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A CONCEPT OF TYPE-2 p-VALUE

Kesar Singh and Robert H. Berk

Rutgers University

Abstract: A concept of p-value is introduced and developed in this article which 1s
more suitable for the bootstrap. Unlike the classical p-value, which goes to zero under
H, like type-1 error, the proposed p-value goes to zero under H; like type-2 error.
The name for this concept is derived from this fact. Corrections are obtained which
make the type-2 p-value go to U0, 1] faster under Ho and yet do not make its behavior
under H; worse, in terms of slope. In view of the limiting U[0,1] distribution under
Ho, this new p-value is to be used in testing just like the classical p-value.
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1. Introduction

This study was motivated by the need for a concept like the classical p-value,
commonly used for reporting the result of a statistical testing of hypothesis, based
on modern resampling techniques like the bootstrap and the jackknife. Under
H,, the classical p-value related to a test, denoted by p, here, has a uniform or
subuniform distribution on [0,1]. Under H,, it goes to zero, as n — oo, like the
type-1 error « of the test when the type-2 error 3 is held fixed at a nonzero level.
To be precise, if 3 is held fixed at some nonzero level, o, denotes its type-1 error
while p, is the classical p-value, then, typically

1 1
~logp, ~ —loga, a.s.
n n

under H,. See Bahadur (1972). The type-2 p-value (denoted by p},) introduced
here has an asymptotic U[0,1] distribution under Ho, and under H,, it goes to
zero like the type-2 error 3 of the test when the type-1 error « is fixed at a nonzero
level. Thus if « is fixed at a nonzero level, and (3, denotes the corresponding
type-2 error, then, under H,,

1 1
—logp;, ~ —logfB, as.
n n

The name for this new concept is derived from this fact.
Suppose we have data X;,..., X, from a population F, univariate or mul-
tivariate. Let 6 be a univariate functional of F, such as the mean, median,
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variance, correlation, etc. Let T}, be an estimator of §. Consider the hypotheses:
Hy:0 =0, and H, : § > 6,. Even though H, appears to be a simple hypothesis
1t 1s, in most problems that statisticians encounter, a composite hypothesis in-
volving finitely many or infinitely many additional parameters needed to specify
F completely. The classical p-value is defined as

Dn = SUp PF(Tn Z Tnc)7
FeH
where T,,. denotes the computed value of T,,.

In practice though, p, is almost never evaluated exactly, following the above
definition, unless of course when there is a single null distribution. Usually, an
approximation to p, is obtained using asymptotics, with estimated functionals
appearing in the limiting distribution. The limit of —% log p,,, under H,, is known
as Bahadur’s slope, which is used for determining how fast p,, goes to zero under
H,. Indeed, the faster the better. The null distribution of a typical approximated
p-value is asymptotically uniform and Bahadur’s slope is not retained by the
approximations. If a user is testing at a level a, then he would reject H, if and
only if p, < @. Notice that when one does not know whether X-data are from
Hy or H,, resampling can not be used directly to approximate p,. The concept
of type-2 p-value proposed here is defined as follows:

Pn = Pp(T; < 6o),

where F' is the estimated underlying population. Here, T denotes the statistics
T, computed on Yi,...,Y,, a random sample from F. In most applications
F =F,, the empirical distribution of the X-data. In case one has enough faith
in a parametric setup one should use a parametric estimator of F to sample
from, instead of F,,. It makes some of the asymptotics easier but then p’ loses
its nonparametric character.

Heuristically speaking, the motivation for this definition comes from the fact
that, when 6 = 6, p}, is expected to swing to both sides of % equally. On the
other hand when 6 > 6y, p;, is expected to dwindle towards zero. Incidentally, p*
is also the aimed coverage probability of the smallest one sided confidence interval
based on Efron’s percentile method which includes ;. When H; is 8 # 6,, i.e.
H, is two sided, the definition of p} modifies to

pr, = 2min{Px(T; < 6;), 1 — Pp(T, < 6,)}.

In the testing situation Hy : 6 € [a,b] vs. H; € [a,b]¢, where a < b, one could
define the type-2 p-value as

P, = min{Px(T7 > a), Px(T; < b)}.
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For further development along this line in the multiparameter setting with a
general Hy, see Liu and Singh (1993).

