
i

U′
iWiViWiUi

)(∑
i

U′
iWiUi

)−1

B′(t)el+1

�
Kn

n maxi ni

Kl∑
k=1

B2
lk(t) �

Kn

n maxi ni
.

On the other hand, ρn � K−2
n . The conclusion thus follows from Theorem 4.
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A.9. Technical supplement for deterministic observation times

The main argument can be modified to handle the case when the observation
times {tij} are deterministic. For g(1)(t) = (g(1)

0 (t), . . . , g(1)
L (t))′ and g(2)(t) =

(g(2)
0 (t), . . . , g(2)

L (t))′, redefine the theoretical inner product as

〈g(1),g(2)〉 =
1
n

∑
i

1
ni

∑
j

E

[(∑
l

Xil(tij)g
(1)
l (tij)

)(∑
l

Xil(tij)g
(2)
l (tij)

)]

=
1
n

∑
i

1
ni

∑
j

g(1)′(tij)E[X(tij)X ′(tij)]g(2)(tij).

Lemma A.1 now follows from Condition (C2) and (3.1). In fact, for g = (g0, . . .,
gL)′,

‖g‖2 � 1
n

∑
i

1
ni

∑
j

g′(tij)g(tij) =
1
n

∑
i

1
ni

∑
j

∑
l

g2
l (tij) �

L∑
l=0

‖gl‖2
L2

.

Lemma A.6 is also a consequence of (3.1).

A.10. Proof of the claim in Remark 3.1

Integrating by parts and using the fact Fn(1) − FT (1) = Fn(0) − FT (0) = 1,
we obtain that∫

T
g2(t) dFn(t) −

∫
T

g2 dFT (t) = −
∫
T
[Fn(t) − FT (t)]g(t)g′(t) dt, g ∈ Gl.

Note that ‖g′‖L2 � Kn‖g‖L2 by Theorem 5.1.2 of DeVore and Lorentz 1993.
Thus, ∣∣∣∣∫T g2(t) dFn(t) −

∫
T

g2 dFT (t)
∣∣∣∣ ≤ sup

t∈T
|Fn(t) − FT (t)|‖g‖L2‖g′‖L2

� o(1/Kn)Kn‖g‖2
L2

= o(‖g‖2
L2

).

On the other hand, since the density fT (t) of FT is bounded away from 0 and
infinity uniformly over t ∈ T ,

∫
T g2 dFT (t) � ‖g‖2

L2
, uniformly in g ∈ Gl, l =

0, . . . , L. Consequently, there are constants M1 and M2 such that

M1‖g‖2
L2

≤ 1
n

∑
i

1
ni

∑
j

g2(tij)=
∫
T

g2(t)dFn(t)≤M2‖g‖2
L2

, g∈Gl, l=0, . . . , L.
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