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Abstract: Identification of constant coefficients in a semi-varying coefficient model

is an important issue (Zhang et al (2002)). We propose a novel method for this

by combining local polynomial smoothing (Fan and Zhang (1999)) with shrinkage

estimation (Tibshirani (1996)). Unlike the stepwise procedure (Xia, Zhang, and

Tong (2004)), our method can identify the constant coefficients and estimate the

model simultaneously. By imposing the adaptive LASSO penalty and starting with

the Nadaraya-Watson estimator, the method can identify the constant coefficients

and varying coefficients consistently, and estimate the model with oracle efficiency

(Fan and Li (2001)).
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1. Introduction

Over the past decade, the varying-coefficient model (Hastie and Tibshirani

(1993); Chen and Tsay (1993)) has gained in popularity, and has been widely

used in such disciplines as finance, economics, medicine, ecology, and biology,

due to its good interpretability. Let (Xi, Yi, Zi) be the observation collected

from the ith subject (1 ≤ i ≤ n), where Yi ∈ R is the response of interest,

Xi = (Xi1, . . . , Xid)
⊤ ∈ Rd is the d-dimensional predictor, and Zi ∈ [0, 1] is the

so-called univariate index variable. A varying coefficient model assumes that

Yi = X⊤
i β(Zi) + ei, (1.1)

where ei ∈ R is the random noise satisfying E(ei|Xi, Zi) = 0 almost surely. For

simplicity, we set Xi1 ≡ 1 if there is an intercept in the model. Coefficient vector

β(z) = {β1(z), . . . , βd(z)}⊤ ∈ Rd is an unknown but smooth function in z, whose

true value is given by β0(z) = {β01(z), . . . , β0d(z)}⊤ ∈ Rd. A series of papers (Fan

and Zhang (1999); Cai, Fan, and Li (2000); Fan and Zhang (2000a,b); Huang,

Wu, and Zhou (2002, 2004); Fan and Huang (2005); Fan and Zhang (2008); Wang,

Li, and Huang (2008); Wang and Xia (2009); Wang, Zhu, and Zhou (2009) and

references therein) have considered the estimation of the model.
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Zhang, Lee, and Song (2002) noticed that in practice some of the coefficients

are constant rather than varying, and proposed the so-called semi-varying co-

efficient model. Statistically, treating constant coefficients as varying degrades

estimation efficiency. Without loss of generality, we assume that coefficients for

the first d0 ≤ d predictors vary with z but the rest are constant and do not de-

pend on z, i.e. β0(z) = {β⊤
a0(z), β

⊤
b0}⊤, βa0(z) ∈ Rd0 and βb0 ∈ Rd−d0 . Rarely can

the analysts know a priori which coefficients are constant and which are varying

with the index variable. Therefore, it is of great interest to develop fast and

efficient methods to differentiate constant coefficients from varying ones.

The identification of coefficients can be done in a hypothesis testing frame-

work which treats estimation and model selection separately. See for example

Fan and Li (2001), Huang, Wu, and Zhou (2002), Fan and Huang (2005), and

Wang, Zhu, and Zhou (2009). Alternatively, determining constant coefficients

can be done in a variable selection framework. Variable selection is an impor-

tant topic in modern statistical inference and has been extensively studied. In

the linear regression models, many selection criteria (e.g. AIC and BIC) have

been used in practice. For the varying coefficient models, Xia, Zhang, and Tong

(2004) developed a cross-validation procedure for selecting constant and varying

coefficients. Suppose Il is any subset of {1, 2, . . . , d}. They considered model

Yi =
∑
k ̸∈Il

βak(Zi)Xik +
∑
k∈Il

βbkXik + ei.

For every i, they first estimated β̂bk and β̂ak(u) based on observations {(Yj , Xj , Zj),

j ̸= i}, say β̂−i
bk and β̂−i

ak (u), respectively. The cross-validation sum of squares is

calculated,

CV(Il) = n−1
n∑

i=1

{
Yi −

∑
k∈Il

β̂−i
bk Xik −

∑
k ̸∈Il

β̂−i
ak (Zi)Xik

}2
.

If CV(Il0) = minlCV(Il), the model with constant coefficients for variables in

Il0 is the preferred model. However, as pointed out by the authors, practical

implementation of the cross-validation model selection procedure can be time-

consuming when d is large, since there are
∑d

k=0

(
d

k

)
candidate models.

As computational efficiency is more desirable in many situations, vari-

ous shrinkage methods have been developed; these include, but are not lim-

ited to, the nonnegative garrotte (Breiman (1995); Yuan and Lin (2007)), the

LASSO (Tibshirani (1996); Zou (2006); Zhang and Lu (2007); Wang, Li, and

Tsai (2007)), bridge regression (Fu (1998); Knight and Fu (2000)), the SCAD

(Fan and Li (2001)), and the one-step sparse estimator (Zou and Li (2008)).
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Recently, Fan and Li (2004) extended the SCAD to the partially linear model
(Härdle, Liang, and Gao (2000)) with their focus on the parametric components.
Wang, Chen, and Li (2007) and Wang, Li, and Huang (2008) used the SCAD
method to remove variables from the varying-coefficient models. Li and Liang
(2008) used SCAD to select parametric components via the generalized likelihood
ratio test (Fan, Zhang, and Zhang (2001)) under the assumption that the varying
and invariant coefficients are known a priori. Wang and Xia (2009) proposed a
method combining the ideas of the local polynomial smoothing and the shrinkage
estimation to conduct variable selection for the varying coefficient models. Leng
(2009) proposed another model selection approach for varying-coefficient model.

In this paper, we develop a shrinkage method that is able to identify the
constant coefficients and estimate the model simultaneously. Furthermore, given
the popularity of kernel smoothing methods, it is desirable to have a shrinkage
method that can work with kernel smoothing techniques in a natural way. We
show that the shrinkage parameters selected by the BIC criterion can identify the
constant coefficients and varying coefficients consistently, and that the resulting
estimator can be as efficient as the oracle estimator (Fan and Li (2001)). The
proposed method can be easily extended to many other semiparametric models
where local polynomial methods are used. See for example Zhang and Lin (2003),
Wang, Li, and Huang (2008), and Zou and Li (2008).

The model selection procedure in this paper is different from Wang and Xia
(2009), Wang, Li, and Huang (2008), and Wei, Huang, and Li (2010) in several
aspects. First, the aforementioned papers are concerned about the selection of
variables. For the generalized linear or varying coefficient models specifically,
their goal is to identify those covariates with zero coefficients. The purpose here
is to identify the constant coefficients in a generalized semi-varying coefficient
model. Since the varying coefficient model is an extension of the (constant)
linear regression model, it is important to identify which coefficients remain con-
stant and which need to be varying; see Zhang et al (2002) and Xia, Zhang, and
Tong (2004). Second, and technically, penalizing a varying coefficient to zero
is much easier than to a constant; see Subsection 2.1. We propose to combine
local polynomial smoothing and adaptive L1 penalization for our purpose, which
as far as we know has not been investigated in the literature. Moreover, our
discussion is in a framework for the generalized varying-coefficient model that in-
cludes varying-coefficient models, logistic varying-coefficient models, and Poisson
varying-coefficient models as special cases (Cai, Fan, and Li (2000)), for which
the methods of Wang and Xia (2009), Wang, Li, and Huang (2008), and Wei,
Huang, and Li (2010) cannot be used directly. Since the objective function we
optimize is a penalized likelihood function, the proof is very different from that
for penalized least squares estimation (Wang and Xia (2009); Wei, Huang, and
Li (2010)). Third, we further suggest a two-stage adaptive LASSO approach
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to identify constant coefficients in the generalized varying coefficient models in

sparse and high-dimensional settings where the number of variables can be larger

than the sample size; see Section 5 for details.