For an illustration, consider the binomial problem with n = 20. Let H, :
p=3vs. Hy:p> 7. Let ussay p = 15/20. In this problem, the usual p-value
= 2.1% and the type-2 p-value = 1.4%.

In the next section, we study this type-2 p-value under the null hypothesis.
We establish a result to the effect that its asymptotic distribution is U0, 1]. Thus
in the terminology of Beran (1987), p is a prepivoted statistic under the null.
The typical rate of convergence to uniformity is O(1/4/n). We also correct p;, to
make the convergence rate O(1/n). Our correction is analogous to Efron’s abc
(accelerated bias correction); see Efron (1987) and Hall (1988).

There are two notable features of the modified p} (denoted by p;*): I. It
combines two most popular resampling procedures namely the bootstrap and
the jackknife, and it seems that any one of the two alone is inadequate for the
purpose. II. The correction leaves the index of exponential rate of decay under
H, unchanged or makes it larger. More precisely,

lim inf {-1— logp), — = logp;*] >0
n—oco n n

as n — oo, under H,. This section hinges on some known results on Edgeworth
expansion. The technical discussion is limited to the so-called “functions of mul-
tivariate mean”. It remains to be explored if the same formula for p;* will carry
to other general classes of statistics. In view of the limiting UJ0, 1] distribution
of pX or p2*, a user testing at a level will reject Ho if and only if p};, (or p}*) is
less than a.

In Section 3, we study the type-2 p-value under H;. The discussion of p
under H,, takes us to the large deviation probabilities for bootstrap distributions,
a topic of interest on its own. We establish a result to the effect that

1
E log Pa(T < 6p) ~ Elog Pr(T, < 6o)
n

under H,. The limit of the latter is the same as the index of exponential decay
of 8 when « is held fixed. This index is known as the Hodges-Lehman efficacy in
the literature (see Hodges and Lehman (1956)). Here is an interesting property
of p; under H,. Suppose Fy is a parametric family and the test “Reject H,
if T,, > ¢” enjoys optimality in the Hodges-Lehman sense, i.e. it maximizes
— lim % log 3, when « is held fixed. Then, among all the p; based on different
statistics, the p? based on T, maximizes the limit of —% log p;,, even if one ignores
the parametric family in defining p}, i.e. one simply takes F = F,. On the other
hand, if the model Fy is wrong but T, is a legitimate estimator of 6, then p; is
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still a perfectly legitimate p-value. For example, in the normal model N(6,c?)
case, let T, = X. Here, lim 2 log Pr, (T, < 6o) = —(6—;})29—)3. This is same as the
Hodges-Lehman efficiency of the t-test or the z-test with estimated o?. It should
be remarked here that, under the normal model, Hodges-Lehman efficiency does
not discriminate between the t-test and the z-test, unlike the Bahadur slope.

2. p; under H,

We begin this section with an elementary result which proves that the lim-
iting distribution of p is uniform on [0, 1]. The result assumes that \/n(T,, — 6)
has a limiting normal distribution, though it will extend to the cases where
n®(T, — 6) has a symmetric and continuous limiting distribution, provided there
is an analogous valid bootstrap approximation.

Theorem 2.1. Assume that

Va(T, - 6) == N(0,V2)
and

V(T = T,) = N(0,V7)
under F', a.s. Then, under 6 = 6y, as n — oo,

P(p, <£t) —t,
uniformly in t € [0, 1].
Proof. By definition:
P, = Pp(T; < 6o)
= Po(VA(T: ~ T,) < v/a(6o — Tn).

Polya’s theorem (see Rao (1973), Ch. 2c¢) states that if the limiting distribution in

a weak convergence is continuous, then the distributional convergence is uniform.
Thus, we can write the above as

= &(v/n(6o — T)/Ve) + o(1) as.

using Polya’s theorem. But, the limiting distribution of ®(1/n(T, — 60)/Vr) is
uniform on [0,1], under # = 6. The result follows, using the symmetry of the
normal distribution.

Next, we prepare the framework for a valid one term expansion for the dis-
tribution of p}, assuming the required conditions on 7, and T,;. Let us suppose
that
T,-—06

< 2) = 8(a) + 22 0(0) + a(a)

and
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x
<) =)+ q’\’/(ﬁ)m) + w, (),
where both sup_ |7, (z)| and sup, |w,(z)| are o(n"'/?), and pr(-), gr(:) are even
second degree polynomials with coefficients depending upon F'. Further, suppose
that there are corresponding bootstrap expansions, 1.e.

