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Abstract: An information theoretic approach to the evaluation of 2×2 contingency

tables is proposed. By investigating the relationship between the Kullback-Leibler

divergence and the maximum likelihood estimator, information identities are es-

tablished for testing hypotheses, in particular, for testing independence. These

identities not only validate the calibration of p values, but also yield a unified

power analysis for the likelihood ratio test, Fisher’s exact test and the Pearson-

Yates chi-square test. It is shown that a widely discussed exact unconditional test

for the equality of binomial parameters is ill-posed for testing independence, and

that using this test to criticize Fisher’s exact test as being conservative is logically

flawed.
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1. Introduction

Evaluation of association and independence between two categorical factors

is a classic topic of interest in statistical inference. Pearson’s celebrated goodness-

of-fit test yielded the chi-square test for the analysis of a 2× 2 contingency table

(Pearson (1900, 1904)). Yule (1911) introduced a test for association through

testing the equality of two independent binomial proportions. Fisher (1935)

characterized the randomization of two-factor association using the extended

hypergeometric distribution, which gave rise to his exact test.

By the 1930’s the philosophy of hypothesis testing had been well established

by Fisher (1925, 1935) and Neyman and Pearson (1928), among others. It also

initiated the long debate concerning the two approaches: significance testing

for Fisher, and hypothesis testing for Neyman and Pearson. Testing for inde-

pendence in a 2 × 2 table was a notable example in these arguments. While

the debate was focused on the notions of inductive inference, significance level,

and decision theory for testing hypotheses, the importance of power evaluation

was generally accepted (e.g., Fisher (1946)) with the adoption of the idea of

identifying appropriate critical regions for constructing more sensitive tests. For

example, in testing the equality of two binomial parameters by Yule’s test, the
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p values and the power at alternatives can be computed from either the normal

approximation or the exact distribution. However, unified power analysis has not

been fully developed for Pearson’s chi-square or Fisher’s exact test for assessing

independence in a 2 × 2 table. This will be investigated here.

Meanwhile, a controversial issue arises when using the exact test, due to its

discrete nature. With the limited sample space defined by fixed row and column

margins, it yields a conservative test when the sample size is not large. Barnard

(1945, 1949) discussed this issue using the Convexity-Symmetry-Maximum (CSM)

triple-condition test based on the sample space of the two independent binomi-

als model. This led to studying the so-called unconditional test where only one

margin of the 2 × 2 table is fixed. Another classic unconditional test proposed

in the 1950’s is essentially a mixture of the exact conditional tests (Bennet and

Hsu (1960)). The test aims at finding a more powerful critical region subject to

a nominal significance level. However, the advantage over Fisher’s exact test can

only be achieved by considering biased or raised levels for the conditional tests

which are implemented in constructing the unconditional test (Boschloo (1970))

The criticism of conservativeness of Fisher’s exact test reached a climax when

Berkson (1978) dispraised Fisher’s exact test using arguments based on Yule’s

test for the equality of two independent binomial proportions. Since then, Yule’s

test has been the most widely discussed exact unconditional test in the literature.

Yates (1984) gave supporting arguments for Fisher’s exact test, noting that “tests

for independence in a 2 × 2 table must be conditioned on both margins”. Most

discussants of Yates’ paper agreed with his assertion. However, this remains a

debated issue in the literature, primarily due to the lack of unified power analysis

for both Pearson’s chi-square test and Fisher’s exact test. Indeed, a thorough

comparison between conditional and unconditional tests has not been undertaken

in the literature, but is considered here.

The paper proceeds as follows. Tests for independence in a 2×2 contingency

table are defined in Section 2. This is followed by a calibration of the p values

between the chi-square, the exact and the likelihood ratio tests over the common

sample space of their null distributions. The calibration is derived together with a

fundamental likelihood identity, defined using “mutual information”, which yields

proper representations of the p values based on the conditional distributions. In

Section 3, the likelihood identity is generalized to yield an invariance property

of information decompositions, which is used to develop the power analysis at

alternative hypotheses where the odds ratios differ from one. This leads to the

identification of the logical flaw in comparing Yule’s test with Fisher’s test for

independence in a 2 × 2 table. Applications of the information identity to two-

way tables for testing model-data fit for general association models are in Section

4. In conclusion, we note that Fisher’s “most relevant set” (Fisher (1935) and
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Bartlett (1984)) is characterized, where a unified power analysis of Pearson’s
chi-square test and Fisher’s exact test is validated.

2. Testing Independence in a 2 × 2 Contingency Table

In the analysis of categorical data, a fundamental problem is to decide

whether an attribute A (or not A) is randomly allocated to two mutually ex-
clusive subpopulations defined by another dichotomous factor. The statistical
question is to test whether independence, or no association, holds between the

two dichotomous factors. In certain designs of experiments, a random sample
is often selected from the entire population to assess the odds of having the

attribute A in the two subpopulations (e.g., Lehmann (1986, Sec. 4.7)). The
observed data (with sample size N) are frequency counts, which are expressed as

a 2 × 2 contingency table:

A A Total

Group 1 x11 x12 x1·

Group 2 x21 x22 x2·

Total x·1 x·2 N .

