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Abstract: A simple class of stopping rules is introduced for time-sequential rank

tests to compare time to failure between two treatment groups, such as in the case

of a clinical trial in which patients enter serially and in which interim analyses of

the data are performed periodically so that the trial may be stopped early when one

treatment is found to be significantly better than the other. These time-sequential

rank tests are shown to achieve both savings in study duration and increase in

power over their nonsequential counterparts, and provide a simple but statistically

efficient method to circumvent the difficulty of “calendar time” versus “information

time” in the design of group sequential trials with failure-time endpoints.
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1. Introduction

In many chinical trials a primary objective is to compare time to failure be-
tween two treatment groupsX and Y . Suppose that the failure times X1, . . . ,Xn′

are independent having a common distribution function F and the failure times
Y1, . . . , Yn′′ are independent having a common distribution function G. Let
n = n′ + n′′. To test the null hypothesis H0 : F = G or H ′

0 : F ≤ G, a
commonly used method is to evaluate the ranks Ri of Xi(i = 1, . . . , n′) in the
combined sample X1, . . . ,Xn′ , Y1, . . . , Yn′′ and to use rank statistics of the form
�n =

∑n′
i=1 ϕ(Ri/n), where ϕ : (0, 1] → (−∞,∞). However, because of with-

drawal from the study and the need to terminate the trial by some scheduled
date, the Xi and Yj may be censored and one cannot compute �n in these situa-
tions. As noted in Gu, Lai and Lan (1991), a natural extension of �n to censored
data is the censored rank statistic of the form

Sn =
K∑

k=1

ψ(Hn(Z(k)))(zk −mk/#k), (1.1)

where Z(1) ≤ · · · ≤ Z(K) denote the ordered uncensored observations in the
combined sample, zk = 1 if Z(k) is an X and zk = 0 if Z(k) is a Y , #k (resp. mk)
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denotes the number of observations (resp. X’s) in the combined sample that are
≥ Z(k),Hn is the Kaplan-Meier curve (or an asymptotically equivalent variant
thereof) based on the combined sample, and ψ is related to ϕ by the relation

ψ(u) = ϕ(u) − (1 − u)−1
∫ 1

u
ϕ(t)dt, 0 < u < 1. (1.2)

Taking ψ(u) = (1 − u)ρ (ρ ≥ 0) yields the Gρ statistics proposed by Harrington
and Fleming (1982). The case ρ = 0 corresponds to Mantel’s (1966) logrank
statistic and the case ρ = 1 corresponds to the generalization of Wilcoxon’s
statistic by Peto and Peto (1972) and Prentice (1978).

In typical clinical trials, patients enter the study serially and are then fol-
lowed until they fail or withdraw from the study, or until the study is terminated.
The trial is typically scheduled to end by a certain time t∗ and there are also
periodic reviews of the data prior to t∗. If significant differences between the
treatment groups are found from an interim analysis, a decision might be made
to terminate the trial before t∗. Since the response of interest is time to failure
and since patients usually do not enter the study at the same time, this means
that there are two time scales to be considered, namely, calendar time t as mea-
sured from the time the study starts and age time s as measured for each patient
from the time he enters the study. Hence the censored rank statistic (1.1) now
depends on the calendar time t at which it is evaluated and we shall denote it
by Sn(t), whose precise definition will be given in Section 2.

Assuming a Lehmann (proportional hazards) family of the form 1 −G(s) =
(1−F (s))1−θ, Jones and Whitehead (1979) considered the use of time-sequential
logrank statistics Sn(t) to test sequentially over time the one-sided null hypothesis
H ′

0 : θ ≤ 0. They suggested plotting Sn(t) versus Vn(t), where Vn(t) is Mantel’s
(1966) estimate of the variance of Sn(t) under F = G. They argued heuristically
that {(Vn(t), Sn(t)), t ≥ 0} should behave approximately like {(v,W (v)), v ≥ 0},
where W (v) is the standard Wiener process under θ = 0 and is a Wiener pro-
cess with drift coefficient depending on θ under alternatives θ near 0. Using this
Wiener process approximation, they suggested replacing (v,W (v)) in a sequential
test for the sign of the drift of a Wiener process by (Vn(t), Sn(t)) to construct a
corresponding sequential logrank test of H ′

0, and considered in particular the case
where the sequential test based on (v,W (v)) is a sequential probability ratio test
(SPRT). Assuming i.i.d. arrival times and withdrawal times, Tsiatis (1981) es-
tablished the asymptotic normality of (Sn(t1)/

√
n, . . . , Sn(tk)/

√
n) under F = G

for any k ≥ 1 and t1, . . . , tk, and Sellke and Siegmund (1983) established weak
convergence of {Sn(t)/

√
n, t ≥ 0} to a zero-mean Gaussian process with inde-

pendent increments under F = G and general arrival and withdrawal patterns,
thus providing a rigorous asymptotic justification of the heuristics of Jones and
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Whitehead (1979) under H0 : θ = 0. Gu and Lai (1991) later showed that
{(Vn(t)/n, Sn(t)/

√
n), t ≥ 0} converges weakly to {(v,W (v)), v ≥ 0} under con-

tiguous proportional hazards alternatives, where W (v) is a Wiener process with
EW (v)/v = c, thus giving a rigorous asymptotic justification of the heuristics of
Jones and Whitehead under H1 : θ = c/

√
n.

