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Abstract: Estimation of Kullback-Leibler information is a crucial part of deriving
a statistical model selection procedure which, like AIC, is based on the likelihood

principle. To discriminate between nested models, we have to estimate Kullback-

Leibler information up to the order of a constant, while Kullback-Leibler informa-

tion itself is of the order of the number of observations. A correction term employed

in AIC is an example of how to fulfill this requirement; however the correction is

a simple minded bias correction to the log maximum likelihood and there is no

assurance that such a bias correction yields a good estimate of Kullback-Leibler

information. In this paper we investigate a bootstrap type estimate of Kullback-

Leibler information as an alternative. We first show that both bootstrap estimates

proposed by Efron (1983, 1986) and by Cavanaugh and Shumway (1997) are at

least asymptotically equivalent and there exist many other equivalent bootstrap

estimates. We also show that all such methods are asymptotically equivalent to a

non-bootstrap method known as TIC (Takeuchi (1976)), which is a generalization

of AIC when the re-sampling method is non-parametric. Otherwise, for example, if

the re-sampling method is parametric they are asymptotically equivalent to AIC.

Therefore, the use of a bootstrap type estimate is not advantageous if enough ob-

servations are available and simple calculations of a non-bootstrap estimate AIC or

TIC is not a burden. At the same time, it is also true that the use of a bootstrap

estimate in place of a non-bootstrap estimate is reasonable and advantageous if the

non-bootstrap estimate is too complicated to evaluate analytically.

Key words and phrases: Bias estimation, bootstrap, information criterion, Kullback-

Leibler information.

1. Introduction

Estimation of Kullback-Leibler information is a key to deriving the so called
information criterion which is now widely used for selecting a statistical model.
In particular, Kullback-Leibler information defined in the following formula (1.1)
is considered a measure of goodness of fit of a statistical model. Therefore, one
strategy is to select a model so as to minimize (1.1). Throughout this paper, we
mean by a statistical model a parametric family of densities with respect to a
σ-finite measure µ on n dimensional Euclidean space,

M =
{
f(x, θ) =

∏
i

fi(xi, θ); θ ∈ Θ
}
,
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where x = (x1, . . . , xn)T is a running variable and θ = (θ1, . . . , θp)T is a vector
of parameters. We assume, on the other hand, that the joint distribution of
independent observations y = (y1, . . . , yn)T is an unknown G which has a density
g(y) =

∏
i gi(yi) with respect to the µ. The density is not necessarily in M .

Therefore, a model M here is considered to be a way of approximation to the g(·)
rather than to know it exactly. Denoting θ̂ = θ̂(y) as the maximum likelihood
estimate of θ under model M , we define Kullback-Leibler information for the
model M as

In(g(·), f(·, θ̂(y))) =
∫

g(x) log
g(x)

f(x, θ̂(y))
dµ(x)

=
∫

g(x) log g(x)dµ(x) −
∫

g(x) log f(x, θ̂(y))dµ(x). (1.1)

We may compare different models M1,M2, . . . based on the values of Kullback-
Leibler information defined in (1.1) through corresponding estimates θ̂1, θ̂2, . . .

Since the first term on the right hand side of the last equation in (1.1) is inde-
pendent of any particular model, minimizing the Kullback-Leibler information
(1.1) is equivalent to maximizing a target variable,

T = T (y) =
∫

g(x) log f(x, θ̂(y))dµ(x). (1.2)

By Taylor expansion around θ̄ which is a pseudo true parameter or a projection
of g(·) on M , we have an approximation of T ,

T =
∫

g(x) log f(x, θ̄)dµ(x) − 1
2
Q + op(1). (1.3)

An explicit definition of θ̄ is the θ which minimizes I(g(·), f(·, θ)) or maximizes∫
g(x) log f(x, θ)dµ(x). We implicitly assumed that any necessary regularity con-

ditions for f(·, θ), including differentiability and existence of θ̄ in M , hold true.
We also used the notations,

Q = (θ̂(y) − θ̄)T Ĵ(y, θ̄)(θ̂(y) − θ̄)

and

Ĵ(y, θ) = − ∂2

∂θ∂θT
log f(y, θ).

In practice we have to estimate T because the T depends on an unknown
g(·). The log maximum likelihood is a naive estimate of T and can be a good
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candidate. It is approximated as

log f(y, θ̂(y)) = log f(y, θ̄) +
1
2
Q + op(1)

=
∫

g(x) log f(x, θ̄)dµ(x)

+
{

log f(y, θ̄) −
∫

g(x) log f(x, θ̄)dµ(x)
}

+
1
2
Q + op(1). (1.4)

The order of magnitude of the first three terms on the right hand side of the last
equation in (1.4) are O(n), Op(

√
n) and Op(1), respectively. Therefore, only the

first term is significant if competitive models M1 and M2 yield different pseudo
true parameters θ̄1 �= θ̄2 respectively. Otherwise, for example, if models M1 ⊂ M2

are nested and g(·) is a member of M1, then the pseudo true parameters θ̄1 and
θ̄2 are the same. Then only the last term 1

2Q in (1.4) remains significant. In this
case, denoting the maximum likelihood estimate of θ by θ̂1 and θ̂2 for models
M1 and M2 respectively, we can write the difference of the corresponding log
maximum likelihoods as

log f(y, θ̂1) − log f(y, θ̂2) =
1
2
(Q1 − Q2) + op(1). (1.5)