This paper is organized as follows. In Section 2, we introduce our model

selection method, present a computational algorithm and a method for selecting

the tuning parameter. We state our theoretical results in Section 3. In Section

4, we report some simulation results and a data analysis. Possible extensions of

the proposed method are discussed in Section 5. The article concludes with a

brief discussion in Section 6. All technical details are left to the Appendix.

2. Methodology

2.1. Penalized least squares method

Without loss of generality, assume that β0(z) = {β⊤
a0(z), β

⊤
b0}⊤, βa0(z) ∈ Rd0

and βb0 ∈ Rd−d0 , and that Z1 ≤ · · · ≤ Zn. Let B0 = {β0(Z1), . . . , β0(Zn)}⊤. For
any 1 ≤ j ≤ d, let bj = {βj(Z2) − βj(Z1), . . . , βj(Zn) − βj(Zn−1)}⊤ ∈ Rn−1 and

∥bj∥ = {
∑n

k=2{βj(Zk)− βj(Zk−1)}2}1/2. It is easy to see that if coefficient βk(z)

is constant, then ∥bk∥ = 0, otherwise ∥bk∥ > 0. Then, following the grouped

LASSO idea of Yuan and Lin (2006), we propose a penalized loss function

Qλ(B) =

n∑
t=1

n∑
i=1

{
Yi −X⊤

i β(Zt)
}2

Kh(Zt − Zi) +

d∑
j=1

λj∥bj∥, (2.1)

where λ = (λ1, . . . , λd)
⊤ ∈ Rd is the tuning parameter, β̂λ(z) = {β̂λ,1(z), . . .,

β̂λ,d(z)}⊤ ∈ Rd, B = {β(Z1), . . . , β(Zn)}⊤, K(s) is a symmetric density function,

h > 0 is a bandwidth and Kh(s) = h−1K(s/h). Our estimator of the model is{
β̂λ(Z1), . . . , β̂λ(Zn)

}⊤
= arg min

B∈Rn×d
Qλ(B). (2.2)

2.2. Local quadratic approximation

In a typical least squares regression, computational algorithms for the LASSO-

type problems have been well developed. These include the shooting algorithm

(Fu (1998); Yuan and Lin (2006)), local quadratic approximation (Fan and Li

(2001)), least angle regression (Efron et al. (2004)), and many others (Zhao and

Yu (2004); Park and Hastie (2007); Zou and Li (2008)). We describe here an easy

implementation based on local quadratic approximation (Fan and Li (2001)).

Specifically, our implementation is based on an iterative algorithm with the

unpenalized Nadaraya-Watson estimator as the initial estimator,

B̂
(m)
λ =

{
β̂
(m)
λ (Z1), . . . , β̂

(m)
λ (Zn)

}
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with m = 0. Let b̂
(m)
λ,j = {β̂λ,j(Z2)− β̂λ,j(Z1), . . . , β̂λ,j(Zn)− β̂λ,j(Zn−1)}⊤. Then,

the loss function in (2.1) can be locally approximated by (Fan and Li (2001);
Hunter and Li (2005))

n∑
t=1

n∑
i=1

{
Yi −X⊤

i β(Zt)
}2

Kh(Zt − Zi) +
d∑

j=1

λj
∥bj∥2

∥b̂(m)
λ,j ∥

. (2.3)

We update the estimator by the solution of β(Zt) that minimizes (2.3), denoted

as B̂
(m+1)
λ . It is easy to see that the minimizer has the closed form

vec(B̂
(m+1)
λ ) =

{
M+D(m)

}−1
N ,

where vec(A) denotes the vectorization of matrix A,

N =


∑n

i=1 YiXi1Kh(Z1 − Zi), . . . ,
∑n

i=1 YiXi1Kh(Zn − Zi)∑n
i=1 YiXi2Kh(Z1 − Zi), . . . ,

∑n
i=1 YiXi2Kh(Zn − Zi)

..., . . . ,
...∑n

i=1 YiXidKh(Z1 − Zi), . . . ,
∑n

i=1 YiXidKh(Zn − Zi)


⊤

∈ Rnd,

where M = (mτ,ι)1≤τ,ι≤d, mτ,ι is a n × n diagonal matrix with its lth diago-
nal component given by

∑n
i=1XiτXiιKh(Zl − Zi), and D(m) is blocked diagonal

matrix whose jth diagonal block is given by

λj

∥b̂λ,j∥


1 −1 0 · · · 0

−1 2 1 · · · 0
...

...

0 · · · −1 2 −1

0 · · · 0 −1 1

 .

As m → ∞, denote the limiting values of B̂
(m+1)
λ and β̂

(m+1)
λ (z), respectively, by

B̂λ and β̂λ(z); these are our final estimators.
When n is very large, the above calculation might be time-consuming as

M is a nd × nd matrix. One way to simplify the calculation is to use sparser
grids, as one anonymous referee suggested. Suppose Z[i], i = 1, 2, . . . , n are the
order statistics of Zi. Consider griding points Z[k], Z[2k], . . . , Z[mk] such that
mk ≤ n < (m+ 1)k, and let

b̃j = (βj(Z[2k])− βj(Z[k]), . . . , βj(Z[mk])− βj(Z[(m−1)k]))
⊤.

The estimation loss function in (2.1) can be replaced by

Q̃λ(B) =

m∑
t=1

n∑
i=1

{
Yi −X⊤

i β(Z[tk])
}2

Kh(Z[tk] − Zi) +

d∑
j=1

λj∥b̃j∥.
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Since bandwidth is roughly the range within which the function can be treated

as constant, with n samples, the number of griding points can be O{n/(nh)} =

O(1/h) asymptotically, which is O(n1/5) if the optimal bandwidth is used. In

practice, one can fix k as a small integer, for example 5. The computational

burden in minimizing Q̃λ(B) is significantly lighter than that of (2.1). Theoretical

justification of this simplification needs to be investigated, but is beyond the scope

of this paper.

We can further extend the theory and methodology to the generalized varying-

coefficient models (GVCM). Consider the penalized local log-likelihood estima-

tion using the grouped LASSO penalty described in Section 2.1 with the like-

lihood function belonging to the exponential family (McCullagh and Nelder

(1989)). A generalized varying-coefficient model (Cai, Fan, and Li (2000)) has

the form

η(z, x) = g{m(z, x)} = x⊤β(z) (2.4)

for some given link function g(·), where m(z, x) is the mean regression function

of the response variable Y given the covariates Z = z and X = x, where X =

(X1, . . . , Xd)
⊤ ∈ Rd is the d-dimensional predictor, and Z ∈ [0, 1]. The local

likelihood version of the grouped LASSO loss function (2.1) is then

QE
λ (B) =

n∑
t=1

n∑
i=1

−L
{
g−1{X⊤

i β(Zt)}, Yi
}
Kh(Zt − Zi) +

d∑
j=1

λj∥bj∥. (2.5)

For logistic varying-coefficient models, (2.5) becomes

QE
λ (B) =

n∑
t=1

n∑
i=1

{
− Yi

{
X⊤

i β(Zt)
}
+ log

{
1 + exp{X⊤

i β(Zt)}
}}

Kh(Zt − Zi)

+

d∑
j=1

λj∥bj∥.