(2.1)

A general probability structure of the 2× 2 table of (2.1) is the multinomial

model, which defines the distribution of the four mutually exclusive categories
in the population. With a fixed sample total N , the data is governed by the

probability model:

P{X = (X11 = x11, X12 = x12; X21 = x21, X22 = x22)}

=
N !

x11!x12!x21!x22!
px11

11 p
x12

12 p
x21

21 p
x22

22 , (2.2)

where

P
{

(p11, p12; p21, p22) :
∑2

i=1

∑2

j=1
pij = 1

}

is the parameter space with three degrees of freedom (d.o.f.). The units of the
two rows may be randomly selected from the two mutually exclusive subpopu-

lations separately, and the units having factor A are counted. This defines two
independent binomial samples with the row margins fixed, forming Groups 1 and

2 of (2.1) (e.g., Yule (1911), Barnard (1947) and Pearson (1947)). In this case,
the total count x·1(= x11 +x21) of factor A is a random variable, and conditioned

on the row margins, (2.2) yields

P{X = (X11 = x11, X21 = x21 | X11 +X21 = x·1)}

=

(

x1·

x11

)(

x2·

x21

)

px11

1 qx12

1 px21

2 qx22

2
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=

(

x1·

x11

)(

x2·

x21

)

qx1·

1 qx2·

2 exp
[

x11 logψ + (x11 + x21) log
(p2

q2

)]

. (2.3)

Here pi = pi1/(pi1 + pi2), qi = 1− pi, i = 1, 2, form a parameter space with two

degrees of freedom. The functional parameter ψ = p11p22/p12p21 = p1q2/p2q1
is called the odds ratio or, the cross-product ratio. Clearly, knowing the pij ’s

implies knowing pi, i = 1, 2, and thus knowing ψ; the converse does not hold,

except that p1 = p2 when ψ = 1.

Another commonly discussed experiment is two comparative binomial trials

(e.g., Barnard (1947), Plackett (1977), Kempthorne (1978), Yates (1984), Little

(1989) and Greenland (1991)). The model assumes that x1· out of N individu-

als are randomly assigned to one of two treatments, yielding Group 1, and the

remaining x2· to another, forming Group 2 at (2.1). Under (2.3), it is often as-

sumed that the individual status of carrying attribute A is unchanged, and the

column margins of (2.1) are also considered fixed. Thus, randomization of the

units, with or without attribute A, characterizes the extended hypergeometric

distribution (Fisher (1935) and Johnson and Kotz (1969):

P{X11 = x11 | X11 +X12 = x1·, X11 +X21 = x·1} =

(

x1·

x11

)(

x2·

x21

)

ψx11

Ct(ψ)
, (2.4)

where

Ct(ψ) =

min(x1·, x·1)
∑

z=max(0, x·1−x2·)

(

x1·

z

)(

x2·

x·1 − z

)

ψz.

It is well known that, conditional on both margins x1· and x·1, any entry, say x11,

is sufficient for ψ; and (2.4) defines a case of one-parameter inference that can

be fully illustrated by the likelihood principle, for example, Birnbaum (1962).

2.1. Classical tests for independence

Here three tests of independence are considered. The notion of independence

between the two factors is defined in the likelihood (probability) equation as

ψ = 1, the odds ratio is 1. The null hypothesis of independence specifies a

composite hypothesis with two d.o.f. (Kendall and Stuart (1979, p.578)):

H =
{

(p11, p12; p21, p22); ψ =
p11p22

p12p21
= 1
}

. (2.5)

Pearson (1904) developed a chi-square test forH0 based on his goodness-of-fit test

(Pearson (1900)) under the multinomial model (2.2). The test is defined with

both margins x1· and x·1 held fixed, without assuming independence between
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rows, and so, like (2.4), it is termed a conditional test (Yates (1984)). A simplified

version is

χ2 =
N(x11x22 − x12x21)

2

x·1x·2x1·x2·

∼=
N(|x11x22 − x12x21 | −N/2)2

x·1x·2x1·x2·
= χ2

c , (2.6)

where the second fraction, defined as χ2
c (Yates (1934)), includes the continuity

correction for a more accurate χ2 approximation to its distribution. The χ2 and

χ2
c values obtained can be compared to the table of the chi-square distribution

with one d.o.f. (Fisher (1922)).

Conditions for or against the use of the continuity correction (Plackett (1964)

and Grizzle (1967)), and the median probability alternative suggested by Lan-

caster (1949), have been much discussed, as reviewed by Upton (1982) and Yates

(1984), among others. While care must be exercised with multiple common and

small χ2
c values, when the table margins are small and symmetric, χ2

c generally

performs well as evidenced by the calibration study of Section 2.4.

Yule (1911) brought in a statistic for testing H0, that tested the equality

Hp
0 : p1 = p2 of the two binomial parameters:

ZY =

(

x11

x1·
−
x21

x2·

)(

x·1
N

(

1 −
x·1
N

)( 1

x1·
+

1

x2·

)

)− 1

2

. (2.7)

The margin x·1 is a sufficient statistic for the common value p1 = p2 under Hp
0 ,

but not ancillary for ψ (cf., Plackett (1977) and Little (1989)) under H0. Under

(2.3), Hp
0 has one d.o.f. while H0 has two. Since only the row margin x1· is held

fixed, ZY is an unconditional test for Hp
0 . It follows from (2.6) and (2.7) that the

equality χ2 = Z2
Y holds. However, whether the two tests yield equivalent effects

for testing H0, or Hp
0 , has not been rigorously examined in the literature before.