On the other hand, the difference of values of the target variable T is written as

T1 − T2 = −1
2
(Q1 − Q2) + op(1). (1.6)

Therefore, a simple minded correction to the log maximum likelihood is correcting
only a significant part of the bias of (1.5) to (1.6) for the case when θ̄1 = θ̄2,

−E (Q1 − Q2), (1.7)

which is asymptotically equal to −( p1 − p2). Here p1 and p2 are the number of
parameters of the models M1 and M2 respectively. This yields a bias correction
−p to the maximum log likelihood log f(y, θ̂(y)). It is known that if the corrected
log maximum likelihood is multiplied by -2 for convenience, Akaike’s information
criterion (Akaike (1973)),

AIC = −2 log f(y, θ̂(y)) + 2p

follows.
However, such a simple minded correction does not necessarily yield a good

estimate. A lot of work has been done to find a better correction. One such
approach is to evaluate the bias as precisely as possible. Inspired by the pioneer-
ing work of Sugiura (1978), Hurvich and Tsai (1989, 1991, 1993) derived a bias
correction,

p +
( p + 1)( p + 2)

n − p − 2
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which is more precise than the p in AIC for normal linear models. In practice,
such a correction is quite effective, particularly when the p is close to n. Also
we note that non-asymptotic bias correction is important in selecting a discrete
model like binomial or multinomial, where the distribution is often skewed and
normal approximation does not work well unless a quite large number of obser-
vations is available. Another approach is to take account of the possibility that
g(·) is outside of any models given. The expectation (1.7) is then different from
−(p1 − p2) even asymptotically. Based on such an observation, Takeuchi (1976)
proposed the use of a criterion,

TIC = −2 log f(y, θ̂(y)) + 2Q̂, (1.8)

where Q̂ is an estimate of tr(Ī(θ̄)J̄(θ̄)−1) . Explicit definition of Ī(θ̄) and J̄(θ̄) will
be given later. The same criterion was proposed later by Linhart and Zucchini
(1986).

The author showed optimality of selecting the model minimizing AIC under
the assumption that the number p of parameters of θ̄ increases as the number of
observations n increases (Shibata (1980, 1981)). This is, for example, the case
when g(·) is outside of any models provided. Then more and more parameters
become necessary to get a closer approximation to g(·). Under such a framework,
the approximate standard deviation

√
2p of Q becomes small relative to its mean

p, and asymptotic optimality of the selection follows. Otherwise, the random
fluctuation of Q remains significant even if bias is corrected. This is also one of
the reasons why the minimum AIC procedure is apt to pick up an over fitted
model. In this respect, it is worth remembering the paradox of AIC pointed
out by Shimizu (1978). Comparing the right hand sides of the equations in (1.5)
and (1.6) he found that the correlation of both sides is almost −1. Therefore,
the log maximum likelihood behaves in a direction opposite to that of the be-
havior of the target variable T . This can be thought of as a paradox, because
our aim is to select a model so as to maximize the target variable T . Although
it is not widely known, Shimizu also suggested a resolution of the paradox at
the end of his paper. If the observed samples y is split into several subsam-
ples, y(1) = (y1, . . . , yr),y(2) = (yr+1, . . . , y2r), . . . ,y(k) = (y(k−1)r+1, . . . , yn), an
averaged AIC,

AIC =
1
k

k∑
i=1

AICi

is available from AICi’s each of which is the AIC for subsample y(i), i = 1, . . . , k.
We can then avoid the paradox by using AIC in place of AIC with an increasing
k to infinity of the order of o(n), for example, k = log n, because the Qi’s in each
AICi are averaged to p for large numbers of observations, by the law of large
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numbers. It is clear that selecting the model minimizing AIC yields a consistent
model selection as long as g(·) is inside of one of competitive models. The reader
may wonder if AIC is similar to modifications proposed by various authors for
AIC to be consistent, since AIC can be rewritten as

AIC =
1
k

{
−2

k∑
i=1

log f(y(i), θ̂(y(i))) + 2kp

}
.

For example, Shibata (1989) dealt with such modifications in a unified formula,

AICα = −2 log f(y, θ̂(y)) + 2αp,

where α = α(n) is a divergent sequence with n. However, the main difference
between AIC and AICα is that AIC retains the meaning as an estimate of
Kullback-Leibler information although it is not for full observation y but for
subsamples with size r = n/k. However AICα has no such a meaning.

In this paper, we investigate several bootstrap type estimates with the hope
that it can be a resolution for such a paradoxical behavior of bias correction.
However it turns out not to be so. Bootstrap estimates considered here are all
asymptotically equivalent to a non-bootstrap estimate AIC or TIC. Neverthe-
less there are various advantages of using a bootstrap estimate. By definition,
it is free from any expansion, while AIC or other related criteria are based on
an expansion with respect to parameters. Therefore it has wider applicability
than the conventional bias correction. Also it can be extended via the frame-
work of the likelihood principle or of the maximum likelihood estimate. Prob-
ably the most important advantage of the use of bootstrapping is the ease of
calculation. Only Monte Carlo simulations on computers is needed even when
asymptotic approximation is too complicated to evaluate analytically. An impli-
cation of our result is that bootstrap and non-bootstrap methods are compatible
asymptotically. Therefore, we are free to use a bootstrap estimate in place of
a non-bootstrap criterion when the use of bootstrapping is really advantageous
as regards calculation. However we should note that the asymptotic behavior
depends on the method of bootstrapping, parametric, semi-parametric, or non-
parametric. Finite sample behavior can be seen from the results of simulations
in Section 3.