In Poisson log-linear varying-coefficient models, (2.5) can be written as

QE
λ (B) =

n∑
t=1

n∑
i=1

{
−Yi

{
X⊤

i β(Zt)
}
+exp

{
X⊤

i β(Zt)
}}

Kh(Zt−Zi)+

d∑
j=1

λj∥bj∥.

Again, denote the solution of β(z) to (2.5) by{
β̂E
λ (Z1), . . . , β̂

E
λ (Zn)

}⊤
= arg min

B∈Rn×d
QE

λ (B). (2.6)
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2.3. Tuning parameter

Let an = max{λj : 1 ≤ j ≤ d0} and bn = min{λj : d0 < j ≤ d}. In words, an
and bn are the maximal and minimal amounts of shrinkages applied to varying

and constant coefficients, respectively. By Proposition 1 and Theorem 1, we

know that as long as

nh−1/2an → 0 and nh−1/2bn → ∞ (2.7)

are satisfied, the optimal convergence rate can be achieved, the true model can

be consistently identified. Note that there are d shrinkage parameters (i.e., λj ,

1 ≤ j ≤ d). Selecting them to satisfy that requirement is challenging. To bypass

this difficulty, we follow the idea of Zou (2006), Zhang and Lu (2007), Wang, Li,

and Tsai (2007), Zou and Li (2008), to simplify the tuning parameters as

λj =
λ0

n−1/2∥b̃j∥
, (2.8)

where b̃j = {β̃j(Z2)−β̃j(Z1), . . . , β̃j(Zn)−β̃j(Zn−1)}⊤, and β̃j is the jth column of

the unpenalized estimate B̃. Because β̃j is an estimator with λj = 0, the results of

Proposition 1 and Theorem 1 can be applied. If Zi, i = 1, . . . , n, are quasi-uniform

(Eggermont and LaRiccia (2009)), one can verify that as long as λ0nh
−1/2 → 0

but λ0n
3/2 → ∞, the two conditions listed in (2.7) are satisfied. Consequently,

the original d-dimensional problem about λ ∈ Rd becomes a univariate problem

about λ0 ∈ R.
We select λ0 as follows. For each λ ≥ 0, the procedure described in Section

2.2 gives an estimator B̂λ. Denote by dfλ the number of varying coefficients

identified by Bλ with 0 ≤ dfλ ≤ d. Then d − dfλ is the number of non-varying

coefficients. The corresponding RSSλ is

RSSλ = n−2
n∑

t=1

n∑
i=1

{
Yi −X⊤

i β̂λ(Zt)
}2

Kh(Zt − Zi). (2.9)

Then λ0 is selected according to the following BIC-type criterion

BICλ = log(RSSλ) + dfλ × log(nh)

nh
+ (d− dfλ)×

log(n)

n
. (2.10)

Note that there are two penalty terms in (2.10). In the first, the effective sample

size nh is used instead of the original sample size n. The second penalty is for

the global constant coefficients, thus the effective sample size is n. When n is

large and h tends to 0, the penalty is dominated by the first term. However,

for medium sample size, our calculation suggests that adding the second penalty
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term is helpful in identifying the model. The tuning parameter can be obtained
as

λ̂ = argmin
λ

BICλ.

Take S = {j1, . . . , jd∗} as an arbitrary model with a total of 0 ≤ d∗ ≤ d varying
coefficients (i.e., Xij1 . . . , Xij∗d

). Then, ST = {1, . . . , d0} denotes the true model,

and Sλ = {j : ∥b̂λ,j∥ > 0} represents the model identified by the proposed
estimate B̂λ. Consequently, Sλ̂ represents the model identified by B̂λ̂.

3. Theoretical Properties

Let Xia = (Xi1, . . . , Xid0)
⊤ ∈ Rd0 , Xib = (Xi(d0+1), . . . , Xid)

⊤ ∈ Rd−d0 and,

accordingly, β̂a,λ(z) = {β̂λ,1(z), . . . , β̂λ,d0(z)}⊤ ∈ Rd0 and β̂b,λ = {β̂λ,d0+1, . . .,
β̂λ,d}⊤ ∈ Rd−d0 .

Proposition 1 (Estimation sparsity). Assume (C1)−(C6) in the appendix hold,
nh−1/2an → 0, and nh−1/2bn → ∞. Then there is a constant vector β̃b such
that P (β̂b,λ(z) ≡ β̃b) → 1, so the identification is consistent. For the generalized
varying coefficient model, if (E1)−(E4) hold as well, then there is a constant
vector β̃E

b such that P (β̂E
b,λ̂

(z) ≡ β̃E
b ) → 1, so identification is consistent.

If the constant coefficients are ideally specified, (2.2) becomes a standard
semi-varying-coefficient model that can be estimated by some existing methods;
see Fan and Huang (2005) or Xia, Zhang, and Tong (2004). Since this specifi-
cation is not always available in practice, we call the estimator under the ideal
specification the oracle estimator. Specifically, for any z,

β̂ora(z)=
{ 1

n

n∑
i=1

XiaX
⊤
iaKh(Zi−z)

}−1{ 1

n

n∑
i=1

Xia{Yi−X⊤
ibβb0}Kh(Zi−z)

}
. (3.1)

For the generalized varying-coefficient model, the method of Cai, Fan, and
Li (2000) can be used to get the oracle estimate of βa0(·),

β̂E
ora(z) = argminβ(z)

n∑
i=1

L
{
g−1{X⊤

iaβa(z) +X⊤
ibβb0}, Yi

}
Kh(z − Zi). (3.2)

The following theorem establishes the oracle property.

Theorem 1 (Oracle property). Assume (C1)−(C6) in the appendix hold. If
nh4 = o(1), nh−1/2an → 0, and nh−1/2bn → ∞, we have

sup
z

∥β̂a,λ(z)− β̂ora(z)∥ = op(n
−2/5).

For the generalized varying coefficient model, if further (E1)−(E4) hold, we have

sup
z

∥β̂E
a,λ(z)− β̂E

ora(z)∥ = op(n
−2/5).
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Based on the oracle properties in Theorem 1, most statistical inferences for

β̂a,λ can be made exactly the same as with the oracle estimators. For example,

we can construct a simultaneous confidence band, inspired by Fan and Zhang

(2000b). Finally, we establish a theorem indicating that the tuning parameters

selected by the BIC criterion in (2.10) can identify the true model consistently.

Theorem 2 (Selection consistency). Assume conditions (C1)−(C6) in the ap-

pendix hold. Then the tuning parameter λ̂ selected by the BIC criterion (2.10)

can indeed identify the true model consistently, P (Sλ̂ = ST ) → 1 as n → ∞.