P (VAT < 2) = 8(a) + EE0(o) + 73(e)

and

P (VAT <o) = (e + £ oa) + wi(a).

where F* is the estimate of F' based on the bootstrap data, and both sup, |r7;(z)|
and sup, |w}(z)| are o(n™'/?) a.s. (See Singh (1981) and Babu and Singh (1983,
1984) for the validity of such expansions.) For our purpose here, though, o(n=1/?)
a.s. is inadequate. We require a different version of o,(n~'/?) which we denote
by 6,(n"1/2).

Definition. We say R, = 6,(n~'/?) if for every € > 0,
P(|R,| > €/+/n) = o(n™?).

We assume here that both sup, |77 (z)| and sup, |w;(z)| are 6,(n~*/?). (See Hall
(1986) which has a stronger bound ,(n~?) for the class of statistics known as
functions of multivariate means, under stronger moment conditions than would
be needed for 5,(n"%/2).)

Theorem 2.2. Let ®(z,) =t. Under the assumed conditions,

Pe(p, < 1) =t - —=lpr(z) + qr(2:)] + ua(t),

vn

where u,(t) — 0, uniformly in t € [0,1].

This establishes the fact that the rate of convergence of the distribution of
p* to uniformity is O(n~1/2), like the rate in the classical Berry-Esseen bound
(see Feller (1971), Ch. 16).

Example. In the most basic case of one-dimensional mean X, pp(z) = —§ 4 (z?

—1) and gr(z) = 1 £2(222 +1). In this case, the existence of six moments of the

population and its continuity, will suffice for 6,(n~1/?) rate. Thus, in this case,
one has

l ‘_l

P(p; <) =t — == S5la” + 208(2) + o(n™?).

6

§
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Proof of Theorem 2.2. Let t, = (T, — 6o)/(Vz/+/n). Fix ¢ > 0. Let B, =
{|tn] < logn and sup, |r*(z)| < €¢/+/n}. Clearly, P(BS) = o(n~1/?). We restrict
(X1,...,X,) to B, in the proof that follows. By definition,

. T, - T.
Pn = PF(W < -tn)

= 8(-t,) + ZEg(t,) + i (-t2)

—o( -1+ 200 4o,

where |a,| < 2%, after certain n onward. For all u € [Z£,1 - Z],

P(p; Su):P(—tn-i-zL—tn) < zu_an>. (2.1)

vn

At this stage, we use the following expansion which can be established using
arguments parallel to Theorem 1 of Abramovitch and Singh (1985).

pr(—ta) _ pr(z) + gr(z) 172
P( —t, + T < x) = &(z) — Tn o(z) + o(n™7%). (2.2)
It is deduced from (2.1) and (2.2) that uniformly in v € [25,1- %], the expansion
stated in Theorem 2 holds.

Now for u < % or >1-— %, one argues using the tools developed above

that
€ 2¢

o < 2€
T 1fu_\/ﬁ,

P(p;, <u) < const.

and
P(p; > u) < const.—, if >1-— -2—6—
"To0 T vn' T T n
Combining these bounds and the fact that ¢ > 0 is arbitrary, the theorem
follows.
Utilizing the expansion provided by Theorem 2, we now develop a correction
formula for p}, based entirely on resampling, such that the corrected version

converges in law to the uniform distribution more rapidly.

Theorem 2.3. Assume that
P(Ipg(2ps) — Pr(2p:)] > €) = o(n™V/?)

and
P(lgp(2ps) — qr(zp;) > €) = o(n™'/2).
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Define .
Py =D, — %(Pﬁ(zp;) + QF(ZP:,))Cb(zP;)‘

Then,

sup |P(p;" <t) —t|=o(n™'/?).
0<t<1

The above theorem resembles Theorem 1 of Abramovitch and Singh (1985)
and its proof is very similar; and hence it is deleted. The assumed conditions
in the theorem are quite reasonable. It will almost always hold under moderate
moment conditions.