2. Bootstrap Correction

A naive bootstrap estimate of T in (1.2) can be obtained by replacing the
running variable x in log f(x, θ̂(y)) by a bootstrap sample y∗ = (y∗1 , . . . , y∗n)T

and taking bootstrap expectation E∗. However, the estimate E∗ log f(y∗, θ̂(y))
obtained by such a replacement turns out to be no more than the log maximum
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likelihood log f(y, θ̂(y)) as far as y∗ is generated according to the empirical dis-
tribution of y, that is, non-parametric re-sampling is used. As is seen in the
previous section, such an estimate can not be a good estimate of T . One of other
well known bootstrap estimates is that proposed by Efron (1983, 1986), which
can be found also in Efron and Tibshirani (1993). Throughout this paper, the
re-sampling size m is taken to be the same as the number of observations n. To
explain his idea in our context, let us assume x is a random variable which is
independent of y but distributed the same as y. By denoting expectation with
respect to x and y by Ex and Ey respectively, we can rewrite the bias of the log
maximum likelihood log f(y, θ̂(y)) with respect to the target variable T as the
following:

Ey{T (y) − log f(y, θ̂(y))} = EyEx log
f(x, θ̂(y))
f(y, θ̂(y))

= EyEx log
f(y, θ̂(x))
f(x, θ̂(x))

. (2.1)

Therefore, the expectation of a bootstrap estimate

B1 = E∗ log
f(y, θ̂(y∗))
f(y∗, θ̂(y∗))

with respect to y is expected to be quite close to the bias (2.1) and the use of

T1 = log f(y, θ̂(y)) + B1

is justified as an estimate of T . In practice, the bootstrap expectation E∗ is
replaced by an average of the results of a number of Monte Carlo simulations.
However we should note that the expectation of B1 is not exactly the same as
the bias in (2.1) because the bootstrap expectation E∗ depends on y. The same
bootstrap estimate as above is proposed by Ishiguro and Sakamoto (1991), and
it is called WIC. A successful application to practical problems is reported in
Ishiguro, Morita and Ishiguro (1991).

Recently Cavanaugh and Shumway (1997) proposed a different method of
bias correction in the context of Gaussian state space model selection, which is
based on the result by Stoffer and Wall (1991). Their idea is to estimate Q in
(1.3) or (1.4) by bootstrapping. They proved that the expectation of

B2 = 2E∗ log
f(y, θ̂(y∗))
f(y, θ̂(y))

with respect to y is asymptotically equal to that of −Q, and justified the use of
−B2 in place of the p in AIC. In this paper, we first prove that both bootstrap
bias estimates B1 and B2 are asymptotically equivalent and there exist many



BOOTSTRAP ESTIMATE OF KULLBACK-LEIBLER INFORMATION 381

other equivalent methods under several assumptions. These are also equivalent
to a non-bootstrap criterion AIC or TIC under suitable assumptions.

First of all, we have to establish the consistency of both estimates θ̂(y) and
θ̂(y∗) for a model M . The consistency here means that the estimate converges to
the pseudo true value θ̄ as the sample size approaches infinity. Let Θ be a subset
of p dimensional Euclidean space, and define the log likelihood ratio statistic,

Zi(yi, θ, U) = inf
θ′∈U

log
fi(yi, θ)
fi(yi, θ′)

for a neighborhood U in Θ. We assume that the limit

Ī(θ̄, U) = lim
n→∞

1
n

n∑
i=1

E Zi(yi, θ̄, U) (2.2)

exists and is finite in a neighborhood U = Uθ for any θ in Θ. It is clear from the
Lebesgue monotone convergence theorem that

lim
k→∞

Ī(θ̄, U
(k)
θ ) = Ī(θ̄, θ) = lim

n→∞
1
n
{In(g(·), f(·, θ)) − In(g(·), f(·, θ̄))} (2.3)

holds true for a monotone decreasing sequence of neighborhoods U
(k)
θ , k = 1, 2, . . .

to a parameter θ, provided that f(·, θ) is continuous with respect to θ, that is,
limθ′→θ f(x, θ′) = f(x, θ) for any θ ∈ Θ. Here we note that the right hand side
of (2.3) is nonnegative from the definition of θ̄. We use similar notations for the
bootstrap sample y∗. However,

ĪB(θ̄, U) = lim
n→∞

1
n

n∑
i=1

E Zi(y∗i , θ̄, U)

does not necessarily coincide with Ī(θ̄, U) unless the re-sampling method is non-
parametric. The same thing happens also for

lim
k→∞

Ī(θ̄, U
(k)
θ ) = ĪB(θ̄, θ) = lim

n→∞
1
n

E log
f(y∗, θ̄)
f(y∗, θ)

.

For example, if the re-sampling method is parametric, that is, y∗ is generated
according to f(·, θ̂(y)), then ĪB(θ̄, θ) does not coincides with I(θ̄, θ) as in (2.3)
but with the limit limn→∞ 1

nIn(f(·, θ̄), f(·, θ)).
We need further assumptions to prove the consistency of θ̂(y) and θ̂(y∗).