4. Numerical Experiments

In this section, we apply the approach to both simulated and actual data

to check the performance of the proposed methods in finite samples. In these

calculations, we first fit an unpenalized varying coefficient model and estimate

β̂(z), where the kernel function K(t) = exp(−t2/2)/
√
2π is used and the optimal

bandwidth is selected via the leaving-one-out cross-validation. The same band-

width is then used for the proposed procedure, and β̂(z) is used as the initial

estimator. The optimal tuning parameter λ̂ is determined by the BIC criterion

(2.10).

4.1. Simulation examples

We generated random samples with p = 7 from three models:

(I) Yi = 2 sin(2πZi)Xi1 + 4Zi(1− Zi)Xi2 + 0Xi3

+0.5Xi4 + 0.5Xi5 +Xi6 + 0.1Xi7 + σe × ei, (4.1)

(II) Yi = 3 sin(2πZi)Xi1 + 8Zi(1− Zi)Xi2 + cos2(2πZi)Xi3

+Xi4 + 0.5Xi5 +Xi6 − 0.5Xi7 + σe × ei, (4.2)

(III) Yi = 3ZiXi1 + 2 sin(2πZi)Xi2 + 15Zi(1− Zi)Xi3

+Xi4 −Xi5 +Xi6 + 0Xi7 + σe × ei, (4.3)

where Xi1 = 1 and (Xi2, . . . , Xi7)
⊤ were generated from a multivariate normal

distribution with cov(Xij1 , Xij2) = 0.5|j1−j2| for any 2 ≤ j1, j2 ≤ 7; the eis

were N(0, 1). The index variable was Uniform[0, 1]. The value of σe was 0.5.

The simulation results are reported in Table 1, with 200 simulation replications

conducted for each model setup.

To evaluate estimation accuracy, we considered the relative estimation error

(REE, Wang and Xia (2009))

REE = 100×
∑n

i=1

∑p
j=1 |β̂λ,j(Zi)− β0j(Zi)|∑n

i=1

∑p
j=1 |β̄j(Zi)− β0j(Zi)|

,
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Table 1. The simulation results based on 200 simulation replications.

Correct identification MREE(%)
n Model frequency Unpenalized estimate Oracle estimate
100 Model I 0.49 53.5% 116.8%
200 Model I 0.91 49.7% 102.2%
400 Model I 0.99 47.9% 100.4%
100 Model II 0.52 59.4% 116.3%
200 Model II 0.92 58.7% 110.4%
400 Model II 0.99 57.6% 108.2%
100 Model III 0.72 64.7% 126.8%
200 Model III 0.85 62.5% 113.4%
400 Model III 1.00 56.7% 102.8%

where β̄j(·) is either the unpenalized estimator or the oracle estimator. The

corresponding REE value measures the estimation accuracy of β̂λ(Zi) relative

to that of β̄j(Zi) (e.g., unpenalized or oracle). For each model and parameter

setting, the medians of REE values (MREE) are summarized in Table 1. The

frequency of the experiments with correct model identifications, the identified

model has the same varying coefficient terms and invariant coefficient terms as

the true model, are also summarized in Table 1.

As one can see from Table 1, all MREE ratios of the penalized estimator

to the unpenalized estimator are much less than 100%, clearly indicating that

the proposed estimates are more efficient than the unpenalized estimates. Fur-

thermore, for every model and noise level, the frequency of the experiments with

correct model identifications steadily increases as the sample size increases, and

approaches 100% quickly, which suggests that our BIC criterion (2.10) can in-

deed identify the true model consistently. Moreover, we find the MREE ratios

of the penalized estimator to the oracle estimator approach 100% quickly, which

corroborates the oracle properties of the proposed estimator.

4.2. The Boston housing data

To illustrate the usefulness of the proposed procedure, we consider the Boston

housing data that concerns the median value of owner-occupied homes for 506

census tracts of Boston from the 1970 census. Following Fan and Huang (2005),

we take MEDV (median value of owner-occupied homes in 1,000USD) as the

response, LSTAT (the percentage of lower status of the population) as the index

variable, and as predictors: INT (the intercept), CRIM (per capita crime rate by

town), RM (average number of rooms per dwelling), PTRATIO (pupil teacher

ratio by town), NOX (nitric oxides concentration parts per 10 million), TAX

(full-value property-tax rate per 10,000 USD), and AGE (proportion of owner-

occupied units built prior to 1940). By doing so, different regression models can
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Figure 1. The fitted coefficients for Boston housing data. The solid lines
are the estimated coefficients, and the dashed lines are their 95% point-wise
confidence bands.

be fitted at different lower status population percentage (see Fan and Huang

(2005)). Before applying our method, both the response and the X-variables

(except for INT) are transformed to have zero mean and unit variance. The

index variable LSTAT is transformed so that its marginal distribution is U [0, 1].

First, a standard leave-one-out cross-validation method without penaliza-

tion suggested a bandwidth h = 0.1739. The optimal tuning parameter was then

selected by the BIC criterion (2.10). The resulting estimate suggests that INT,

CRIM, RM, and NOX have truly varying coefficients depending on the index vari-

able LSTAT, whereas PTRATIO, TAX, and AGE have non-varying coefficients

as −0.1499, 0.0521, and 0.0124, respectively. The coefficients of the relevant vary-

ing coefficients are shown in Figure 1 together with their 95% confidence bands

(the dashed lines, see Zhang and Fan (2000b)). Our identification lends support

to the model used in Fan and Huang (2005).

5. Some Extensions

In this section, we consider the identification of constant coefficients of the

generalized varying coefficients models in the sparse and high-dimensional set-

ting where the number of covariates is larger than the sample size. In this case,

the proposed method in Section 2 is not directly applicable for the reasons dis-

cussed in Fan and Lv (2008). We propose a two-stage adaptive grouped LASSO

approach below. The approach consists of a screening stage to reduce the model
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dimension and a selection stage to identify constant coefficients. In the screening

stage, we apply the grouped LASSO and basis function expansion to simultane-

ously select the important variables and estimate the nonzero varying coefficient

functions by treating the constant coefficients as varying coefficients. Suppose

that the coefficient function βj(z) can be approximated by a linear combination of

basis functions, βj(z) =
∑N

l=1 γkBjl(z), 1 ≤ j ≤ d, where Bjl(z), l = 1, 2, . . . , N,

are basis functions and N is the number of basis functions and allowed to in-

crease with the sample size n. For demonstration, we take that the number of

basis functions, N , is the same for all coefficients. When the number of variables

d or d × N is larger than sample size n, the likelihood method might be not

applicable. In such case, regularized methods are needed. Applying the grouped

LASSO (Yuan and Lin (2006)), consider

argminγ −
n∑

i=1

L
{
g−1{

d∑
j=1

N∑
l=1

XijγkBjl(z), Yi

}
+

d∑
j=1

λj∥γj∥. (5.1)

where λj is the penalty parameter, γj = (γj1, . . . , γjN ) is a N -dimensional coeffi-

cient vector corresponding to the jth variable, and γ = (γ⊤1 , . . . , γ
⊤
d )

⊤. To reduce

computational burden, the group coordinate descent algorithm (Fu (1998); Fried-

man, Hastie, and Tibshirani (2007); Meier, van de Geer, and Bühlmann (2008))

is used to compute the adaptive grouped LASSO estimation defined in (5.1). The

BIC type criterion is used to select the spline knots and shrinkage parameters.