Since interim analyses of the data are performed only at a few calendar
times instead of continuously as in the SPRT of the drift of a continuous-time
Wiener process, direct use of the type I error probability of the Wiener process
SPRT as an approximation to that of the corresponding time-sequential logrank
test performed at periodic reviews of the data is overly conservative. There is
an extensive literature, commonly referred to as “group sequential methods”,
that addresses the adjustments needed when the data are analyzed in successive
“groups” (and therefore not in a fully sequential manner as in classical sequen-
tial analysis). As pointed out above, there are two time scales in the present
context of sequential monitoring of censored survival data with staggered entry,
namely, calendar time t and age time s. This introduces considerable difficulties
in the development of group sequential tesets for such data (cf. Lan and DeMets
(1983, 1989)). In Section 2 we give a brief review of the literature and provide
a comprehensive methodology for determining stopping boundaries, with good
statistical properties, of group sequential censored rank tests.

This methodology is applicable not only to the logrank statistics but also
to general score functions ψ in (1.1). It will be shown in Section 3 that the
methodology is also applicable to more complex situations where adjustments
for prognostic factors have to be made for meaningful comparison of the two
treatments. Section 4 presents some simulation results on the performance of
these time-sequential censored rank tests, showing that they can achieve both
savings in study duration and increase in power over nonsequential censored rank
tests (without interim analysis). Making use of the asymptotic theory of time-
sequential censored rank statistics developed in Gu and Lai (1991), a theoretical
explanation of the savings found in these simulation studies is also given.

2. A Class of Repeated Significance Tests with Censored Rank Statis-
tics

Suppose a clinical trial involves n = n′+n′′ patients with n′ of them assigned
to treatment X and n′′ assigned to treatment Y . Let T ′

i ≥ 0 denote the entry
time and Xi > 0 the survival time (or time to failure) after entry of the ith
subject in treatment group X and let T ′′

j and Yj denote the entry time and
survival time after entry of the jth subject in treatment group Y . The subjects
are followed until they fail or withdraw from the study or until the study is
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terminated. Let ξ′i(ξ′′j ) denote the time to withdrawal, possibly infinite, of the
ith (jth) subject in the treatment group X(Y ). Thus the data at calendar time
t consist of (Xi(t), δ′i(t)), i = 1, . . . , n′, and (Yj(t), δ′′j (t)), j = 1, . . . , n′′, where

Xi(t) = min(Xi, ξ
′
i, (t− T ′

i )
+), Yj(t) = min(Yj , ξ

′′
j , (t− T ′′

j )+),

δ′i(t) = I(Xi(t) = Xi), δ′′j (t) = I(Yj(t) = Yj), (2.1)

where a+ is the positive part of number a. At a given calendar time, on the basis
of the observed data (2.1) from the two treatment groups, one can compute the
rank statistic (1.1) which can be expressed in the present notation as

Sn(t) =
n′∑

i=1

δ′i(t)ψ(Hn,t(Xi(t))
{
1 − m′

n,t(Xi(t))
m′

n,t(Xi(t)) +m′′
n,t(Xi(t))

}

−
n′′∑
j=1

δ′′j (t)ψ(Hn,t(Yj(t)))
m′

n,t(Yj(t))
m′

n,t(Yj(t)) +m′′
n,t(Yj(t))

, (2.2)

where ψ is a nonrandom function on [0, 1] and

m′
n,t(s) =

n′∑
i=1

I(Xi(t) ≥ s), m′′
n,t(s) =

n′′∑
j=1

I(Yj(t) ≥ s), (2.3)

N ′
n,t(s) =

n′∑
i=1

I(Xi≤ξ′i ∧ (t− T ′
i )

+ ∧ s),

N ′′
n,t =

n∑
j=1

I(Yj ≤ξ′′j ∧ (t− T ′′
j )+ ∧ s), (2.4)

1 −Hn,t(s) =
∏
u<s

{
1 − ∆N ′

n,t(u) + ∆N ′′
n,t(u)

m′
n,t(u) +m′′

n,t(u)

}
, (2.5)

where we use the convention 0/0 = 0, ∆N ′
n,t(s) = N ′

n,t(s)−N ′
n,t(s−), N ′

n,t(s−) =
limu→s−N ′

n,t(u), and use ∧ to denote minimum.

2.1. Weak convergence of time-sequential censored rank statistics

Suppose that ψ is continuous and has bounded variation on [0, 1] and that
the limits

b′(t, s) = lim
m→∞m−1

m∑
i=1

P{ξ′i ≥ s, t− T ′
i ≥ s},

b′′(t, s) = lim
m→∞m−1

m∑
j=1

P{ξ′′j ≥ s, t− T ′′
j ≥ s} (2.6)
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exist and are continuous in 0 ≤ s ≤ t. Moreover, assume that

n′/n → γ as n(= n′ + n′′) → ∞ with 0 < γ < 1. (2.7)

Suppose that F and G are continuous and let ΛF = − log(1 − F ) and ΛG =
− log(1 −G) denote their cumulative hazard functions. Let

µn(t) =
∫ t

0
ψ(Hn,t(s))

m′
n,t(s)m

′′
n,t(s)

m′
n,t(s) +m′′

n,t(s)
(dΛF (s) − dΛG(s)).