Assumption 1.
(i) The closure M̄ of the model M is compact with respect to a weak topology.
(ii) Both 1

n

∑n
i=1 Zi(yi, θ̄, Uθ) and 1

n

∑n
i=1 Zi(y∗i , θ̄, Uθ) almost surely converge to

Ī(θ̄, Uθ) and ĪB(θ̄, Uθ) respectively in a neighborhood Uθ for any θ ∈ Θ.
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(iii) Ī(θ̄, θ) > 0 and ĪB(θ̄, θ) > 0 for any θ �= θ̄ ∈ Θ.
In the assumption (i) we identify a neighborhood Uθ in Θ with the corre-

sponding neighborhood in M . Various conditions are known for the assumption
(i) holding true (for example, see Pfanzagl (1994)) . One example is the tightness
condition of the family of probability measures specified by M . The assumption
(ii) clearly holds true when the observations are independent and identically
distributed and also for any models of independent and identically distributed
observations. In other words, this is the case when densities gi(·) are the same
and fi(·) are the same for all i. We hereafter refer to such a case as an i.i.d.
case. One of the other important cases when the assumption (ii) holds true is
a regression case. The regression case will be discussed into detail later in this
section. The assumption (iii) is an identifiability condition. The proof of the
following lemma is similar to that in Zacks (1971).

Lemma 1. Under Assumption 1, both θ̂(y) and θ̂(y∗) almost surely converge
to θ̄ as n tends to infinity.

Proof. Let Uθ̄ be a neighborhood of θ̄. Then from (2.3) together with the
assumption (iii) of Assumption 1, we see that there exists a neighborhood Uθ

such that Ī(θ̄, Uθ) > 0 for any θ �∈ Uθ̄. Therefore V = M̄ − Uθ̄ is covered by such
neighborhoods, and from the Heine-Borel theorem we can find a finite cover of
V by Uθ1 , . . . , Uθk

with the condition that Ī(θ̄, Uθν ) > 0 for ν = 1, . . . , k. Then{ ∏
i fi(yi, θ̄)

supθ∈V

∏
i fi(yi, θ)

≤ 1

}
⊂
{

n∑
i=1

Zi(yi, θ̄, V ) ≤ 0

}

⊂
{

max
1≤ν≤k

1
n

n∑
i=1

Zi(yi, θ̄, Uθν ) ≤ 0

}
.

From (2.2) together with the condition (ii) of Assumption 1, we see that such an
event does not happen almost surely for large enough n, so that∏

i fi(yi, θ̄)
supθ∈V

∏
i fi(yi, θ)

> 1

holds true almost surely for large enough n. This means that the estimate θ̂(y)
which maximizes

∏
i fi(yi, θ) falls into the neighborhood Uθ̄. This proves the

convergence of θ̂(y) to θ̄. The proof for θ̂(y∗) is similar.
We further need the following two assumptions to prove our theorems.

Assumption 2.
(i) Both Ĵ(y, θ)/n and Ĵ(y∗, θ)/n almost surely converge to a positive definite

matrix J̄(θ) and J̄B(θ) respectively. The convergence is uniform in a neigh-
borhood of θ̄.
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(ii) The log likelihood log f(y, θ) has up to third order derivatives with respect to
θ, which are bounded by an integrable function.
The condition (i) holds true not only for the i.i.d. case but also for the

regression case. The latter case is discussed later in this section. The assumption
(ii) is a commonly used regularity condition to allow Taylor expansion of f(y, θ)
with respect to θ. The following assumption is a key to proving the equivalence of
B1 to B2. It follows from the assumption that J̄B(θ) = J̄(θ) and ĪB(θ̄, θ) = Ī(θ̄, θ)
as far as Assumption 2 holds true.

Assumption 3.

E∗ log f(y∗, θ) = log f(y, θ) holds true for any θ ∈ Θ.

This assumption clearly holds true for the i.i.d. case when the re-sampling
method is non-parametric. Otherwise it may not be trivial. As an example
of the non i.i.d. case, consider a normal regression model y = Xβ + ε, where
β = (β1, . . . , βp−1)T is a vector of regression parameters, and ε = (ε1, . . . , εn)T is
a vector of independent and identically distributed noises as normal with mean
0 and variance σ2. By parametric or semi-parametric re-sampling, a bootstrap
sample y∗ is generated according to the formula y∗ = Xβ̂ + ε∗, where β̂ is the
maximum likelihood estimate of β and the bootstrap sample ε∗ is generated
following the normal distribution with mean 0 and variance σ̂2, or following the
empirical distribution Ĝ of the residuals ε̂ = y−Xβ̂ , respectively for parametric
or semi-parametric bootstrapping. Here σ̂2 = 1

n‖ε̂‖2 is the maximum likelihood
estimate of σ2. We then have

E∗‖y∗ − Xβ‖2 = E∗‖ε∗ + ε̂ − ε‖2 = ‖ε̂‖2 + ‖ε̂ − ε‖2 = ‖y − Xβ‖2.