The third classical test is the widely discussed exact test (Fisher (1935)),

whose test statistic is denoted by TE . The test statistic can be represented by

any entry of the table (2.1), say, X11(= x11). Since the two margins x1· and x·1 are

fixed, it is an exact conditional test. The null distribution of TE is the conditional

distribution of (2.4) with ψ = 1, namely, the hypergeometric distribution:

P{X11 =x11 | X11+X12 =x1·, X11+X21 =x·1}=

(

x1·

x11

)(

x2·

x·1−x11

)(

N

x·1

)−1

. (2.8)

The finite (discrete lattice) sample space that supports the distribution (2.8)

consists of all 2 × 2 tables having the same margins x1· and x·1, denoted by

X = {(x11, x1· − x11; x·1 − x11, x2· − x·1 + x11) :

max(0, x·1 − x2·) ≤ x11 ≤ min(x·1, x1·)}. (2.9)
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For observed data (2.1), the p value of TE under H0 is the extremity probability,
defined to be the sum of the probabilities given by (2.8), for the members in X

whose probabilities are not greater than those of the observed data. The number
of elements in X is equal to “the minimum of the four margins plus 1,” which is
less than (x1· + 1)(x2· + 1), the number of elements in the sample space of the
independent binomial model (2.3). When the sample size N , hence X, is small,
a p value of the exact test can be substantially less than a nominal significance
level. While increasing the p value by randomization is often unacceptable, the
exact test has been criticized as being rather conservative (Berkson (1978)). This
is most remarkable when comparing TE with ZY among others, for testing H0

under model (2.3).
A common trait of the three tests χ2, ZY and TE is that they all measure the

deviation from independence using both margins of the data (2.1). While TE is
conservative in terms of p value defined by the hypergeometric distribution (2.8),
it does enjoy a large sample approximation to normality under (2.4). By Stirling’s
approximation, a standardized version of the test statistic TE, or X11(= x11) of
(2.1), is asymptotically standard normal underH0 (Pearson (1947), Feller (1968),
Lancaster (1969) and Cox and Snell (1989, p.48):

ZE =
(

x11 −
x1·x·1
N

)

(

x1·x2·x·1x·2
N2(N − 1)

)− 1

2

. (2.10)

In general, asymptotic normality of X11 holds under model (2.4) if, and only if,
x1·x2·x·1x·2 /N

3 tends to infinity as N does (Kou and Ying (1996)). It is seen
that Z2

E = χ2 on X, and ZE = ZY if (N − 1) in (2.10) is replaced with N .
Moreover, with fixed x1· and x·1, the test statistics χ2 and ZE are invariant with
respect to “the sample odds ratios”, but ZY is not invariant with respect to
“the difference between the two binomial sample rates” with fixed x1· in (2.7),
unless both margins are fixed. Asymptotic power evaluations under a simple
alternative to H0 have not been established for χ2 and ZE , hence TE , whereas
ZY has the exact independent binomial power analysis. On this issue, it is
noteworthy that a classical unconditional power analysis for testing p1 = p2 is
based on selecting a critical region among the mixtures of critical regions defined
by the hypergeometric distributions having the same x1· and N , but different x·1,
at (2.8) (e.g., Bennet and Hsu (1960); Boschloo (1970), Gail and Gart (1973) and
Mehta and Patel (1980)). The main concern in these studies is on finding a wider
critical region, for which the conditional levels of significance can be raised above
a nominal level in order to reach the unconditional nominal level. Since the
derived power calculation is also a sum of independent binomial probabilities,
comparable to those of ZY , similar discussions are omitted.

Among the classical unconditional tests, it is well known that Barnard dis-
qualified his CSM test (1945, 1949). Many studies with unconditional tests
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have used ZY to define the p values and critical regions, e.g., Berkson (1978),

Suissa and Shuster (1985) and Haber (1986). These authors discussed, under
model (2.3), the acquired level and power of the test ZY with the aim of selecting a

more powerful (actually wider) critical region, see, for example, Santner and Duffy

(1989), Agresti (1990), Berger and Boos (1994) and Berger (1996). The dispraise

of the exact test by Berkson (1978), that strongly advocates ZY as a substitute
for TE , has gradually received less consensus since Yates (1984, p.433) argued

that “testing for H0 must be conditioned on both margins, whether data (2.1)

is obtained from any one of the three experiments (2.2), (2.3) and (2.4).” Read-
ers may refer to Berkson (1978) for the introduction of the criticism, and to

Barnard (1979), Upton (1982) and Yates (1984) for the details of the debate.

The logic behind the comparisons between the conditional and unconditional

tests were notably discussed by Little (1989) and Greenland (1991), who also
deemed the use of the unconditional inference for testing H0 suspect. Neverthe-

less, the notion of a conservative TE , as compared to ZY , has continued to be

acknowledged among many statisticians, including Kempthorne (1978), Upton
(1982) and Agresti (2002, p.96).

The above literature on the classical tests forH0 signals two important issues.

First, if a unified power analysis holds for χ2, ZE and TE , then it would likely

justify that testing independence (H0) should be conditioned on the sample space
X. Naturally, the second issue is whether the unconditional test for Hp

0 using ZY

should be legitimately compared against the exact test TE for testing H0. These

two issues will be addressed in this study, using information identities developed
through the likelihood ratio test.

2.2. Likelihood ratio test and conditionality

It seems useful to examine the relationship between the chi-square test

and the exact test, based on the likelihood ratio test (LRT) statistic. Ad-
ditional notations are defined for ease of exposition. Let P (X) = P (X =

(x11, x12; x21, x22)) = (x11, x12; x21, x22)/N denote the observed sample

proportion, that is, the empirical multinomial distribution. By (2.2), for P =

(p11, p12; p21, p22) ∈ P, let Pi· and P·j be likewise defined as the row and column
margin probabilities; moreover, let (X; P ) denote that “P is the true distribu-

tion of X”, and let f(X; P ) be the corresponding likelihood function. Given

data X = x at (2.1), the LRT statistic λ = maxQ∈H0
f(X; Q)/f(X; P (X)) for

testing P ∈ H0 satisfies

−2 log λ = 2
∑2

i, j=1
xij log(Nxij/xi·x·j) = χ2(1 +Op(N

−1/2)). (2.11)

Here, the first equation follows from maximum likelihood estimation and the

second is asymptotically valid for large N (Kendall and Stuart (1979, p.579) and
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Wilks (1935)). The second term of (2.11), divided by the sample size, is the