Note that µn(t) = 0 if F = G. Then Theorem 2 and Example 2 of Gu and Lai
(1991) give the following results for every t∗ > 0:

(i) For fixed F and G, {n−1/2(Sn(t) − µn(t)), 0 ≤ t ≤ t∗} converges weakly in
D[0, t∗] to a zero-mean Gaussian process and n−1µn(t) converges in proba-
bility as n→ ∞.

(ii) Let {Z(t), 0 ≤ t ≤ t∗} denote the zero-mean Gaussian process in (i) when
F = G. This Gaussian process has independent increments and

Var(Z(t)) = γ(1 − γ)
∫ t

0

ψ2(F (s))b′(t, s)b′′(t, s)
γb′(t, s) + (1 − γ)b′′(t, s)

dF (s). (2.8)

(iii) For fixed F (and therefore ΛF also), suppose that as n → ∞, G → F

such that
∫ t∗
0 |dΛG/dΛF − 1|dΛF = O(n−1/2) and

√
n
(
dΛG/dΛF (s)− 1

)
→

g(s) as n → ∞, uniformly in s ∈ I and sups∈I |g(s)| < ∞ for all closed
subintervals I of {s ∈ [0, t∗] : F (s) < 1}. Then {n−1/2Sn(t), 0 ≤ t ≤ t∗}
converges weakly in D[0, t∗] to {Z(t) + µ(t), 0 ≤ t ≤ t∗}, where Z(t) is the
same Gaussian process as that in (ii) and

µ(t) = −γ(1 − γ)
∫ t

0

ψ(F (u))g(u)b′(t, u)b′′(t, u)
γb′(t, u) + (1 − γ)b′′(t, u)

dF (u). (2.9)

From (ii) and (iii), the limiting Gaussian process of {n−1/2Sn(t), t ≥ 0} has
independent increments under H0 : F = G and under contiguous alternatives.
Two commonly used estimates Vn(t) of the variance of Sn(t) under H0 are

Vn(t) =
∫ t

0

ψ2(Hn,t(s))m′
n,t(s)m′′

n,t(s)
(m′

n,t(s) +m′′
n,t(s))2

d(N ′
n,t(s) +N ′′

n,t(s)), (2.10a)

or

Vn(t) =
∫ t

0

ψ2(Hn,t(s))
(m′

n,t(s) +m′′
n,t(s))2

{(m′′
n,t(s))

2dN ′
n,t(s) + (m′

n,t(s))
2dN ′′

n,t(s)}.
(2.10b)
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As a compromise between these two choices, Gu and Lai (1991), page 1421, also
considered

Vn(t) = {(2.10a) + (2.10b)}/2. (2.10c)

For all three estimates, n−1Vn(t) converges in probability to (2.8) under H0

and under contiguous alternatives. Hence, letting v = n−1Vn(t) and W (v) =
n−1/2Sn(t), we can regard W (v), v ≥ 0, as the standard Wiener process under
H0. Moreover, if ψ is a scalar multiple of the asymptotically optimal score
function, then we can also regard W (v), v ≥ 0, as a Wiener process with some
drift coefficient under contiguous alternatives.

2.2. Choice of stopping boundaries in time-sequential rank tests

Let 0 < t1 < · · · < tk = t∗ be prespecified times for periodic reviews of
the data. To test H0 : F = G with the time-sequential rank statistics Sn(ti),
Slud and Wei (1982) introduced the following simple approach. First choose
positive numbers α1, . . . , αk such that

∑k
1 αi = α (= the overall significance

level). Then use the multivariate normal approximation to the null distribution
of (Sn(ti)/V

1/2
n (ti))1≤i≤k to determine d1, . . . , dk recursively by

PH0{|Sn(tj)|/V 1/2
n (tj)≥dj and |Sn(ti)|/V 1/2

n (ti)<di for all i<j}=αj . (2.11)

With the dj thus determined, the Slud-Wei repeated significance test rejects H0

whenever |Sn(tj)| ≥ djV
1/2
n (tj) (1 ≤ j ≤ k) and stops the trial at the first tj this

occurs (or at t∗ if this does not occur for 1 ≤ j ≤ k).
The Slud-Wei method does not provide practical guidelines concerning how

the αj in (2.11) should be chosen. Lan and DeMets (1983) and Lan et al. (1984)
proposed to derive the αj from the so-called “use function”, which specifies how
fast we can spend the Type I error α over time. To begin with, let {W (v), 0 ≤
v ≤ 1} be the standard Wiener process and consider the stopping rule T =
inf{v ∈ [0, 1] : |W (v)| ≥ h(v)}(inf ∅ = ∞), where h is a positive function on [0, 1]
such that P{T = 0} = 0 and P{T ≤ 1} = α. The use function is A(v) = P{T ≤
v}, 0 ≤ v ≤ 1. Taking v to represent the proportion of information accumulated
at time t, A(v) can be interpreted as the amount of Type I error spent up to time
t, with A(0) = 0 and A(1) = α. In particular, suppose that instead of survival
data one has immediate responses from the patients who enter the study serially
and are randomized to either treatment, with a target sample size of n at the
scheduled end of the trial. Lan and DeMets (1989) call such trials “maximum
information trials”. Here the proportion of information accumulated at time ti
of interim analysis is vi = ni/n, where ni is the total number of patients available
at ti. Hence Lan and DeMets (1983) proposed to choose αj = A(vj) − A(vj−1)
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in (2.11). For the time-sequential rank statistics (2.2) in what Lan and DeMets
(1989) call “maximum duration trials”, the asymptotic null variance of Sn(ti) is
no longer proportional to the sample size ni at ti and a natural analogue of ni/n