This shows that Assumption 3 holds true for f(y∗, θ) with θ = (βT , σ)T . For
the case of non-parametric bootstrapping, a bootstrap sample is a set of n pairs
(x∗

i
T , y∗i ), i = 1, . . . , n, randomly drawn from the pairs (xT

i , yi), i = 1, . . . , n where
xT

i is the ith row vector of the design matrix X. Therefore, by defining ε∗ =
y∗ − X∗β we have

E∗‖y∗ − Xβ‖2 = E∗‖X∗β − Xβ + ε∗‖2

= ‖y − Xβ‖2 + 2βT XT (X − X̄)β + 2βT XT (ε − ε̄),

where X̄ is a design matrix whose rows are all the same vector x̄ = 1
n

∑
i xi and

ε̄ is a vector whose elements are all the same ε̄ = 1
n

∑
i εi. It is now clear that

Assumption 3 does not hold true. However it holds true if we use the following
definition of the log likelihood in place of log f(y∗, θ),

log f((X∗,y∗), θ) = −n

2
log 2πσ2 − 1

2σ2
‖y∗ − X∗β‖2.
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This is a well known definition of the log likelihood suitable for non-parametric
bootstrapping (Efron and Tibshirani (1993)). The following theorems are not af-
fected by such a replacement. The maximum likelihood estimate θ̂ for a bootstrap
sample (X∗,y∗) is a function of both X∗ and y∗ in this case. Hereafter, we will
use the notation log f(y∗, θ) in place of log f((X∗,y∗), θ) even if non-parametric
bootstrapping is used.

Before proceeding with the theorems, let us check Assumption 2 for the case
of regression. Suppose that the following limit exists,

lim
n→∞

1
n

XT X = V , (2.4)

which is a positive definite matrix, and the elements of X are uniformly o(
√

n),
and also suppose that yi − E yi, i = 1, . . . , n are independent and identically
distributed. Hereafter we always assume such conditions in case of regression.
Then, making use of the results in Freedman (1981) we can show that condition
(i) of Assumption 2 holds true. In fact,

Ĵ(y, θ) =

(
XT X/σ2 2(y − Xβ)T X/σ3

2XT (y − Xβ)/σ3
(
3‖y − Xβ‖2/σ2 − n

)
/σ2

)

and both Ĵ(y, θ)/n and Ĵ(y∗, θ)/n almost surely converge to the same matrix,

J̄(θ) = J̄B(θ) =

(
V/σ2 2(β̄ − β)T V/σ3

2V (β̄ − β)/σ3 (3(β̄ − β)T V (β̄ − β) + 3σ̄2 − σ2)/σ4

)

in a neighborhood of θ̄, where σ̄2 = limn→∞ E σ̂2. In particular,

J̄(θ̄) = J̄B(θ̄) =

(
V/σ̄2 0

0 2/σ̄2

)
.

Theorem 1. Under Assumption 1 and Assumption 2, we have

E∗ log
f(y∗, θ̂(y))
f(y∗, θ̂(y∗))

= −QBB

2
(1 + o(1)) a.s., (2.5)

where
QBB = n E∗(θ̂(y∗) − θ̂(y))

T
J̄B(θ̄) (θ̂(y∗) − θ̂(y)),

and

E∗ log
f(y, θ̂(y∗))
f(y, θ̂(y))

= −QB

2
(1 + o(1)) a.s., (2.6)

where
QB = n E∗(θ̂(y∗) − θ̂(y))

T
J̄(θ̄) (θ̂(y∗) − θ̂(y)).
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Furthermore, if Assumption 3 holds true, then QBB = QB and

E∗ log
f(y, θ̂(y))

f(y∗, θ̂(y∗))
= E∗ log

f(y∗, θ̂(y))
f(y∗, θ̂(y∗))

. (2.7)

Proof. The equation (2.5) follows from the expansion,

log f(y∗, θ̂(y)) = log f(y∗, θ̂(y∗)) − 1
2
(θ̂(y) − θ̂(y∗))T

Ĵ(y∗, θ∗)(θ̂(y) − θ̂(y∗)),

where θ∗ is the mid-value between θ̂(y) and θ̂(y∗). Therefore, from Lemma 1
together with Assumption 2, we see that the equation (2.5) holds true. The proof
for (2.6) is similar. In fact,

log f(y, θ̂(y∗)) = log f(y, θ̂(y)) − 1
2
(θ̂(y) − θ̂(y∗))T

Ĵ(y, θ∗∗)(θ̂(y) − θ̂(y∗)),

where θ∗∗ is the mid-value between θ̂(y) and θ̂(y∗), and the equation (2.6) is now
clear from Lemma 1 and Assumption 2. The last equation (2.7) is straightforward
from Assumption 3.

From the theorem, we see that Efron’s method and Cavanaugh and
Shumway’s method are asymptotically equivalent to each other as far as As-
sumption 1 to Assumption 3 hold true. In fact,

B1 = E∗ log
f(y, θ̂(y∗))
f(y∗, θ̂(y∗))

= E∗ log
f(y, θ̂(y∗))
f(y, θ̂(y))

+ E∗ log
f(y, θ̂(y))

f(y∗, θ̂(y∗))
= B2 (1 + o(1)) a.s.

It is worth noting that this equivalence holds true without taking expectation
with respect to y. Therefore the behavior of resulting model selection is the same
for every observation at least asymptotically.