Kullback-Leibler (1951) divergence

D(P (x) ‖ P̂ (x)) =
∑2

i, j=1

(xij

N

)

log
(Nxij

xi·x·j

)

=
∑

pij(x) log
( pij(x)

pi·(x)p·j(x)

)

;

it characterizes the LRT statistic for the observed data x as

max
Q∈H0

f(x; Q)

f(x; P (x))
=

f(x; P̂ (x))

f(x; P (x))
= exp(−ND(P (x) ‖ P̂ )), (2.12)

where P̂ (x) = pi·(x)p·j(x) = (x1·x·1, x1·x·2; x2·x·1, x2·x·2)/N
2 is the unique MLE

of P (x) under H0. Clearly, (2.12) is also valid for any table x in X, and x̂ =

NP̂ (x) = NP̂ defines the same P̂ for all x. Although x̂ need not be a member of

X, it has the same margins as x, and lies in the continuum extension XC (defined

in (2.15)) of the finite discrete lattice X. For the observed table X, values of

(2.12) over the sample space X may be normalized to form a discrete conditional

distribution. Equivalently, let CR represent a one-sided critical region, that is, a

one-sided boundary subset (see (2.16) for detailed formulation) of X. Then the

conditional distribution of the LRT (2.12) evaluates

P ((Xi ∈ CR); P̂ (x))=
∑

xj∈CR

exp(−ND(P (xj) ‖ P̂ ))

S(P̂ )
(2.13)

to yield the acquired p value, where S(P̂ (x))= S(P̂ ) =
∑

xj∈X
exp(−ND(P (xj)

‖ P̂ )) is the normalizing constant. An analogue of both (2.12) and (2.13) can also

be obtained for the hypergeometric distribution of the exact test TE as

f(x; P̂ (x))

f(x; P (x))
∼= exp

(

− (N +
1

2
)D(P (x)‖P̂ )

)

and

P ((Xi ∈ CR); P̂ (x))=
∑

xj∈CR

exp(−(N + 1
2)D(P (xj) ‖ P̂ ))

S(P̂ )
, (2.14)

where SE(P̂ ) is the same normalizing constant having the exponent N replaced

by N+1/2. Formula (2.14), derived from Stirling’s formula, closely approximates

the exact distribution (2.8).

Suppose that data X = x has odds ratio ψx = x11x22/x12x21, and that x is

situated on one side of x̂ = NP̂ (x) (say, ψx > ψP̂ (x) = 1) on X. An enlarged

ideal sample space can be defined as XC = the continuum (lattice extension)
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of X, which consists of all tables with non-negative entries (but not necessarily

integers) and the same margins as any members in (the lattice) X. Specifically,

XC = {x(ε) = (x11+ε, x12−ε, x21−ε, x22+ε) : xij ± ε≥0, real ε}. (2.15)

Figure 1 exhibits (non-convex) lattice hyperplanes of relative entropy, and XC

can be visualised as the vertical (lattice) line segment that connects the data x

to the MLE x̂ = NP̂ (x) where it is perpendicular to the null hyperplane H0.

Figure 1. Central pillar XC is the continuum extension of the sample space X;

H0 is the null hyperplane with odds ratio 1; H1 has a unique odds ratio.

Now consider a one-sided critical-region subset of XC . LetX = x be observed

with ψx > 1, and define the one-sided (boundary set) critical region by

CRx =

{

x(ε)∈ XC : ψx(ε) =
(x11 + ε)(x22 + ε)

(x12 − ε)(x21 − ε)
≥ ψx

}

. (2.16)

The approximation to the chi-square distribution (2.6), together with (2.13),
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establishes the standard weak convergence that for large sample size N,

∑

xj∈CRx

exp(−ND(P (xj) ‖ P̂ ))

S(P̂ )
∼=

∫

z∈CRx
exp(−ND(P (z) ‖ P̂ ))dψz

∫

z∈XC
exp(−ND(P (z) ‖ P̂ ))dψz

,

and

P{(Z ∈ CRx); P̂ (x)} =

∫

z∈CRx
exp(−ND(P (z) ‖ P̂ ))dψz

∫

z∈XC
exp(−ND(P (z) ‖ P̂ ))dψz

∼=
1

2
P{χ2 > 2ND(P (x) ‖ P̂ )}, (2.17)

where the random table Z is realized as a member z in XC . The last term of

(2.17) is replaced by 1 − P{χ2 > 2ND(P (x) ‖ P̂ )}/2 when ψx ≤ 1, which rarely

occurs as a practical choice of a CR. Thus, (2.17) can be used to estimate the p

value of any observed 2×2 table in XC with nonnegative entries and an arbitrary

odds ratio.

The above analysis shows that the conditional distribution of the chi-square

test and the LRT are closely comparable to that of the exact test. It is of interest

to examine whether the same characterization from (2.11) to (2.17) holds over

the entire parameter space for testing independence.

2.3. Likelihood ratio test and mutual information

The first step is to examine whether the calibration (2.13) would be valid

not only for the MLE P̂ but also for any member Q of the null hypotheses

H0. At the outset, this seems to be a redundant issue, since the LRT (2.12) is

maximized over all members of H0. However, the logical question is: “Suppose

any individual parameter Q of H0 were a hypothetical alternative to P̂ , would it

possibly affect the validity of (2.13)?” This is answered below by Lemma 1, using

the definition of mutual information (Gray (1990)). The observation also provides

a fundamental characterization of the MLE, but differs from the additivity of

the minimum discrimination information, discussed for asymptotically optimal

hypothesis testing procedures (e.g., Gokhale and Kullback (1978)). The proof of

Lemma 1 is elementary and omitted.