here is Vn(ti)/Vn(t∗).
Siegmund (1985), pages 129-131, proposed an alternative approach for lo-

grank statistics, which can be readily extended to more general time-sequential
rank statistics (2.2) as follows. Let {W (v), v ≥ 0} be a Wiener process with drift
coefficient θ. Let 0 ≤ v0 < v1 and divide [v0, v1] into k− 1 equally spaced subin-
tervals, with endpoints v0 = v(1) < · · · < v(k) = v1. Letting I = {v(1), . . . , v(k)},
Siegmund considered Haybittle’s (1971) repeated significance test of H : θ = 0,
with stopping rule τ = min(v1, inf{v ∈ I : |W (v)| ≥ b

√
v}) and terminal decision

rule that rejects H if τ < v1 and if |W (v1)| ≥ c
√
v1 in the case τ = v1, where

0 < c ≤ b are such that PH{Reject H} = α. Since (n−1Vn(t), n−1/2Sn(t)) can
be approximated by (v,W (v)) under H0 : F = G, he proposed a corresponding
repeated significance test that rejects H0 whenever

|Sn(ti)| ≥ bV 1/2
n (ti) and v0 ≤ Vn(ti) < v1, for 1 ≤ i ≤ k − 1, (2.12)

or |Sn(ti)| ≥ cV 1/2
n (ti) andVn(ti)≥v1, for 1≤ i ≤ k − 1, or |Sn(tk)| ≥ cV 1/2

n (tk).

Thus, the test may be terminated at time tN prior to t∗, where

N = min{i ≤ k − 1 : Vn(ti) ≥ v1, or v0 ≤ Vn(ti) < v1 and |Sn(ti)| ≥ bV 1/2
n (ti)},

setting N = k if the above set is empty. In the case of logrank statistics, the null
variance of Sn(t) is approximately 1/4 times the expected number of failures up
to time t, and Siegmund suggested using this together with the prior information
about accrual and failure rates that one uses in the design of the clinical trial
to come up with 1/4 times the expected number of failures at t∗ as the value
of v1 in (2.12). For the more general rank statistics (2.2), given F (= G) and
the distributions of (T ′

i , ξ
′
i) and (T ′′

j , ξ
′′
j ), we can use Monte Carlo simulations to

evaluate the null variance of Sn(t∗). In particular, at the design stage we can use
prior information about these quantities to find by simulation the value of v1 in
Siegmund’s repeated significance test (2.12); see Gu and Lai (1995) for details.

The assumption of a set of evenly spaced “information times” v(1), . . . , v(k)

at which interim analyses of the data are performed in Siegmund’s approach is
usually not satisfied in practice. We can circumvent this difficulty by modify-
ing his approach with a “use function” technique. To begin with, consider the
continuous-time repeated significance test of H : θ = 0, with stopping rule

τ∗ = min(v1, inf{v ≥ v0 : |W (v)| ≥ b
√
v}) (2.13)
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and terminal decision rule that rejects H if

either τ∗ < v1, or τ∗ = v1 and |W (v1)| ≥ c
√
v1, (2.14)

where 0 < c ≤ b are such that PH{Reject H} = α. The use function of this
continuous-time Haybittle-type test is defined by

A(v1) = α, A(v) = PH{τ∗ ≤ v} for v0 ≤ v < v1, and A(v) = 0 if v < v0. (2.15)

An eigenfunction expansion of A(v) has been given by DeLong (1981), who also
tabulates A(v) for a range of values of b and v/v0. Letting φ and Φ denote the
standard normal density and distribution functions, Theorem 4.2.1 of Siegmund
(1985) gives the approximation

A(v) .= (b− b−1)φ(b) log(v/v0) + 4b−1φ(b) for v0 < v < v1. (2.16)

Moreover, A(v0) = 2(1−Φ(b)) and Eq. (4.18) of Siegmund gives the approxima-
tion

A(v1) = PH{|W (v1)| ≥ c
√
v1} + P{|W (v1)| < c

√
v1, τ

∗ < v1}
.= 2(1 − Φ(c)) + bφ(b) log(v1c2/v0b2)I(v1c2 > v0b

2).
(2.17)

The approximations (2.16) and (2.17) are derived as asymptotic expansions as
b→ ∞, c → ∞ and v0 → ∞ such that b/

√
v0 → k0, b/

√
v → k(v), b/

√
v1 → k1

and c/
√
v1 → k′1, where k0, k1, k

′
1 and k(v) are constants. Table 4.1 of Siegmund

(1985) gives numerical results showing the adequacy of these approximations
when (v − v0)/v0 in (2.16) and b are not too small.