The theorem also suggests that there can be many other bootstrap estimates
of the bias besides B1 or B2. The difference is only about where the bootstrap
sample y∗ is used in the definition of the log likelihood ratio. It is easily seen
that only six cases remain nontrivial except for the sign difference. Let us use a
notation like

B1 = B

(
∗

∗ ∗

)
= E∗ log

f(y, θ̂(y∗))
f(y∗, θ̂(y∗))

to indicate by the asterisk ∗ positions where the bootstrap sample y∗ is used. If

Assumption 3 holds true, one of the six cases, B6 = B

(
∗

)
always reduces

to 0. As a result four cases remain meaningful other than the B1;

B2 = 2B

(
∗
)

, B3 = 2B

(
∗
∗ ∗

)
, B4 = 2B

(
∗

∗

)
, B5 = 2B

(
∗ ∗

)
.
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The positions where the bootstrap sample is used are just complementary in
B2 and B3, and only these two estimates are always negative even before taking
bootstrap expectation. This is clear from the definition. A trivial relation among
those five corrections is

B1 = (B2 + B5)/2 = (B3 + B4)/2. (2.8)

If J̄B(θ̄) = J̄(θ̄), B2 and B3 are asymptotically equivalent under Assumption 1
and Assumption 2 since QBB = QB. Consequently we see from (2.8) that B4 and
B5 also become asymptotically equivalent. However, the equivalence between two
groups {B2, B3} and {B4, B5} does not hold true without a stronger assumption
Assumption 3. In any case we now have five different bootstrap estimates of T

including T1, Ti = log f(y, θ(y)) + Bi i = 1, . . . , 5.
It is also interesting to note that a bootstrap type model selection criterion

proposed by Linhart and Zucchini (1986) can be approximated as

E∗ log f(y, θ̂(y∗)) = log f(y, θ̂(y)) − QB

2
+ o(1) a.s.

Therefore, this criterion in fact involves only half of the necessary correction as
is discussed above. The procedure to select a model so as to maximize their
criterion is then more apt to select an overfitted model than the procedure based
on the log maximum likelihood criterion with one of corrections above.

Example 1. In case of a simple Gaussian model with mean µ and variance σ2,
the bias corrections above are

B1 = E∗
{
n −

∑
i

(yi − ȳ∗)2/σ̂∗2
}
/2,

B2 = E∗
[
n log(σ̂2/σ̂2∗) +

{
n −

∑
i

(yi − ȳ∗)2/σ̂∗2
}]

,

B3 = E∗
[
n log(σ̂∗2

/σ̂2) +
{
n −

∑
i

(y∗i − ȳ)2/σ̂2
}]

,

B4 = E∗
[
n log(σ̂2/σ̂∗2

) +
{∑

i

(y∗i − ȳ)2/σ̂2 −
∑

i

(yi − ȳ∗)2/σ̂∗2
}]

and

B5 = E∗ n log(σ̂∗2
/σ̂2),

where ȳ = 1
n

∑
i yi and σ̂2 = 1

n

∑
i(yi − ȳ)2 are the maximum likelihood estimates

of µ and σ2, and ȳ∗ and σ̂∗2
are those based on the bootstrap sample y∗.

Theorem 2. Under Assumption 1 to Assumption 3, we have

lim
n→∞QB = lim

n→∞QBB = lim
n→∞ tr

(
În(θ̂(y))J̄(θ̄)−1

)
a.s.,
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where

În(θ) =
1
n

n∑
i=1

{
E∗

∂

∂θ
log fi(y∗i , θ)

∂

∂θT
log fi(y∗i , θ)

−E∗
∂

∂θ
log fi(y∗i , θ) E∗

∂

∂θT
log fi(y∗i , θ)

}
.

Proof. From the expansion,

0 =
∂

∂θ
log f(y∗, θ̂(y∗))

=
∂

∂θ
log f(y∗, θ̂(y)) + (θ̂(y∗) − θ̂(y))T

∂2

∂θ∂θT
log f(y∗, θ∗∗) (2.9)

with the mid-value θ∗∗ between θ̂(y) and θ̂(y∗), we see that

lim
n→∞QB = lim

n→∞E∗ tr
{ 1

n

∂

∂θ
log f(y∗, θ̂(y))

∂

∂θT
log f(y∗, θ̂(y)) J̄(θ̄)−1

}
a.s.

(2.10)
On the other hand, since θ̂(y) is the maximum likelihood estimate we have

E∗
∂

∂θ
log f(y∗, θ̂(y))

∂

∂θT
log f(y∗, θ̂(y))

=
∑
i,j

E∗
∂

∂θ
log fi(y∗i , θ̂(y)) E∗

∂

∂θT
log fj(y∗j , θ̂(y))

−
∑

i

E∗
∂

∂θ
log fi(y∗i , θ̂(y)) E∗

∂

∂θT
log fi(y∗i , θ̂(y))

+
∑

i

E∗
∂

∂θ
log fi(y∗i , θ̂(y))

∂

∂θT
log fi(y∗i , θ̂(y))

=
∑

i

∂

∂θ
log fi(yi, θ̂(y))

∑
j

∂

∂θT
log fj(yj , θ̂(y)) + nÎn(θ̂(y))

= nÎn(θ̂(y)).

The desired result is then obtained by combining this result with (2.10) since
QBB = QB under Assumption 3.

We can further verify the following equality for the i.i.d. case. By denoting
fi as f , we have

În(θ̂(y)) =
1
n

∑
i

{ ∂

∂θ
log f(yi, θ̂(y))

∂

∂θT
log f(yi, θ̂(y))

}

− 1
n2

{∑
i

∂

∂θ
log f(yi, θ̂(y))

}{∑
j

∂

∂θT
log f(yj, θ̂(y))

}

=
1
n

∑
i

{ ∂

∂θ
log f(yi, θ̂(y))

∂

∂θT
log f(yi, θ̂(y))

}
.
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Then, În(θ̂(y)) almost surely converges to

Ī(θ̄) = E
{

∂

∂θ
log f(yi, θ̄)

∂

∂θT
log f(yi, θ̄)

}
,

and
lim

n→∞QBB = lim
n→∞QB = tr

(
Ī(θ̄)J̄(θ̄)−1

)
a.s.