Lemma 1.(The Pythagorean Law of Relative Entropy) For given data X, P =

P (X) and for any Q ∈ H0, the mutual information yields the MLE P̂ via the

identity:

D(P ‖Q)= D(P ‖ P̂ ) +D(P̂ ‖Q). (2.18)

The term “Pythagorean law” is coined by the fact that (2.18) partitions

the approximate chi-square distribution with three d.o.f. for a 2 × 2 table (cf.
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Kendall and Stuart (1979), (33.117); Rao (1973), (6d.2.6)), as shown by Figures

1 and 2. By (2.18), the term mutual information between a pair of random

variables (X, Y ) with joint probability density f(x, y) ∼= P can be equivalently

defined as

I(X; Y ) = D(P ‖ P̂ ) = min
g(x,y)∈H0

D(f ‖ g). (2.19)

As a consequence of Lemma 1, (2.13) can be generalized over H0. The following

theorem follows by incorporating (2.18) into an analogue of (2.13), and cancelling

the common factor D(P̂ ‖Q), thus the proof is omitted.

Theorem 1. For data (X, P (X)) at (2.1), any Q ∈ H0, and for each one-sided

boundary subset CR of X, the following holds for testing X ∼= P̂ (X) = P̂ against

X ∼= Q in distribution,

P ((Xi ∈ CR); Q)=
∑

xj∈CR

exp(−ND(P (xj) ‖ P̂ ))

S(P̂ )
, (2.20)

where P̂ is the projection of the KL-divergence from P (X) onto H0.

The right-hand side of (2.20) is the same as that of (2.13), as expected. Theo-

rem 1 establishes that, by the conditionality principle, testing the composite H0 is

equivalent to testing the single null parameter P = P̂ , and that the unconditional

MLE under model (2.2) reduces to the same P̂ as the conditional MLE under

model (2.4); moreover, the reduction passes through model (2.3). It also charac-

terizes the MLE of the LRT as the projection root of the KL-divergence, which

is the mutual information under general hypothesis testing for independence. In

the literature, the asymptotic chi-square distribution for the parametric LRT was

also examined by Chernoff (1954); given a uniform (improper) prior supported on

H0, the posterior mode is the projection of the KL-divergence (Lindley (1956)).

2.4. Calibration of conditional tests

Distributions of the conditional test statistics were generated for a compari-

son study. Two 2× 2 tables with different sample sizes were evaluated using the

conditioned sample sets X with fixed margins. The data table X = (5, 6; 2, 5)

yielded 8 members in X, and X = (16, 8; 9, 15) yielded 24 tables. A large sam-

ple size table, say, (130, 190; 75, 100) would show closer approximation between

the test statistics, but for brevity, such is not reported. Tables 1 and 2 list the p

values obtained by the four tests. These are one-sided p values associated with

one-sided (upper) critical regions, consisting of tables in X whose odds ratios are

increasingly greater than those of the given data X. For example, Table 1 lists,

for each test, eight ascending p values with corresponding odds ratio values ψ in
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Table 1. X = (5, 6; 2, 5), N = 18, upper CRx = {Y : ψY ≥ ψX = 2.08}

X = {Xa = (a, 11 − a; 7 − a, a), 0 ≤ a ≤ 7}.

Odds Yate’s Pearson LR Exact
Ratio χ2

1,c p-value χ2

1
p-value p-value p-value

ψ

0.00 14.04 1.000 18.00 1.000 1.000 1.000

0.02 7.59 0.997 10.57 0.999 1.000 1.000

0.09 3.11 0.961 5.10 0.988 0.999 0.998

0.28 0.60 0.780 1.61 0.898 0.970 0.961

0.76 0.05 0.587 0.08 0.609 0.788 0.780

2.08 0.05 0.413 0.51 0.237 0.398 0.417

7.20 1.47 0.113 2.92 0.044 0.087 0.112

∞ 4.86 0.014 7.29 0.004 0.003 0.010

Table 2. X = (16, 8; 9, 15), N = 24, upper CRx = {Y : ψY ≥ ψX = 3.33}

X = {Xa = (a, 24 − a; 25 − a, a− 1), 1 ≤ a ≤ 24}.

Yate’s Pearson LR Exact
ψ > 1 χ2

1,c p-value χ2

1
p-value p-value p-value

1.18 0.00 0.500 0.08 0.386 0.500 0.500

1.66 0.33 0.282 0.75 0.193 0.278 0.282

2.33 1.34 0.124 2.09 0.074 0.119 0.124

3.33 3.01 0.042 4.19 0.022 0.038 0.041

4.86 5.34 0.010 6.76 0.005 0.009 0.010

7.29 8.35 0.002 10.11 0.001 0.001 0.002

11.40 12.02 0.000 14.11 0.000 0.000 0.000

19.00 16.36 0.000 18.78 0.000 0.000 0.000
...

...
...

...
...

...
...

∞ 40.40 0.000 44.16 0.000 0.000 0.000

the left-end column. The p values increase toward 1 as the values of ψ decrease

toward 0, and a boxed p value corresponds to a one-sided critical region consist-

ing of tables that are greater in ψ and more extreme (in probability) than the

observed data X. In Tables 1 and 2, the two chi-square statistics of (2.6) plus

their p values, the p values for the exact test (2.8), and those for the LRT (2.13)

were calibrated on the same scale by matching the same one-sided critical region

with each member of the finite sample space X.

The calibration results of the tables in X, including the few examples pre-

sented here, can be summarized as follows. By formula (2.13), the computed p

values of the exact test TE of (2.8), the LRT (2.12), and the Yates χ2
c of (2.6) are

very close to each other. As is well known, Yates’ p values can be over-corrected
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when the table margins are small and symmetric; however, in other situations

it closely approximates the p values of the exact test TE. The p values of the

LRT are more leptokurtic in the center and lighter in the tails, reflecting the

well-known most powerful (unbiased) property of the LRT. However, the p val-

ues of the Pearson χ2 are generally much smaller, giving the most liberal results

among the four tests. In general, the exact, the LRT and the Yates chi-square

tests yield similar p values consistently, including small values near the commonly

used nominal levels such as α = 0.1, 0.05 and 0.01.