In applying (2.15) as a use function to modify Siegmund’s repeated signifi-
cance test (2.12) for the rank statistics (2.2), v1 represents an a priori estimate
of the null variance of Sn(t∗) and we take v0 = εv1 with 0 < ε < 1 to represent
some minimal information in the data before interim analysis should be tried.
Note that although (2.8) is nondecreasing in t, its estimate Vn(t) may fail to
be monotone. To get around this difficulty we redefine Vn(ti) to be Vn(ti−1) if
Vn(ti) < V (ti−1). For 1 ≤ i ≤ k − 1, define αi = A(v1 ∧ Vn(ti)) − A(Vn(ti−1))
if Vn(ti) ≥ v0, setting t0 = 0 = Vn(0), and define αi = 0 if Vn(ti) < v0. More-
over, define αk = α − A(Vn(tk−1)). Note that αi = 0 is equivalent to skipping
interim testing at time ti. With αi thus chosen, define the stopping boundary
{dj : 1 ≤ j ≤ k} by (2.11) in which αj = 0 corresponds to dj = ∞.

2.3. A refinement of the Haybittle-Peto repeated significance test

Let Z1, Z2, . . . be i.i.d. normal random variables with unknown mean θ and
known variance 1. To test H : θ = 0 at level α, the Neyman-Pearson test rejects
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H if |∑k
1 Zi| ≥ zα

√
k, where 1 − Φ(zα) = α. Sample size calculations in clinical

trial applications typically assume an alternative θ of particular interest and find
the k that attains some given power 1−β at θ. The basic idea behind Haybittle’s
(1971) repeated significance test is to keep k and α as the maximum sample size
and significance level but to allow for early stopping when the data are monitored
sequentially, at the expense of some minor loss in power at θ. This leads to the
stopping rule τb = min(k, inf{n ≥ 1 : |∑n

i=1 Zi| ≥ b
√
n}) and terminal decision

rule that rejects H if τb < k or if τb = k and |∑k
i=1 Zi| ≥ c

√
k. Since we require

the loss in power at θ to be small relative to the fixed sample size test and also
require the maximum sample size to be the same as the fixed sample size k, it is
clear that c has to be near zα, implying that P0(τb < k) is small in comparison
with α. In particular, the Peto-type methods in the field of clinical trials use
some relatively large value of b, such as 3, and conventional critical values of
c for the final test when the number k of interim analyses is small. Although
no precise Tpye I error is guaranteed in these methods, we can use a simple and
flexible procedure described below to determine b and c to guarantee a prescribed
Type I error.

The fact that P0(τb < k) is typically small relative to α (or equivalently
that most of the Type I error is to be spent at the terminal data t∗) suggests
that using an elaborate Lan-DeMets boundary determination procedure would
not lead to substantial improvement over the simple procedure that uses a fixed
threshold b for |Sn(ti)|/V 1/2

n (ti) with ti < t∗. We therefore propose using the
following simple repeated significance testing procedure involving a maximum of
k significance tests. First determine b such that P0(τb < k) = εα, where 0 < ε < 1
is small and τb is the stopping rule for the Zi defined above. The approximation
formula (4.40) for P0(τb < k) and Table 4.2 in Siegmund (1985) are useful for
this choice of b that ensures P0(τb < k) to be a small fraction of α.

With b thus chosen, the proposed repeated significance test stops the trial
and rejects H0 at ti < t∗ if |Sn(ti)| ≥ bV 1/2(ti). If the trial proceeds to the
terminal date t∗, the test rejects H0 if |Sn(t∗)| ≥ cV

1/2
n (t∗), where c is so chosen

that

P{|W (Vn(tk))| ≥ cV 1/2
n (tk) or |W (Vn(ti))| ≥ bV 1/2

n (ti)

for some i < k|Vn(t1), . . . , Vn(tk)} = α, (2.18)

in which tk = t∗ and {W (v), v ≥ 0} is a standard Wiener process independent
of {(Xi, ξ

′
i, T

′
i , Yi, ξ

′′
i , T ′′

i ), i ≥ 1}. Letting aj = Vn(tj) and dk = c, dj = b for
1 ≤ j ≤ k− 1, the probability (2.18) can be written as a sum of the probabilities
P{|W (aj)| ≥ dj

√
aj and |W (ai)| < di

√
ai for all i < j}, which can be com-

puted by the recursive numerical integration algorithm of Armitage, McPherson
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and Rowe (1969). This procedure is much more convenient than the use func-
tion approach at the end of Section 2.2 and has the important advantage of not
requiring prior specification of v0 and v1, which are needed in Siegmund’s proce-
dure and its use-function modification. Note that the choice of c in (2.18) is not
predetermined at the beginning of the trial but depends on the actual values of
Vn(t1), . . . , Vn(tk), allowing great flexibility in how information accumulates at
different times of interim analyses.

3. Adjustments for Concomitant Variables

It is widely recognized that tests of treatment effects based on the rank
statistics (1.1) may lose substantial power when the effects of other covariates
are strong. A commonly used method to remedy this when logrank statistics are
used is to assume the proportional hazards regression model and to use Cox’s
partial likelihood approach to adjust for other covariates. Tsiatis, Rosner and
Tritchler (1985) and Gu and Ying (1995) have proposed group sequential tests
using proportional hazards regression to adjust for other covariates in testing
whether there are treatment differences on survival.

Instead of the proportional hazards model, we assume the traditional regres-
sion model that h(Xi) − βTU′

i are i.i.d. with distribution function F and that
h(Yj) − βTU′′

j are i.i.d. with distribution function G, where h is a known func-
tion, β is an unknown parameter and U′

i,U
′′
j represent the covariates. Assuming

the null hypothesis H0 : F = G, β can be estimated from the combined sample
(2.1) by using rank estimators or M -estimators β̂n,t that are

√
n-consistent under

(2.6), (2.7) and certain assumptions on F (= G) and the covariates U′
i,U

′′
j (cf.