Under appropriate conditions, following Wei, Huang, and Li (2010), we can show

that the adaptive grouped LASSO estimation has the oracle selection property.

In the selection stage, the constant coefficients are selected by the method de-

scribed in Section 2. We report on a simulation study to show the performance

of two-stage adaptive grouped LASSO approach. The datasets were generated

from a varying coefficients model (VCM) and a logistic varying-coefficient model

(Logit-VCM). The response for the former was generated from N(ui, 0.1) and

the latter a Bernoulli random variable with P (Yi = 1) = exp(ui)/(1 + exp(ui))

for all i, with

ui = 3 sin(2πZi)Xi1 + 8Zi(1− Zi)Xi2 + cos2(2πZi)Xi3 − 0.5Xi4 − 0.5Xi6

+0.5Xi7 + 0.5Xi8,

where Zi and Xi = (Xi1, . . . , Xid)
⊤ are the same as those in Section 4.1. Since

we focus on high-dimensional predictors, d = 50 and d = 150 were considered

respectively. For both scenarios, 200 datasets each with sample size n = 100 were

generated and fitted. Table 2 shows the average number of identified varying

coefficients (avgNV) and constant coefficients (avgNC), median mean absolute
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Table 2. Model selection results of two-stage adaptive LASSO estimators
based on 200 replications with n = 100 and different number of covariates
d.

Model d avgNV avgNC median MAPE average computational
time (in second)

VCM d = 50 3.13 4.03 0.014 19.26
VCM d = 150 2.83 4.24 0.031 69.54

Logit-VCM d = 50 2.91 3.97 0.026 129.53
Logit-VCM d = 150 2.57 4.43 0.039 166.53

prediction error (median MAPE), and the average computational time to perform

the two-stage procedures, in seconds. From Table 2, we can see the two-stage

approach can help us quickly perform model section procedure with acceptable

computational time; we used a computer with Intel CPU750. Limited as it is,

however, this short study provides, we hope, a good picture of the performance

of our two-stage adaptive LASSO approach.

6. Conclusion

We propose in this article a method which is able to identify constant co-

efficients and make nonparametric estimation simultaneously. Under some mild

regular conditions, the sparsity and oracle efficiency for the proposed estimators

can be established. A BIC-type criterion was suggested to choose the regu-

larization parameters. An algorithm was developed based on local quadratic

approximation to the criterion function. Numerical experiments indicated that

the proposed procedure was very effective in identifying constant coefficients in a

semi-varying coefficients model and in estimating the regression coefficient func-

tions. Although our proposal is based on a LASSO method due to its simplicity,

similar ideas can be extended to other shrinkage methods, such as the nonnega-

tive garrotte, bridge regression, and SCAD. Further research includes extending

the proposed procedure to longitude data and to the case with a diverging number

of parameters (Kim, Choi, and Oh (2008), Lam and Fan (2008)).

More numerical studies need to be done to evaluate the the finite sample

performance of the two-stage adaptive LASSO approach, and to compare the

two-stage adaptive LASSO approach with other methods. In addition, more

work is needed to establish the the oracle property of the two-stage adaptive

LASSO approach in sparse and high-dimensional settings when the number of

variables is larger than the sample size.
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Appendix: Assumptions and Proofs

To study the asymptotic properties of the proposed method, standard regu-

larity conditions are needed (Fan and Huang (2005)).

(C1) For an s > 2, E|Yi|2s < ∞ and E∥Xi∥2s < ∞.

(C2) The density function of Zi, f(z), is continuous and positively bounded

away from 0 on [0, 1].

(C3) Matrix Ω(z) = E(XiX
⊤
i |Zi = z) is non-singular and has bounded second

order derivatives on [0, 1]. Function E(∥Xi∥4|Zi = z) is also bounded.

(C4) The second order derivative of f(z) and σ2(z) = E(e2i |Zi = z) are bounded.

(C5) K(z) is a symmetric density function with compact support.

(C6) The second order derivatives of coefficients β0j(z), j = 1, . . . , d, are con-

tinuous.

Remark 1. Note that (C2) guarantees the maximal distance between two con-

secutive index variables is only Op(log n/n); see for example Janson (1987). For

an arbitrary index value z ∈ [0, 1], let z∗ be its nearest neighbor among the

observed index values, z∗ = argminz̃∈{Zt:1≤t≤n} |z − z̃|. Under (C6), we have

∥β0(z)−β0(z
∗)∥ = Op(log n/n) also, which is an order substantially smaller than

the optimal nonparametric convergence rate (i.e., n−2/5). Practically, this means

that the observed index values are sufficiently dense on the support. Thus, it

suffices to approximate the entire coefficient curve β0(z) by {β(Zt) : 1 ≤ t ≤ n}.
To develop the asymptotic results for the method in the exponential fam-

ily, we impose regularity conditions (Cai, Fan, and Li (2000)). Let qj(s, y) =

(∂j/∂sj)L{g−1(s), y}.

(E1) The function q2(s, y) < 0 for s ∈ R and y in the range of the response

variable.

(E2) The density function of Z, f(z),, Γ(z), Var{Y |Z = z,X = x}, the first

order derivative of Var{Y |Z = z,X = x} and the third order derivatives

of g(·) are continuous at z. Furthermore, f(z) > 0 and Γ(u) > 0.
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(E3) E{|X|3|Z = z} is continuous at z.

(E4) E(Y 4|Z = z,X = x) is bounded in a neighborhood of z.

Lemma A.1. Suppose (ξi, Zi), i = 1, . . . , n are i.i.d random vectors, where ξis

are scalar random variables. Suppose E|ξi|s < ∞ and supz
∫
|y|sf(z, v)dv < ∞,

where f denotes the joint density of (ξ1, Z1). Let K be a bounded positive function

with bounded support, satisfying the Lipschitz condition. Then

sup
z∈[0,1]

∣∣∣n−1
n∑

i=1

[
Kh(Zi − z)ξi − E{Kh(Zi − z)ξi}

]∣∣∣ = Op

(
log(1/h)

nh

)1/2

provided n2δ−1h → ∞ for some δ < 1− s−1.

The proof of the Lemma can be found in Mack and Silverman (1982), or Fan

and Zhang (2000a).

Lemma A.2. If (C1)−(C6) hold, and nh−1/2an → 0, then we must have

n−1
n∑

t=1

∥β̂(Zt)− β(Zt)∥2 = Op

{
(nh)−1/2

}
.