3. Power Analysis for Testing Independence

It is well known that the odds ratio plays an important role in the application

of generalized linear models for studying biomedical, environmental, epidemio-

logical and pharmaceutical experiments. The conditional distribution of X given

the row and column margins depends on a single parameter, say the odds ratio.

Lemma 1 and Theorem 1 have shown that the (lattice) hyperplane of odds ratio

1 identifies the composite null hypothesis H0 with two d.o.f. In contrast, each

hyperplane of the composite alternative hypothesis H1 consists of the probability

vectors having the same odds ratio not equal to 1. It is meaningful to extend

the scope of Lemma 1 from the null hypothesis to general alternatives, that is,

to examine whether the conditioning argument (2.20) would be valid if H0 is

replaced with H1.

3.1. Invariance of the entropy identity

To develop the power analysis, the notations used in Section 2, plus some oth-

ers, will be reorganized for ease of exposition. Let (X = (xij , i, j = 1, 2); P (X))

be the observed data. Let (Y = (x∗ij); Q
′(Y )) be any member of H1, having odds

ratio ψ = x∗11x
∗
22/x

∗
12x

∗
21 6= 1. It is straightforward to find the unique fourfold

vector (X ′ = (x′ij); P (X ′) = P ′) on the continuum XC having the same odds ra-

tio ψ (see Figure 1). An invariance property of the conditional distributions with

respect to both H0 and H1 will hold as an extension of the information identity

of Lemma 1. The proof of Lemma 2 is given in the Appendix. Subsequently,

notations will be simplified and P and Q will be used instead of P (X) and Q(Y ).

Lemma 2. (Extended Pythagorean Law) Let (X; P ) be an observed 2× 2 table

of (2.1). Let (Y ; Q′) ∈ H1 and (X ′; P ′) have the same odds ratio (ψ 6= 1), where

X and X ′ are members of XC . Then

D(P ‖Q′) = D(P ‖P ′) +D(P ′ ‖Q′). (3.1)

It is noted that P ′ is the root of projection from P onto the hyperplane H(ψ)

of fourfold vectors having the common odds ratio ψ. In the null case of Lemma
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1, Y ∈ H0 = H(ψ = 1); then P ′ = P̂ and (3.1) reduces to (2.18). Lemma 2

thus extends Lemma 1 from the null hypothesis to the entire parameter space of

non-negative odds ratios.

The main purpose now is to characterize the power analysis at any alternative

in H1 based on the test for H0. The next theorem, being a natural extension

of Theorem 1, fulfils this goal. The proof directly follows by using Lemma 2

together with an argument similar to that of Theorem 1.

Theorem 2. Let (X; P ) be a 2× 2 table. Let Q ∈ H1 have odds ratio ψ. Then,

for a CR subset of X and a normalizing constant defined by (2.13),

P ((X ∈ CR); Q)=
∑

xj∈CR

exp(−ND(P (xj) ‖P
′))

S(P ′)
, (3.2)

where P ′ is the projection of the KL-divergence from P onto H(ψ).

Like Lemma 2, if Q is a member of H0 then (3.2) reduces to (2.20). Theo-

rem 2 thus generalizes Theorem 1 and verifies that the conditional distributions

of the LRT are invariant with respect to each common odds ratio hyperplane.

Analogous to (2.17) for testing H0, (3.2) leads to the power evaluations discussed

below.

Let (X; P ) be an observed 2 × 2 table with ψP = x11x22/x12x21 > 1, and

let (Y ; Q′) = (x∗ij)∈ H1 be any alternative with ψQ′ > 1, where X and Y are

situated on the same side of P̂ (ψP̂ = 1). Given a nominal level α < 1/2, let

CRX,α ⊂ XC be a one-sided boundary set, as defined by (2.16), satisfying an

analogue of (2.17):

α = P{Z ∈ CRX,α; P̂}∼=
P{χ2 > 2ND(P (Xα) ‖ P̂ )}

2
, (3.3)

where D(P (Xα) ‖ P̂ ) = minZ∈CRX,α
D(P (Z) ‖ P̂ ). Note that, for α = 1/2, the

obvious choice is Xα = P̂ . It is straightforward to compute the power of the test

(defined by CRX,α) at the alternative hypothesis (Y ; Q′) according to (3.2),

P (Z ∈ CRX,α |Q′) ∼=







P{χ2>2ND(P (Xα) ‖P ′)}
2 , if ψXα > ψP ′ ≥ 1.

1 − P{χ2>2ND(P (Xα) ‖P ′)}
2 , if ψP ′ ≥ ψXα > 1.

(3.4)

Fisher (1962) illustrated a confidence interval for the odds ratio parameter

given a 2 × 2 table. The analysis was essentially an analogue of (3.4). Theorem

2 has conveyed two practical messages through (3.3) and (3.4). First, a critical

region with unbiased level via (3.3), plus a desired sensitivity via (3.4), can be

designed within the continuum sample space XC . Thus, the information identity
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(3.2) establishes a Neyman-Pearson decision inference within this testing frame.

Second, p values of (2.17) and power computations with (3.3) and (3.4) are vali-

dated not only for the LRT and the Pearson-Yates chi-square test, but also for the

Fisher exact test in lieu of (2.14). The exact test obtains the power evaluation by

the LRT approximation to the KL-divergence defined on XC , the extension of X,

and also of the support of the extended hypergeometric distribution. Altogether,

the above discussion has addressed the first issue of Section 2.1: testing H0 is

essentially conditioned on the sample space X.