Lai and Ying (1991, 1994)). Letting

Xi,t(b) = h(Xi(t)) − bTU′
i, Yj,t(b) = h(Yj(t)) − bTU′′

j , (3.1)

modify (2.2)–(2.5) as follows:

m′
n,t,b(s) =

n′∑
i=1

I{Xi,t(b) ≥ s}, m′′
n,t,b(s) =

n′′∑
j=1

I{Yj,t(b) ≥ s},

N ′
n,t,b(s) =

n′∑
i=1

I{Xi,t(b) ≤ s, δ′i(t) = 1},

N ′′
n,t,b(s) =

n′′∑
j=1

I{Yj,t(b) ≤ s, δ′′j (t) = 1},

1 −Hn,t,b(s) =
∏
u<s

{
1 − ∆N ′

n,t,b(u) + ∆N ′′
n,t,b(u)

m′
n,t,b(u) +m′′

n,t,b(u)

}
,
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Sn(t; b) =
n′∑

i=1

δ′i(t)ψ(Hn,t,b(Xi,t(b)))
{
1 − m′

n,t,b(Xi,t(b))
m′

n,t,b(Xi,t(b)) +m′′
n,t,b(Xi,t(b))

}

−
n′′∑
j=1

δ′′j (t)ψ(Hn,t,b(Yj,t(b)))
m′

n,t,b(Yj,t(b))
m′

n,t,b(Yj,t(b)) +m′′
n,t,b(Yj,t(b))

.

From Theorem 1(ii) of Lai and Ying (1991) and the fact that a patient is
randomly assigned to treatment X or Y independently of the patient’s covariates,
it follows that for every d > 0, Sn(t; b) = Sn(t;β)+op(

√
n) uniformly in |b−β| ≤

d/
√
n (cf. Lin (1992), Appendix). Since {Sn(t;β), 0 ≤ t ≤ t∗} converges weakly

to a Gaussian process with independent increments under H0, it follows that we
can apply the same repeated significance tests as those in Section 2 to the rank
statistics Sn(t) := Sn(t; β̂n,t). The estimates Vn(t) are the same as those in (2.10)
but with H

n,t,β̂n
replacing Hn,t, etc.

For the case h(x) = log x and using the Slud-Wei (1982) method to con-
struct stopping boundaries, Lin (1992) used rank estimates β̂n,t to estimate β
in the construction of repeated significance tests. In particular, he applied the
time-sequential logrank test (ψ = 1) to interim analysis of data from a clinical
trial comparing AZT to placebo. He did not notice, however, the independent
increments property of the limiting Gaussian process and therefore had to first
estimate the covariances of Sn(ti) and Sn(tj) (under H0) in order to compute
the probability in (2.11) by multivariate normal approximation. It is also worth
noting here that M -estimators are much easier to compute (cf. Kim and Lai
(1998)) than the rank estimators, for which Lin (1992) had to use an annealing
algorithm to get around the computational complexity.

4. Simulation Results and Discussion

As pointed out in Gu and Lai (1991), the performance of time-sequential
censored rank tests depends on the choice of the stopping boundaries and the
score function ψ. The choice of stopping boundaries for repeated significance
tests has been addressed in Section 2. The choice of score functions has been
discussed in Gill (1980) and Gu, Lai and Lan (1991). Suppose that F = F0 and
G = Fθ, where {Fθ,−ε ≤ θ ≤ ε} is a family of continuous distribution functions
whose cumulative hazard functions Φθ = − log(1 − Fθ) satisfy∫ ∞

0
|dΦθ/dΦ0 − 1|dΦ0 = O(θ) as θ → 0, and

θ−1{(dΦθ/dΦ0)(s) − 1} → ψ∗(F0(s)) (4.1)

for some continuous function ψ∗, the convergence being uniform on each closed
subinterval of {s : F0(s) < 1}. Then ψ = −ψ∗ is an asymptotically optimal
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choice of score functions. For this score function, {n−1/2Sn(t), 0 ≤ t ≤ t∗}
converges weakly under Hd : θ = d/

√
n to {Z(t) + µ(t), 0 ≤ t ≤ t∗}, where

Z(·) is a zero-mean Gaussian process with independent increments and µ(t) =
dVar(Z(t)) by (2.8) and (2.9). Hence, in this case, {(Vn(t)/n, Sn(t)/

√
n), t ≥ 0}

converges weakly to {(v,W (v)), v ≥ 0}, where W (v) is a Wiener process with
drift coefficient d under Hd (and 0 under H0).

For other choices of score functions ψ, {n−1/2Sn(t), 0 ≤ t ≤ t∗} still converges
weakly under Hd : θ = d/

√
n to {Z(t) + µ(t), 0 ≤ t ≤ t∗}, where µ(t) is given

by (2.9) with g(u) = dψ∗(F (u)). However, as shown in Gu and Lai (1991), p.
1419, µ(t) need not be a monotone function of t even for stochastically ordered
alternatives. This has important implications on the power of time-sequential
versus fixed-duration tests, as will be illustrated in the following.