Therefore, combining this result with Theorem 1, at least for the i.i.d. case we
see that the bootstrap corrections B1 through B5 are all asymptotically equivalent
to a constant under Assumption 1 to Assumption 3. In other words, such a
correction is in fact correcting only the bias, and is asymptotically equivalent to
the correction −Q̂ which is employed in TIC.

Example 2. In case of Example 1, θ = (µ, σ)T , θ̄ = (µ̄, σ̄)T ,

Ī(θ̄) =

(
1/σ̄2 µ(3)/σ̄5

µ(3)/σ̄5 µ(4)/σ̄6 − 1/σ̄2

)

and

J̄(θ̄) =

(
1/σ̄2 0

0 2/σ̄2

)
,

where µ̄ = E yi and σ̄2 = E (yi − µ̄)2 , and µ(l) = E (yi − µ̄)l. All corrections
B1 through B5 based on non-parametric bootstrap almost surely converge to the
same value, −1 − 1

2

(
µ(4)/σ̄4 − 1

)
, which is equal to -2 if yi, i = 1, . . . , n are

actually normally distributed.
The following example demonstrates the asymptotic behavior of B1 to B5

for the non i.i.d. case with various re-sampling methods. This example includes
Example 2 as a special case.

Example 3. In case of regression, all corrections B1 to B5 are the same as
those in Example 1 when σ̂2, σ̂2∗ ,

∑
i(yi − ȳ∗)2 and

∑
i(y

∗
i − ȳ)2 are replaced by

1
n‖y−Xβ̂‖2, 1

n‖y∗ −Xβ̂
∗‖2, ‖y−Xβ̂

∗‖2 and ‖y∗ −Xβ̂‖2, respectively. First of
all, note that the limits J̄(θ̄) and J̄B(θ̄) remain the same matrix as(

V/σ̄2 0
0 2/σ̄2

)
,

irrespective of re-sampling method. This is because Ĵ(y, θ) depends on y only
through the form of ‖y − Xβ‖2, and it holds true that σ̄2 = E‖y − Xβ̄‖2 =
E‖y∗ − Xβ̄‖2 at least asymptotically.

In case of parametric bootstrapping, each bootstrap sample y∗i is normally
distributed with mean xT β̂ and variance σ̂2, and we have

În(θ̂(y)) =

(
1
nXT X/σ̂2 0

0 2/σ̂2

)
.
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From the condition (2.4), this matrix almost surely converges to the same matrix
as J̄(θ̄) or J̄B(θ̄). Therefore, in this case

lim
n→∞QBB = lim

n→∞QB = p a.s.

In case of semi-parametric bootstrapping, y∗i − xT
i β̂, i = 1, . . . , n are dis-

tributed according to the empirical distribution of residuals ε̂i, i = 1, . . . , n, so
that

În(θ̂(y)) =

(
1
nXT X/σ̂2 1

n

∑
i x

T
i

1
n

∑
i ε̂

3
i /σ̂

5

1
n

∑
i xi

1
n

∑
i ε̂3

i /σ̂
5
(

1
n

∑
i ε̂

4
i /σ̂

4 − 1
)

/σ̂2

)
.

Therefore, for example, if sufficiently higher order moments of εi exist, this matrix
almost surely converges to(

V/σ̄2 ∗
∗ (

µ(4)/σ̄4 − 1
)
/σ̄2

)
, (2.11)

where µ(4) is the 4th moment of εi and the ∗ indicates off-diagonal elements we
are not interested in. Since J̄(θ̄) or J̄B(θ̄) is a diagonal matrix,

lim
n→∞QBB = lim

n→∞QB = (p − 1) +
(
µ(4)/σ̄4 − 1

)
/2 a.s.

This is equal to the limit of Q̂ in (1.8). Finally, in case of non-parametric boot-
strapping,

În(θ̂(y)) =

(
1
n

∑
i xixT

i ε̂2
i /σ̂

4 1
n

∑
i x

T
i ε̂3

i /σ̂
5

1
n

∑
i xiε̂

3
i /σ̂

5
(

1
n

∑
i ε̂

4
i /σ̂

4 − 1
)

/σ̂2

)
,

converges to the same matrix as in (2.11) and

lim
n→∞QBB = lim

n→∞QB = (p − 1) +
(
µ(4)/σ̄4 − 1

)
/2 a.s.

3. Some Results of Simulations

To see small sample behavior of bootstrap estimates, several experiments
were conducted by generating Gaussian random numbers with mean 0 and vari-
ance 1. However, note that the result does not lead to any definite conclusion
because our experiments were limited to simple Gaussian models. The aim of
this section to give the reader a rough idea about how a bootstrap estimate
works in small samples. Figure 1 shows boxplots of the corrections B1 to B5

for a Gaussian distribution model with parameters µ and σ2 as described in
Example 1. Experiments were performed five hundred times with the sample
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size 50 and with bootstrapping 1000 times to approximate bootstrap expecta-
tion for each experiment. For reference, boxplot of non-bootstrap correction
−Q̂ = −1− (µ̂(4)/σ̂4 − 1

)
/2 which is used in TIC is also included in the figure,

where µ̂(4) is the sample 4th moment. All corrections are distributed around
−2 since only two parameters are involved in the model. In terms of variance,
B3 seems superior to other bootstrap corrections and behaves similarly to −Q̂.