Let us write

1
W{PF(-’E) +gr(2)} = apz® + bp.
The dependence of ar and br on n has been suppressed in the notations. In view
of the fact that ‘

Li—Tn )= PF(TL_—TE <0) = Pa(T; < To),

it follows that

ne = 2[Pa(T3 S T0) = 5] = b(0) = -\%

Hall (1988) has shown that, when T, is a function of multivariate means, then

1
ap = gPF,

where pr = the third moment of the linear approximation of ﬁ%’jﬂ
At this point, one may be tempted to use the following estimate for ar :

i = S B (VA(T; = T)* B (Va(T; - TP}

The denominator above estimates V2 consistently, but the numerator does not
estimate the third moment of the linear approximation of /n(T, — 6) up to the
desired order o(1/+/n). This happens because of the fact that the terms beyond
the linear approximation also contribute typically a term of order O(1/4/n) to
the third moment as does the leading linear approximation. To illustrate this,
we consider the example of ¢, = \/T_LXT-"E, whose linear approximation is v/nZ, =
VnEE. It is well known that Bt = —2us/0®/n+o(1/+/n) whereas E(v/nZ,)? =
pa/o®/n.
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Fortunately, we may resort to the other popular resampling method known
as the jackknife for estimating the third moment of the linear approximation of
vn(T, — 0). Define the jackknife pseudo values:

Ji =nT, — (n— 1)Ty;,

where T7,; is computed Just like T, on the data set {X,...,X,} — {X,;}. If one
can write

T,—0=— ZfF +0p(1/\/_)
with F¢p(X;) = 0, then typically

Ji =T =E&p(Xi) + 14,

where max;r; — 0 in probability (see Babu and Singh (1983), Singh and Liu
(1990)). As a result of this representation, it follows that the third moment of
7= 2 &r(Xi) = J5 BER(X,) can be estimated by

1 = 1
;73/—2 Z(Jz - .])3 or m Z(J’ - Tn)3

up to an error o(1/4/n). It may be remarked appropriately here that the failure
of the jackknife in estimating the third moment of \/n(T,, — ) consistently, turns
out to be a blessing in this instance. Define

4 (BJ) =m0 (T, = ) {E[VA(T, — ).

We now have a formula for corrected p, based entirely on resampling.

Formula
Py (BJ) = p;, = {na V27 + ap(BJ)z}. }¢(2p;) (truncated between 0 and 1).

Under appropriate regularity conditions, p}* in Theorem 2.3 can be replaced by
Py (BJ).
3. P under H;

In this section it is assumed that the true value of the parameter 8 is greater
than 6y, which is the null value. This section critically depends on the large
deviation bounds established in Ellis (1984). We restrict T, to be a function of a
multivariate mean. More precisely, let T,, = f(W,,) where W, = (W1, ..., W)

and
1 n
Wi == g;(Xa).
n =1
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Here, g1,9o,...,gr are continuous functions from RF to R. The function f is
also assumed to be continuous. The parameter 6 is assumed to be f(EW,,). For
technical reasons, we have to restrict our X;’s to be bounded r.v.’s. Although,
this setup covers all real life r.v.’s, it leaves out even the most basic models
including the normal r.v.’s.

The standard assumption of finite m.g.f. in an interval around zero, does
suffice in the most basic case when T,, is a univariate mean. However, we are
unable to use Ellis’s result in our setup with just a condition of finite m.g.f.

Consider a test based on T,,, using its asymptotic distribution for setting up
the critical region, for Hy : 8 =0 vs. H; : 8 > 0y. Let 3, denote the type-2 error
of this test, when its type-1 error is fixed at some a : 0 < o < 1. Clearly £,
depends on a.

Theorem 3.1. If 6§ > 0y prevails, then under the assumed conditions of this
section, a.s.

1 1
lim —logp;, = lim Elogﬂn = —HL(9).

n—oo N,

Here HL(6) is the well-known Hodges-Lehman efficacy.