Example 1. Logrank statistics are the most commonly used test statistics for
censored data, and they are asymptotically optimal under proportional hazards
alternatives. We present here a simulation study on the performance of repeated
significance tests based on logrank statistics. The simulation study is a continu-
ation, with some modifications, of a previous study by Siegmund (1985), pages
129-131, on the performance of (2.12) in which Sn(t) is the logrank statistic and
the estimate Vn(t) is chosen to be 1/4 times the total number of failures up to
time t (i.e., Vn(t) = {N ′

n,t(t) + N ′′
n,t(t)}/4 with N ′

n,t and N ′′
n,t defined by (2.4)).

We shall use the estimator (2.10c), which is applicable to other score functions,
instead of Siegmund’s estimator.

In his simulation study, Siegmund considers a total of n = 350 patients who
arrive independently and uniformly over a 3-year interval, to be assigned inde-
pendently to either treatment with probability 1/2. There are k = 10 periodic
reviews at times t = 1, 1.5, . . . , 5, 5.5(years). F is assumed to be exponential with
mean 3 (years), so the hazard rate λ0 = 1/3. Simulations are conducted under
the null hypothesis F = G and under proportional hazards alternatives in which
G is exponential with hazard rate λ = λ0/1.8, λ0/1.65, λ0/1.5, λ0/1.4. Therefore
θ := log(λ0/λ) lies between 0 and 0.6. Noting that there is an accumulation of
50-60 units of information at the end of 5 years or roughly 10-12 units per year,
and taking α = 0.05 in the approximating group sequential test for the drift of a
Wiener process with k = 10 evenly spaced groups between v0 and v1, Siegmund
chooses the following design parameters in the repeated significance test (2.12):

v0 = 11, v1 = 55, b = 2.85, c = 2.05 (k = 10). (4.2)

Our simulation study uses the same design parameters (4.2) as in Siegmund’s
study. Instead of strictly random treatment allocation and independent, uni-
formly distributed patient arrival times within the first 3 years, we assume for
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simplicity that n′ = n′′ = 175 patients are assigned to each group and that of
these 175 patients, 59 enter the study during the first year and 29 enter during
the next four 6-month periods, recalling that data reviews are at 1, 1.5, . . . , 5.5
years. We also change this patient entry pattern in one example (Case 8 of Table
1), in which 87 of the 175 patients enter during the first year and 22 enter during
the next four 6-month periods. While Siegmund assumes no censoring due to
patient withdrawal, our simulation study assumes that the censoring variables
ξ′i, ξ′′j are i.i.d. exponential with a median of 12 (years). As in Siegmund’s study,
we assume that F is exponential with hazard rate λ0 = 1/3. In addition to the
exponential G with the same range of hazard rates as in Siegmund’s study, we
also consider three other stochastically ordered alternatives listed in the following
table (Cases 6-8). In Cases 6 and 8, the hazard rate of G is less than that of
F , corresponding to the stochastically ordered case. For stochastically ordered
alternatives, the function ψ∗ in (4.1) is ≤ 0 and therefore the limiting drift µ(t)
in (2.9) is nondecreasing in t if the score function ψ is nonnegative. In case 7,
the hazard rate of G exceeds that of F in the interval 1 < s < 6.

Table 1. Power and expected duration of repeated significance test based on
logrank statistics, compared with fixed duration tests. Each result is based
on 2000 simulations. Hazard rate of F = λ0(= 1/3).

Power of Test with
Repeated Significance Test Fixed Duration t∗

Hazard Rate of G Power Expected Duration t∗ = 5.5 t∗ = 3

(1) λ0(F = G) .052 5.4 .049 .049

(2) λ0/1.4 .66 4.7 .70 .43

(3) λ0/1.5 .82 4.3 .84 .57

(4) λ0/1.65 .94 3.7 .95 .73

(5) λ0/1.8 .98 3.3 .98 .84

(6) λ0/4 for 0 ≤ s ≤ 1 .86 3.0 .76 .91
λ0 for s > 1

(7) λ0/4.5 for s ≤ 1 or s ≥ 6 .79 3.1 .56 .88
λ0/0.9 for 1 < s < 6

(8) λ0/5 for 0 ≤ s ≤ 1 .92 2.5 .81 .93
λ0 for s > 1; entry
non-uniform (see text)

The table compares the repeated significance test with a fixed duration test
that terminates at the scheduled time t∗ = 5.5 (years). For porportional hazards
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alternatives (Cases 2-5 of the table), the repeated significance test shows little
loss in power despite a substantial reduction in trial duration. For the stochas-
tically ordered alternatives in Cases 6-8 of the table, the repeated significance
test even has higher power than the fixed duration test despite an expected du-
ration of only 2.5-3 years as compared to 5.5 years of the fixed duration test.
To better understand this phenomenon, we compute by simulation the values of
the drift, ESn(t), and the expected value of the estimated variance, EVn(t), at
t = 1, 1.5, . . . , 5.5, for Cases 5-8 of the table. The results, each of which is based
on 2,000 simulations, are plotted in Figure 1, which shows an approximately
linear relationship between ESn(t) and EVn(t) in Case 5 (proportional hazard
alternative), monotone but nonlinear relationships in the ordered hazards alter-
natives of Cases 6 and 8, and an initially increasing but eventually decreasing
ESn(t) as a function of EVn(t) in Case 7.