Proof. For an arbitrary matrix A = (aij), ∥A∥2 =
∑

a2ij . We use u = (utj) ∈
Rn×d to denote an arbitrary n × d matrix with rows u⊤1 , . . . , u

⊤
n and columns

v1, . . . , vd. Let B0 = {β0(Z1), . . . , β0(Zn)} ∈ Rn×d. By Fan and Li (2001), it

suffices to show that for any small probability ϵ > 0, we can always find a

constant C > 0 such that

lim
n

inf P
{

inf
n−1∥u∥=C

Qλ(B0 + (nh)−1/2u) > Qλ(B0)
}
= 1− ϵ. (A.1)

By definition of Qλ(B), we have

hn−1
{
Qλ(B0 + (nh)−1/2u)−Qλ(B0)

}
= hn−1

n∑
t=1

n∑
i=1

(
Yi −X⊤

i {β0(Zt) + (nh)−1/2ut}
)2

Kh(Zt − Zi)

−h

n

n∑
t=1

n∑
i=1

(
Yi −X⊤

i β0(Zt)
)2

Kh(Zt − Zi)

+
h

n

d∑
j=1

λj

(
∥b0j + (nh)−1vj∥ − ∥b0j∥

)
:= R1, (A.2)
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where b0j = {β0j(Z2) − β0j(Z1), . . . , β0j(Zn) − β0j(Zn−1)}. By simple algebraic

calculation and the fact that ∥b0j∥ = 0 for any j > d0, we have

R1 = n−1
n∑

t=1

{
u⊤t Σ̂(Zt)ut − 2u⊤t êt

}
+hn−1

d0∑
j=1

λj

(
∥b0j + (nh)−1vj∥ − ∥b0j∥

)
+ hn−1

d∑
j=d0+1

λj

(
∥(nh)−1vj∥

≥ n−1
n∑

t=1

{
u⊤t Σ̂(Zt)ut − 2u⊤t êt

}
+ hn−1

d0∑
j=1

λj

(
∥b0j + (nh)−1vj∥ − ∥b0j∥

)
,

where Σ̂(Zt) = n−1
∑

iXiX
⊤
i Kh(Zt − Zi), êt = (n−1h)1/2

∑n
i=1Xi{X⊤

i [β(Zt) −
β(Zi)] + ei}Kh(Zt − Zi). Let λ̂min

t be the smallest eigenvalue of Σ̂(Zt), λ̂min =

min{λ̂min
t , t = 1, . . . , n}, and ê = (ê1, . . . , ên)

⊤inRn×d. We have

R2 ≥ n−1
n∑

t=1

{
∥ut∥2λ̂min

t − 2∥ut∥∥êt∥
}
− n−3/2h1/2

d0∑
j=1

λj∥vj∥

≥ λ̂min{n−1
∑
t

∥ut∥2} − n−1
( n∑

t=1

2∥ut∥ · ∥êt∥
)
− n−3/2h1/2

d0∑
j=1

λj∥vj∥

≥ λ̂min{n−1∥u∥2} − 2(n−1∥u∥2)1/2(n−1∥ê∥2)1/2 − n−3/2h1/2
d0∑
j=1

λj∥vj∥ := R3.

By the condition n−1∥u∥2 = C, we have

R3 = λ̂min × C2 − 2C × (n−1∥ê∥2)1/2 − n−3/2h1/2
d0∑
j=1

λj∥vj∥

≥ λ̂min × C2 − 2C × (n−1∥ê∥2)1/2 − n−3/2h1/2an

d0∑
j=1

∥vj∥

≥ λ̂min × C2 − 2C × (n−1∥ê∥2)1/2 − n−3/2h1/2an

d0∑
j=1

(n−1
d∑

j=1

∥vj∥2)1/2

= λ̂min × C2 − 2C × (n−1∥ê∥2)1/2 − n−3/2h1/2anC. (A.3)

After some algebraic calculations, we have n−1∥ê∥2 = Op(1). By Lemma A.1

and (C3), we have P (λmin → λmin
0 ) → 1, where λmin

0 = infz∈[0,1] λmin(f(z)Ω(z)),

λmin(A) stands for the minimal eigenvalue of an arbitrary positive definite matrix

A. By (C2), (C3), and Lemma A.1, we have λmin
0 > 0. Consequently, the last
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term in (A.3) is dominated by the first two terms because, in the last term,

nh−1/2an → 0. Lastly, note that the first term in (A.3) is quadratic in C while

the second term is linear in C. As long as C is sufficiently large, the right hand

side of (A.3) is guaranteed to be positive with probability arbitrarily close to 1.

This proves (A.1). The proof is complete.

Lemma A.3. If (E1)−(E4), (C5)−(C6) hold and nh−1/2an → 0, then

n−1
n∑

t=1

∥β̂E(Zt)− β(Zt)∥2 = Op

{
(nh)−1

}
.

Proof. As in Lemma A.2, it suffices to show that for any small probability ϵ > 0,

we can always find a constant C > 0, such that

lim
n

inf P
{

inf
n−1∥u∥=C

QE
λ (B0 + (nh)−1/2u) > QE

λ (B0)
}
= 1− ϵ. (A.4)

By definition of QE
λ (B), we have

hn−1
{
QE

λ (B0 + (nh)−1/2u)−QE
λ (B0)

}
= hn−1

n∑
t=1

n∑
i=1

L
{
g−1

{
X⊤

i {β0(Zt) + (nh)−1/2ut}
}
, Yi

}
Kh(Zt − Zi)

−h

n

n∑
t=1

n∑
i=1

L
{
g−1

{
X⊤

i β0(Zt)
}
, Yi

}
Kh(Zt − Zi)

+
h

n

d∑
j=1

λj

(
∥b0j + (nh)−1vj∥ − ∥b0j∥

)
:= E1 + E2,

where b0j = {β0j(Z2)−β0j(Z1), . . . , β0j(Zn)−β0j(Zn−1)}. Using Taylor expansion

of L{g−1(·), y}, we have

E1 = n−1
n∑

t=1

{
u⊤t Wt + 2−1u⊤t ∆n(Zt)ut{1 + op(1)}

}
,

where

Wt = (n−1h)1/2
n∑

i=1

q1{X⊤
i β0(Zt), Yi}XiKh(Zt − Zi),

∆n(Zt) = n−1
n∑

i=1

q2{X⊤
i β0(Zt), Yi}XiX

⊤
i Kh(Zt − Zi),



592 TAO HU AND YINGCUN XIA

and ηi is between X⊤
i {β0(Zt)+(nh)−1/2ut} and X⊤

i β0(Zt). Let λ̂
min
t be the small-

est eigenvalue of ∆n(Zt), λ̂min = min{λ̂min
t , t = 1, . . . , n}, andW = (W1, . . . ,Wn)

⊤

∈ Rn×d. We have

E1 ≥ n−1
n∑

t=1

{
∥ut∥2λ̂min

t − ∥ut∥∥Wt∥{1 + op(1)}
}

≥ λ̂min

{
n−1

∑
t

∥ut∥2
}
− n−1

( n∑
t=1

∥ut∥ · ∥Wt∥{1 + op(1)}
)

≥ λ̂min{n−1∥u∥2} − (n−1∥u∥2)1/2(n−1∥W∥2)1/2{1 + op(1)}.

By the condition n−1∥u∥2 = C, we have

E1 ≥ λ̂min × C2 − C × (n−1∥W∥2)1/2{1 + op(1)}.

After some algebraic calculations, we have n−1∥W∥2 = Op(1). The rest of the

proof follows that of Lemma A.2.