Proof. The claim of the theorem is based on the fact that both = log P(T, < 6,),
where 6, — 6y, and %log P*(Tr < 6,) have the same limit. This follows from
the fact that both W, and W (the corresponding bootstrap mean) have the
same large deviation index. The latter claim basically reduces, in view of Ellis’s
work (see Theorem II.2 of Ellis (1984) or Theorem II.6.1 of Ellis (1985)), to the

elementary fact that
EFr, (") — Erp(e"™)

uniformly on a fixed compact subset of R*, a.s. The details of the proofs are
omitted. '

Remark 3.0. The modified type-2 p-values proposed in the previous sec-
tion tend to zero under H; exponentially at least as fast as the unmodified
type-2 p-value. This can be concluded from the following facts: ®(z,.) = p},
(2ps ) d(2pz) ~ —p}; thus ¢(2p.) ~ —p}2p.. Furthermore, z,. = O(y/n) and
the multipliers of ¢(z,) in the corrections are O(y/n). In fact, p}* = O(npy) if
ar > 0. If ap < 0, then p* = 0 under H; for all large n a.s.

If one carries out a test at « level based on p} and the limiting null distri-
bution is used for setting up the critical value, then the test would be

{Reject Hy iff p} < a}.

How does the type-2 error ) of this test go to zero under H,? It turns out that
the index of exponential rate of decay of 3% is the same as that of 3, which is
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equal to the type-2 error of a test based on T, itself whose type-1 error is fixed
at a. This property is established in the next (and the last) theorem.

Theorem 3.2. Assume that
(C) Mn = Eﬁ’(T',: - Tn)2 S €n,

where €, is a sequence of positive numbers — 0. Then for any a € (0,.5] and
F e Hy,

1 . 1

—log Pr(p > a) ~ =log Gn.

n n -
Proof. Let us fix a positive K such that 25 < a. Clearly 8; = P(p}, > a) under

F €-H,. If a is fixed at some nonzero level, then the corresponding £, is of the
form P(T, < 6y + 6,) for some 6, — 0, under F € H,. Since & < 1 — a, we have

{p;, >21-0a} C{p, > a}.

The result is deduced from the above and the following two set inequalities.

{p}, 2 a} C{T, <6+ K /e} (3.1)
and
{Tn < 60— Kyfen} S {p, 21—} (3.2)

To prove (3.1), we note that if T, > 6,,

P, = Po(T} < 00) = Pa(T; — T < 66— T5,)
< Bp(T* = T)/(Tn — 60)” < en(Ts — 60)

using Markov inequality. Thus if T}, — 6y > K/€,, then
ph <€, /K%, =1/K* < a.

This proves (3.1). Similar arguments prove (3.2).

The condition C in Theorem 3.2 does seem to be excessive, but it will nor-
mally hold when the underlying r.v.’s are bounded. Condition C can be relaxed
to the following condition which will hold in many unbounded cases: For every
A > 0, there exists 6, — 0 such that

P(Ex(T: —T,)* > 6,) < const. exp(—An).

The proof given above for Theorem 3.2 does critically use o < 1/2. Note that
the last set inequality holds without condition C. Thus the slope of P(p; > «)
is at least as big as that of 3,,.
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We conclude this article with some remarks.

Remark 3.1. One implication of Theorem 3.2 is that if a test based on T, is
optimal in the Hodges-Lehman sense, then so is the test based on p}. Note that
p* does not require any parametric model.

Remark 3.2. In order to achieve the actual slope of p;, using a simulation based
bootstrap, one would require the number of replications to go to infinity at an
exponential rate. This suggests that one should use a method like the empirical
saddle point approximation for evaluating p;. From the practical viewpoint,
though, a number of replications like 5,000 should be quite adequate. Under H,,
Np;, , should behave like a Poisson r.v. (N being large and p}, being small) with
mean equal to NP* where N equals the number of replications and pj, , is the
simulation based approximation of p;.

Remark 3.3. Here is an alternative way of defining a bootstrap based p-value
which is second order correct under Hy, in the sense that its distribution converges
to U[0,1] at the rate O(1/n):

pa(4) = Pp (B2 > ),

where V; and V. are the Studentizing statistics of T, and T;;. One clear disad-
vantage of this definition is that one needs to know the analytic form of V. Also,
under Hj, p2(A) does not seem to have any nice interpretation. How do pj(4)
and p** of Section 2 compare under H;? We have the answer to this question in
a very special case, i.e. T, = X,, F is N(u,0°) and 6 = p. In this situation,
p:* (or p:*(BJ)) is superior in the sense of bigger slope. The slope of p;* = 3 -5;
(like the 2-test) and that of p}(A4) = ; log(1 + 5;) (like the t-test).
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