3.2. Power analyses in practice

Data describing an experiment of vaccine inoculation, for the immunization

of cattle from tuberculosis (Kendall and Stuart (1979, Table 33.4)), is used for

illustration. The 2 × 2 table is X = (nv-a = 8, nv-na = 3; v-a = 6, v-na = 13),

where the row letters “nv” and “v” stand for no-vaccine and vaccine-inoculated,

with margins 11 and 19; the column letters “a” and “na” stand for tuberculosis-

affected and unaffected, respectively, with margins 14 and 16. The odds ratio

of data X is ψX = 5.78. Under H0, the MLE is (X̂ ; P̂ = P (X̂)) with P̂ =

(5.13, 5.87; 8.87, 10.13)/30, the observed one-sided p value of the Pearson χ2 is

0.015, and similar p values of the χ2
c and the exact TE are close to 0.036. For

power evaluations in accordance with the Neyman-Pearson theory, the nominal

significance level α = 0.05 is chosen for a detailed discussion below.

The discrete sample space X, induced by the observed table X, contains 12

members. It follows by (3.3) that Xα = (7.3, 3.7; 6.7, 11.3) ∈ XC defines the

boundary of a one-sided (larger-odds-ratios) critical region at level α = 0.05. To

give an example of a case of power analysis using Thoerem 2, choose a member

(X ′ = (7, 4; 7, 12); P ′ = P (X ′)) in X, with odds ratio ψP ′ = 3. Let H1 denote

the lattice hyperplane of all 2×2 tables having the same odds ratio 3 and sample

size N = 30. Thus, X ′ is located on H1, indeed, X ′ = X∩H1. Given the level α,

a one-sided critical region with boundary Xα, the power evaluation at (X ′; P ′)

yields 0.438 as the computed χ2
c in (3.4).

In addition to the classical comparison in terms of p values, it is meaningful to

compare the conditional tests with the unconditional test ZY based on the power

evaluations carried out in the data example above. This is examined using model

(2.3) as a common ground for comparison. Thus, suppose the null hypothesis

specifies that the proportions of the vaccine-inoculated units are the same across

the column factor, affected and unaffected, denoted by Hp
0 : p1 = p2. Under

(2.3), the sample space is characterized by the column lattice hyperplane Hc that

consists of 255 members of 2×2 tables with the same column margins. Using test

scores of ZY , the boundary table of a typical one-sided critical region is found to

be (Yα; P (Yα) = (13, 11; 1, 5)/30 = Qα) having p value 0.0498, and odds ratio
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Figure 2. Hc, or Hr, is a binomial product sample space with fixed column,

or row, margins, respectively; H1 is the horizontal hyperplane of odds ratio 3

perpendicular to XC ; X ′ = H1 ∩ XC and X = Hr ∩Hc.

5.91. Meanwhile, consider the alternative table (Yc; P (Yc) = (9, 6; 5, 10)/30 =

Qc) with odds ratio 3. It is located on the lattice line H1 ∩Hc, which contains

the table (X ′; P ′ = (7, 4; 7, 12)/30) = H1 ∩ XC (see Figure 2). For the pairs

(Qα; P ′) and (Qα; Qc), the test ZY evaluates the exact binomial probability as

the power at P ′ to be 0.428 and 0.436, respectively. The two power values are

not equal, though not far from 0.438, the constant previously obtained for both

pairs (Xα; P ′) and (Xα; Qc) by (3.4), because P ′ and Qc have the same odds

ratio. Obviously, the test ZY is not expected to be more powerful than the LRT,

χ2 and the exact TE tests.

By symmetry, similar comparisons of power could be obtained using the

null hypothesis that the proportions of affected units are equal across the other

factor, vaccine-inoculated or no-vaccine. It would, however, yield different critical

regions and power calculations on a row hyperplane Hr (Figure 2), from those

derived with Hc, noting that Hr and Hc are perpendicular planes as remarked

after (2.18).

3.3. The logic of testing independence

It was noted in Section 2.1 that the test statistics χ2, ZY and ZE are essen-

tially equal, based on the same margins of a 2×2 table. The statistic ZY has been

widely used for testing Hp
0 : p1 = p2 under (2.3) with exact power computations

at specified pi’s. In contrast, Theorem 2 addresses the first question of Section
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2.1 by proving that both χ2 and ZE , hence TE , evaluate asymptotic power in

terms of usual approximations to chi-square distributions used for testing H0.

The second issue of Section 2.1 is thus addressed, as it is not legitimate to

compare the unconditional test ZY against the exact test TE , or ZE , for testing

H0 under model (2.3). The hypothesis of independence H0, ψ = 1, is universally

defined and irrelevant to whichever model (2.2), (2.3) or (2.4) is assumed. From

(2.2) to (2.3), the two d.o.f. H0 is reduced to the one d.o.f. Hp
0 (p1 = p2);

and conversely, the alternative hypotheses parameter spaces are of one and two

d.o.f., respectively, as shown by Figures 1 and 2. Recall the example of Section

3.2, where the same power values are obtained by the conditional tests at the

alternatives P ′ and Qc, having the same odds ratio on H1. But the unconditional

test ZY must treat P ′ = (p1 = 0.5; p2 = 0.25) and Qc = (p1 = 0.644; p2 =

0.375) differently, since the ratios p1/p2, here 2 and 1.71, are not equal. The

interpretations of the two tests are different in meaning, or in purpose. Since

Fisher’s exact test was defined for testing independence, this illustrates that it is

logically flawed to compare an unconditional test to a conditional test for testing

independence under model (2.3).