B1 B2 B3 B4 B5 −Q̂

−
1

−
2

−
3

−
4

b
o
o
ts

tr
a
p

co
rr

ec
ti
o
n

Figure 1. Distribution of bootstrap corrections; n = 50, B = 1000, M = 500.

However, goodness of correction can not be judged only by the distribution of
the correction itself. It is significantly correlated with the log maximum likeli-
hood. To see the real effect of bootstrapping on model selection, compare the
distribution of difference of the values of each estimate for two nested models M1

and M2, since such differences are only relevant in selecting one of the models.
The model M2 is a Gaussian distribution model with two parameters µ and σ2

and the M1 is a Gaussian model with only one parameter σ2 with µ = 0. Figure
2 shows boxplots of Ti(M2) − Ti(M1), for i = 1, . . . , 5 together with boxplots
for −TIC/2, −AIC/2 and the target variable T . In this experiment, bootstrap
samples were generated independently for each model. Otherwise the correlation
between bootstrap samples might affect the behavior of an estimate. This is also
true in practice in using bootstrap type correction. Paradoxical behavior of bias
correction is now clear in the figure. All estimates are distributed around −1 but
in a direction opposite to that in which T is distributed. In fact, a very negative
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value for T corresponds to a very positive value for estimates. Such extreme
values also correspond to extreme observations in which all values are almost
the same. Also we see that T3 is superior to other bootstrap corrections but
not as good as non-bootstrap methods like AIC or TIC in terms of variance.

TT1 T2 T3 T4 T5 −TIC/2 −AIC/2

4
2

0
−

2
−

4
−

6

d
iff

er
en

ce
o
f
es

ti
m

a
te

s

Figure 2. Distribution of difference of values of estimate for two nested
models; n = 50, B = 800, M = 500.

In the following Table 1 and Table 2, frequencies are shown of the model M1

selected. The model M1 is correct and more parsimonious than the M2 in our
case. In other words, Kullback-Leibler information is less for M1 than that for
M2. Table 1 is for the case of bootstrapping 100 times and Table 2 is for the case
of bootstrapping 800 times. The estimate T2 and T3 are better than the others
when the bootstrapping number is 100 and T1 becomes equivalent to T2 or T3 if
the number is increased to 800. This suggests that the rate of convergence of T2

or T3 is a little better than that of T1 in terms of the number of bootstrappings.
However there is no significant difference among the first three estimates and
also from the non-bootstrap estimate −TIC/2 or −AIC/2. The last example is
a practical one of selecting a regression model or of selecting regression variables.
The data used here is “Soil Evaporation Data” by Freund (1979), which is avail-
able as S objects evap.x and evap.y on S or Splus. The number of observations
is 46 and there are 10 candidates of explanatory variables: average air temper-
ature(avat), average humidity(avh), speed of wind (wind), average soil tempera-
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ture(avst), maximum soil temperature(maxst), minimum humidity(minh), max-
imum air temperature(maxat), maximum humidity(maxh), minimum soil tem-
perature(minst) and minimum air temperature(minat) for soil evaporation data.
Explanatory variables are rearranged to make comparison of estimates easier.
The re-sampling method used for bootstrapping is semi-parametric as described
in Example 3. The result in Figure 3 shows that the bootstrapping 100 times is
not enough to have a good approximation to the bootstrap expectation. Figure 4
shows that the bootstrapping 1000 times seems enough. Although all estimates
are downward biased compared with the non-bootstrap estimates, the result of
selection so as to maximize the estimated value is the same, a model which in-
cludes explanatory variables up to the 6th variable maxst.

Table 1. Frequency of M1 selected; n = 50, B = 100, M = 500.

T1 T2 T3 T4 T5 −TIC/2 −AIC/2 T

370 426 421 324 315 421 421 500

Table 2. Frequency of M1 selected; n = 50, B = 800, M = 500.

T1 T2 T3 T4 T5 −TIC/2 −AIC/2 T

423 430 420 408 396 420 420 500
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Figure 3. Soil evaporation data; B = 100.
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Figure 4. Soil evaporation data; B = 1000.

4. Conclusion

In conclusion, bootstrap type estimates considered here are all asymptotically equiv-
alent to each other and also equivalent to a non-bootstrap criterion AIC or TIC under
suitable assumptions. In this respect there is no positive reason why one of the bootstrap
estimates has to be used in place of a non-bootstrap criterion when calculation of the
non-bootstrap criterion is not a real problem. At the same time, our result shows that a
bootstrap estimate like Efron’s can be used freely in place of a non-bootstrap criterion
if the calculation is much easier than that of non-bootstrap estimate. There may exist
other advantages of using bootstrap estimates, for example, very small sample case or
the case when the convergence to the asymptotic distribution is slow or non uniform.
We leave such problems open for future investigation.

Acknowledgement

A part of this work was done during the author’s stay in the Department of Statistics,
UC Berkeley. The author would like to thank Peter Bühlmann and Peter Bickel for their
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