ESn(t)

EVn(t)

Figure 1. Expected drift vs. expected estimated variance

The figure suggests that for Cases 6-8, a fixed-duration logrank test that
terminates earlier may have better power than the one that terminates at t∗ =
5.5. In particular, we considered the fixed-duration logrank test that terminates
at t∗ = 3 (years), and the results are reported in Table 1. The table shows that,
indeed, there is a substantial improvement in power in Cases 6-8 by terminating
at t∗ = 3 than at the later time t∗ = 5.5. However, this is at the expense of the
considerable loss in power for the proportional hazards alternatives of Cases 2-5.

In summary, this simulation study shows that the asymptotic drift of Sn(t)
may level off or even decrease with increasing t under stochastically ordered
alternatives for which the score function ψ associated with Sn(t) is not asymp-
totically optimal, such as nonproportional hazards alternatives in the case of
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logrank statistics. Since the asymptotic variance of Sn(t) continues to increase
with t because of the asymptotically uncorrelated increments property under
the null hypothesis and contiguous alternatives, the efficacy of Sn(t) may actu-
ally decrease with increasing t, therefore allowing repeated significance tests to
achieve both savings in time and increase in power over fixed-duration tests, as
demonstrated in Table 1.

Example 2. The preceding example compares the power and expected duration
of Siegmund’s repeated significance test (2.12) with a fixed-duration test, based
on the commonly used logrank statistics. We now give a comparative study of
the performance of the refinement of the Haybittle-Peto test in Section 2.3 and
six other stopping rules, again using logrank statistics. We use the program in
Gu and Lai (1995) to perform the simulation study which mimics the design
specifications in the Beta-Blocker Heart Attack Trial (BHAT). BHAT was a
multicenter, double-blind, randomized, placebo-controlled clinical trial designed
to test the efficacy of long-term therapy with propranolol given to survivors of
an acute myocardial infarction (cf. BHAT (1981)). The trial was scheduled for
4 years, with interim analyses at 11, 16, 21, 28, 34, 40 and 48 months. The trial
design assumes an accrucal rate of 149 patients per month for a period of 27
months, so the planned total number of patients is 4123. It is also assumed that
each patient is randomized to placebo or treatment upon entering the trial, and is
followed for a maximum of 3 years, but has a chance of 7% per year in the study
of being lost to follow-up for the placebo group, and 12% (8%, or 6%) during
the first (second, or third) year in the study for the treatment group. The actual
survival distribution of the placebo group, as reported in BHAT (1982), is a step
function with jumps .043, .020, .017, .015, .011 and .018 at 6, 12, 18, 24, 30 and
36 months respectively. The trial design assumes the proportional hazards model
with hazard ratio of .699 under the alternative hypothesis H1 (and 1 under the
null hypothesis H0) of the treatment versus the placebo group. Besides H1, we
also consider H2 which has time-varying hazard ratios of .599, .708, .615, 1.56,
.8 and .323 for each of the six 6-month periods, based on the results reported
in BHAT (1982). Table 2 gives the expected duration (in months), and power,
under H0,H1 and H2, of the time-sequential logrank test using different stopping
rules:

H: Haybittle-type rule in Section 2.3 with b = 2.9;
S: Siegmund’s rule (2.12) with b = 2.65, c = 2.15, v0 = 20, v1 = 140;
OB: The O’Brien-Fleming (1979) stopping rule |Sn(t)| ≥ biV

1/2
n (ti) with

b1 = 5.46, b2 = 3.87, b3 = 3.16, b4 = 2.74, b5 = 2.45, b6 = 2.24 and b7 = 2.07;
P: Pocock’s (1977) stopping rule |Sn(ti)| ≥ bV

1/2
n (ti) with b = 2.49(i =

1, . . . , 7);
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UH: Use-function rule defined by (2.16) with b = 2.9, v0 = 20, v1 = 140;
UOB (or UP): The Lan-DeMets (1983) use-function rule associated with the

O’Brien-Fleming (or Pocock) boundary;
F: Fixed-duration rule, stopping at 48 months.

Table 2. Power (p) and expected duration (ET) of different stopping rules in
time-sequential logrank tests. Each result is based on 5000 simulations.

Stopping Rule

H S OB P UH UOB UP F
p .048 .048 .051 .048 .049 .048 .048 .051

H0

ET 47.5 47.6 47.6 46.8 47.4 47.1 47.3 48
p .970 .972 .972 .940 .969 .957 .962 .981

H1

ET 31.2 34.3 32.2 28.3 30.7 29.3 29.9 48
p .856 .854 .861 .836 .852 .850 .853 .851

H2

ET 29.8 37.0 32.2 25.7 28.9 28.3 28.6 48

Note that the power of the Haybittle-type rule H, or of Siegmund’s rule S,
or of the O’Brien-Fleming rule OB is very close to that of the fixed-duration rule
F, and that the Haybittle-type rule gives the greatest reduction in trial duration
under the alternative hypotheses among the three rules. Although Pocock’s
rule P seems to have the smallest expected trial duration among all eight rules
considered, the power of P is substantially less than that of F. In practice, clinical
trialists usually want to have both guaranteed Type I error and guaranteed power
at the alternatives that are involved in the determination of the sample size in
fixed-duration (fixed-sample-size) trials. They particularly want to avoid getting
into the situation where a time-sequential test fails to reject, at the scheduled end
of a trial, the null hypothesis which would have been rejected if a fixed-duration
test had been used. Table 2 shows that the simple rule H appears to meet these
requirements and also to be capable of providing substantial reduction in trial
duration where the treatment is indeed efficacious.
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