Proof of Proposition 1. We only need to prove that P (∥b̂λ,j∥ = 0) → 1

with j = d. The proofs for d0 < j < d are similar. If the claim is not true,

∥b̂λ,d∥ = 0, since bλ,d = {βd(Z2) − βd(Z1), . . . , βd(Zn) − βd(Zn−1)}⊤, then ν =

(βd(Z1), . . . , βd(Zn))
⊤ is the solution to the normal equation

0 =
∂Qλ(B)

∂ν
= α1 + α2, (A.5)

where α1 is a n-dimensional vector with its tth component given by α1t. If t = 1,

then α1t = λj{βd(Z1) − βd(Z2)}/∥bd∥; if 1 < t < n, then α1t = λj{2βd(Zt) −
βd(Zt−1)−βd(Zt+1)}/∥bd∥; if t = n, then α1t = λj(βd(Zn)−βd(Zn−1))/∥bd∥. α2 is

a n-dimensional vector with its tth component given by α2t = −2
∑n

i=1Xid{Yi−
X⊤

i β̂λ(Zt)}Kh(Zt − Zi). By standard arguments of kernel smoothing, and ap-

plying Lemma A.1 and Lemma A.2, we have ∥α2∥ = Op(nh
−1/2). On the other

hand, we know that P (∥α1∥ > ∥α2∥) → 1. Consequently, we know that, with

probability tending to one, (A.5) cannot hold. This implies that b̂λ,j must

be located where the objective function Qλ(B) is not differentiable. Since the

only place where Qλ(B) is not differentiable for bd is the origin, we know that

P (∥b̂λ,j∥ = 0) → 1. This completes the proof.

For the generalized model, we only need to prove that P (∥b̂Eλ,j∥ = 0) → 1

with j = d. The proofs for d0 < j < d are similar. If the claim is not true,

∥b̂Eλ,d∥ = 0, since bEλ,d = {βE
d (Z2) − βE

d (Z1), . . . , β
E
d (Zn) − βE

d (Zn−1)}⊤, then

ν = (βE
d (Z1), . . . , β

E
d (Zn))

⊤ satisfies

0 =
∂QE

λ (B)

∂ν
= α1 + α2, (A.6)
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where α1 is a n-dimensional vector with its tth component given by α1t. If t = 1,

then α1t = λj{βE
d (Z1) − βE

d (Z2)}/∥bEd ∥; if 1 < t < n, then α1t = λj{2βE
d (Zt) −

βE
d (Zt−1)−βE

d (Zt+1)}/∥bEd ∥; if t = n, then α1t = λj{βE
d (Zn)−βE

d (Zn−1)}/∥bEd ∥.
α2 is a n-dimensional vector with its tth component given by

α2t = −2

n∑
i=1

Xidq1{g−1{X⊤
i β̂λ(Zt)}, Yi}Kh(Zt − Zi).

By standard arguments of kernel smoothing, and applying Lemma A.1 and

Lemma A.2, we have ∥α2∥ = Op(nh
−1/2). The rest of the proof follows that

of the simple varying coefficient model and is omitted.

Proof of Theorem 1. By Lemma A.2, we know that b̂λ,j = 0 (d0 < j ≤ d) with

probability tending to one. Let L ∈ Rd0 , with jth component given by Lj . If

t = 1, then Lj = λj{βj(Z1)−βj(Z2)}/∥bλ,j∥; if 1 < t < n, then Lj = λj{2βj(Zt)−
βj(Zt+1)− βj(Zt−1)}/∥bλ,j∥; if t = n, then Lj = λj{2βj(Zn)− βj(Zn−1)}/∥bλ,j∥.
Consequently, we know that β̂a,λ(Zt) must solve

1

n

n∑
i=1

Xia

{
Yi −X⊤

iaβ̂a,λ −X⊤
ib β̂b,λ

}
Kh(Zi − Zt) + n−1L = 0,

which implies that β̂a,λ(Zt) is of the form

β̂a,λ(Zt) =
{
Σ1(Zt)

}−1{
n−1

n∑
i=1

Xia{Yi −X⊤
ib β̂b,λ}Kh(Zi − Zt) + n−1L

}
,

where Σ1(Zt) = n−1
∑n

i=1XiaX
⊤
iaKh(Zi − Zt). Comparing with the oracle esti-

mator (3.1), we know that

∥β̂a,λ(Zt)− β̂ora(Zt)∥

=
∥∥∥{Σ1(Zt)}−1

{
n−1L+Σ2(Zt){(β̂b − βb0) + (βb0 − β̂b,λ)}

}∥∥∥
≤ λ−1

1,min∥n
−1L∥+ λ−1

1,minλ2,max∥(β̂b − βb0)∥+ λ−1
1,minλ2,max∥(βb0 − β̂b,λ)∥

:= J1 + J2 + J3,

where Σ2(Zt) = {n−1
∑n

i=1XibX
⊤
ibK(Zi − Zt)}, λ1,min = min{λmin(Σ1(Zt)), t =

1, . . . , n}, and λ2,max = max{λmax(Σ2(Zt)), t = 1, . . . , n}. For J1, applying Lemma

A.1, we have J1 ≤ C{nλ1,min}−1d0an = op(n
−2h1/2) = op(n

−2/5). By Theo-

rem 4.1 and Lemma A.1, we have J2 = Op(n
−1/2). By Lemma A.2, we have

J3 = op(n
−2/5). Therefore, the theorem follows.

Now consider the generalized varying coefficient model. By Lemma A.3, we

know that b̂λ,j = 0 (d0 < j ≤ d) with probability tending to one. Let L ∈ Rd0 ,
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with jth component given by Lj . If t = 1, then Lj = λj{βE
j (Z1)−βE

j (Z2)}/∥bEλ,j∥;
if 1 < t < n, then Lj = λj{2βE

j (Zt)−βE
j (Zt+1)−βE

j (Zt−1)}/∥bEλ,j∥; if t = n, then

Lj = λj{2βE
j (Zn) − βE

j (Zn−1)}/∥bEλ,j∥. Consequently, using a Taylor expansion,

we know that β̂a,λ(Zt) must solve

n−1
n∑

i=1

L
{
g−1{X⊤

i β(Zt)}, Yi
}

+
{
n−1

n∑
i=1

q1{Xiβ(Zt), Yi}Xia(β̂a(Zt)− βa(Zt))Kh(Zt − Zi)
}

+
1

2
(β̂a(Zt)− βa(Zt))

⊤

×
{
n−1

n∑
i=1

q2{Xiβ(Zt), Yi}XiaX
⊤
iaKh(Zt − Zi)

}
(β̂a(Zt)− βa(Zt))

+
1

6

n∑
i=1

q3

{
Xiβ̄(Zt), Yi

}{
X⊤

ia(β̂a(Zt)− βa(Zt))
}3

Kh(Zt − Zi) + n−1L = 0,

where β̄(Zt) is between β̂(Zt) and β(Zt).

Using the arguments used for Theorem 2 in Carroll et al. (1997), it can be

shown that

β̂a(Zt)− β(Zt) =
{
n−1

n∑
i=1

q2{Xiβ(Zt), Yi}XiaX
⊤
iaKh(Zt − Zi)

}−1

×
{
n−1

n∑
i=1

q1{Xiβ(Zt), Yi}XiaKh(Zt − Zi) + n−1L
}

+op
{
(nh)−1/2

}
.

From (A.10) in the Appendix of Cai, Fan, and Li (2000), we obtain

β̂ora(Zt)− β(Zt) =
{
n−1

n∑
i=1

q2{Xiβ(Zt), Yi}XiaX
⊤
iaKh(Zt − Zi)

}−1

×
{
n−1

n∑
i=1

q1{Xiβ(Zt), Yi}XiaKh(Zt − Zi)
}
+ op

{
(nh)−1/2

}
.

Comparing with the oracle estimator (3.2), we know that

∥β̂a,λ(Zt)− β̂ora(Zt)∥ = ∥Σ3(Zt)
−1

{
n−1L

}
∥ ≤ λ−1

3,min∥n
−1L∥ := J4,

where Σ3(Zt) = n−1
∑n

i=1 q2{Xiβ(Zt), Yi}XiaX
⊤
iaKh(Zt−Zi), λ3,min = min{λmin

(Σ3(Zt)), t = 1, . . . , n}. For J4, applying Lemma A.1, we have J4 ≤ C{nλ3,min}−1

d0an = op(n
−2h1/2) = op(n

−2/5). This completes the proof.
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Proof of Theorem 2. For an arbitrary model S, we say it is underfitted if it

misses at least one variable with non-zero coefficient, i.e., S ̸⊃ ST ; it is overfitted

if S covers all relevant variables with varying coefficient, but also includes at

least one predictor with constant coefficient, i.e., S ⊃ ST ; but S ≠ ST ; Then,

according to whether the model Sλ is underfitted, correctly fitted, or overfitted,

we can create three mutually exclusive sets R+ = {λ ∈ Rd : Sλ ⊃ ST ,Sλ ̸= ST },
R0 = {λ ∈ Rd : Sλ = ST }, R− = {λ ∈ Rd : Sλ ̸⊃ ST }. Following Wang and

Leng (2007), we define a reference tuning parameter sequence λn according to

(2.8) with λ0 = n−3/2h log(n). It follows that such a tuning parameter sequence

satisfies the technical conditions as specified in (2.7). Consequently, we know

that P (Sλn = ST ) → 1. Then, the theorem can be proved by comparing BICλn

and BICλ. We consider two cases separately.

Case 1. (Underfitted model) Recall that B̂λ automatically determines a model

Sλ. Under such a model Sλ, we can define another unpenalized estimate B̃Sλ
as

B̃Sλ
= arg min

{∥bj∥=0,∀j ̸∈Sλ}

n∑
t=1

n∑
i=1

{
Yi −X⊤

i β(Zt)
}2

Kh(Zt − Zi).

In other words, B̃Sλ
= (β̃Sλ

(Z1), . . . , β̃Sλ
(Zn))

⊤ is the unpenalized estimator

under the model determined by B̃λ. By definition, we have RSSλ ≥ RSSSλ
,

where

RSSSλ
= n−2

n∑
t=1

n∑
i=1

{
Yi −X⊤

i β̃Sλ
(Zt)

}2
Kh(Zi − Zt).

Due to the fact that BS ̸= B0 for any S ̸⊃ ST , we know that

RSSλ − RSSλn > n−1
∑
t

{
β̂Sλ

(Zt)− β̂λ(Zt)
}⊤

Σ̂(Zt)
{
β̂Sλ

(Zt)− β̂λ(Zt)
}

≥ λ̂min

{
n−1∥β̂Sλ

(Zt)− β̂λ(Zt)∥2
}

= λ̂min

{
∥B̂Sλ

− B̂λ∥
}
→ λmin

0 ∥BSλ
−B0∥ > 0,

in probability, where Σ̂(Zt) = n−1
∑

iXiX
⊤
i Kh(Zt−Zi). This, together with the

definition of BICλ, suggest that

P ( inf
λ∈R−

BICλ > BICλn) → 1. (A.7)

Case 2. (Overfitted model) Consider an arbitrary λ ∈ R+ (i.e. Sλ ⊃ ST but

Sλ ̸= ST ). For an unpenalized estimator β̃(Zt), we must have
∑n

i=1{Yi −
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X⊤
i β̃(Zt)}XiKh(Zt − Zi) = 0. Thus,

n−2RSSλ = n−2
∑
t,i

{
Yi −X⊤

i β̃(Zt)
}2

Kh(Zt − Zi)

+n−1
∑
t

{
β̃(Zt)− β̂λ(Zt)

}⊤
Σ̂(Zt)

{
β̃(Zt)− β̂λ(Zt)

}
:= RSSF +Rλ. (A.8)

It follows that

log(RSSλ)− log(RSSF ) = log
(RSSλ
RSSF

)
= log

(
RSSF
RSSF

+ n−1RSSF

n∑
t=1

{
β̃(Zt)− β̃Sλ

}⊤
Σ̂(Zt)

{
β̃(Zt)− β̃Sλ

})

≥ −n−1RSSF

n∑
t=1

{
β̃(Zt)− β̃Sλ

}⊤
Σ̂(Zt)

{
β̃(Zt)− β̃Sλ

}
≥ λ̂min

RSSF

(
n−1

n∑
t=1

∥β̃(Zt)− β̃Sλ
∥2
)
= −|Op{(nh)−1}|, (A.9)

where the last equality is due to the fact that

∥β̃(Zt)− β̃Sλ
(Zt)∥2

n
≤ ∥β̃Sλ

(Zt)− β0(Zt)∥2

n
+

∥β̃(Zt)− β0(Zt)∥2

n
= Op{(nh)−1}

for any S ⊃ ST . Similarly, we can prove that

log(RSSλ)− log(RSSF ) = Op{(nh)−1}. (A.10)

Combining the results of (A.9) and (A.10) we know that infλ∈R+ log RSSλ −
log RSSλn ≥ −|Op{(nh)−1}|. Consequently, it follows that

inf
λ∈R+

BICλ − BICλn =
(

inf
λ∈R+

log RSSλ − log RSSλn

)
+(dfλ − dfλn)×

{ log(nh)

nh
− log(n)

n

}
≥ −|Op{(nh)−1}|+ (dfλ − dfλn)×

log(nh)

nh

{
1 + o(1)

}
≥ −|Op{(nh)−1}|+ log(nh)

nh

{
1 + o(1)

}
, (A.11)

where the last equality is due to the following. First, because the reference se-

quence λn satisfies (2.7), by Proposition 1 we know that P (dfλn = d0) → 1.
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Second, because λ ∈ R+ and Sλ is an overfitted model, we must have P (dfλn ≥
d0+1) → 1. Third, note that log(nh) ∝ log n → ∞. Consequently, with probabil-

ity tending to one, we have dfλ−dfλn ≥ 1. It is clear that, with probability tending

to one, the right side of (A.11) is guaranteed to be positive. Consequently,

P
(

inf
λ∈R+

BICλ > BICλn

)
→ 1. (A.12)

Combining the results from (A.7) and (A.12), we have

P
(

inf
λ∈R−∪R+

BICλ > BICλn

)
→ 1. (A.13)

Then (A.13) implies that, with probability tending to one, the tuning parameters

failing to identify the true model cannot be selected by our BIC criterion, because

it is at least as unfavorable as our reference sequence λn. Consequently, we know

that P (Sλ̂ = ST ) → 1. This completes the proof.
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