4. Applications of the Information Identity

Beyond the 2 × 2 tables, multivariate data structures in the form of contin-

gency tables have been widely studied in the literature. To illustrate the idea,

the conditioning argument of Section 3 can be applied to testing basic associa-

tion models in two-way contingency tables. Applications to general multi-way

contingency tables will be presented in forthcoming studies.

4.1. The basic 2 × J tables

Tests for uniform association or for independence within a 2× J table, with

J ≥ 3, are related to testing model-data fit between the two row distributions

displayed across the J columns. The LRT or the Pearson chi-square test is

commonly used with d.o.f. J − 1, which is the number of intersection knots,

or odds ratios, that can be estimated or tested within the table. Testing for

independence is equivalent to testing that these odds ratios are all equal to 1.

In what follows, the geometric viewpoint of Section 3 is used to illustrate the

division of information between testing for no association and testing for uniform

association. It should not be regarded as a new version of the test, although it

can yield power evaluations at alternatives as was shown in Section 3. It suggests

simple computations of the model MLE’s via geometric projections.

Let X and Y be two 2 × J tables with equal row margin totals. Assume

that the J − 1 odds ratios of Y are equal to 1, i.e., no association. Treating

Y as an alternative hypothesis, the task of testing model-data fit within X can
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be examined between X and Y by a similar information identity to (3.1) as

illustrated below.

Lemma 3. Assume X and Y are 2 × J tables as defined above. Then, there

exists a unique 2×J table Z, having the same row and column margins as X, and

satisfying that its J − 1 odds ratios are equal to a constant ψ(> 0), the uniform

association. An analogue of Lemma 2 holds:

D(X ‖Y ) = D(X ‖Z) +D(Z ‖Y ). (4.1)

A proof of Lemma 3 is given in the Appendix. Like Lemma 2, its validity

depends on equal margins between X and Z, but not on the column margins

of the table Y . The asymptotic distributions associated with (4.1) satisfy the

relation χ2
J−1 = χ2

J−2 + χ2
1. Thus, D(X ‖Z) offers an initial test for uniform

association, prior to testing for independence within X by the omnibus test

D(X ‖Y ), because the validity of the latter implies that of the former. If the

test D(X ‖Z) is insignificant, then the follow-up test with one d.o.f. provides

a properly sensitive test for independence. This test procedure also yields an

efficient confidence interval for the parameter of uniform association.

4.2. The I × J tables

A general framework for two-way association models for the I×J tables will

be discussed (cf., Goodman (1984, Chap. 4, Table 3)), where at least one of I

and J is greater than 2. This subsection will provide an alternative approach

to hypothesis testing between the models using a similar information identity to

(4.1). It is found that computing the MLE’s of the odds ratio parameters by

minimizing the relative entropy of (4.1) is an efficient and fast alternative to the

method of iterative proportional fitting due to Deming and Stephan (1940).

The null model of no association and the uniform association model of Section

4.1 are the two basic models. Following Goodman’s terminology (1984, pp.89-

90), the other three models are the row effect, the column effect and the row-by-

column effect models, with model parameters :

ψi+ = ψηi+ (4.2)

ψ+j = ψη+j (4.3)

ψij = ψηi+η+j , (4.4)

respectively, where

∏I−1

i=1
ηi+ = 1, and

∏J−1

j=1
η+j = 1. (4.5)
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The common parameter ψ is the uniform association parameter of Lemma 3.

Under the first constraint of (4.5), the row effect model (4.2) will estimate I − 1

row effect parameters under the null model, and enjoy (I − 1)(J − 1)− (I − 1) =

(I − 1)(J − 2) d.o.f. This can alternatively be illustrated as such: let the first

two rows, a 2 × J subtable, be initially fitted to the uniform-association model

according to Lemma 3; then, by analogy with (4.1), test the remaining I − 2

parameters for model (4.2). The updated relative divergence D(X ‖Z) enjoys

the same (I − 1)(J − 2) d.o.f. This alternate argument manifests the sequential

scheme: testing first the uniform model against the null model, then, testing the

row-effect model, by successive projections as in (4.1). Similarly, a sequential

scheme also applies to testing the column-effect model (4.3). Given that either

model (4.2) or (4.3), but not both, is sustained with D(X ‖Z) having d.o.f.

(I − 1)(J − 2) or (I − 2)(J − 1), the row-by-column effect model (4.4) can be

tested subject to the constraint (4.5). This will further reduce the d.o.f. of the

updates D(X ‖Z) by J − 2, or I − 2, to (I − 2)(J − 2) due to estimating the

ratios between the odds ratios according to (4.5).

In practice, however, the entire sequential test scheme may be performed in

the opposite order, as in most hierarchical linear models. The row-by-column

interaction model can be tested first, where various model parameterizations like

(4.5) can be designed by the experimenter. Next, test either the row or column

effect. Finally, test “no or uniform association” between any particular pairs of

rows or columns, as was carried out by Lemma 3. It can be easily checked that

these projections of relative entropy, being the LRT, directly yield the desired

MLE’s of the model parameters.

5. Conclusion

It is well known that factorization of the likelihood defines two important

notions, independence and sufficiency, and that together they constitute the like-

lihood approach to statistical inference. The LRT, mostly notable in the likeli-

hood approach, has been widely used in testing hypotheses via Neyman-Pearson

theory, in particular, testing independence with 2 × 2 contingency tables. The

calibration of the p values of the conditional tests, a key idea due to Fisher (1935),

relies upon the LRT given the margins, which can be derived from the mutual

information identity. The invariance of information identity leads to the develop-

ment of the (asymptotic) power analyses for both Pearson’s chi-square test and

Fisher’s exact test. It also illustrates that the conditioned (and extended) sample

space XC offers an answer to Fisher’s “most relevant set” (Barlett (1984)), where

conditional distributions and unified power analysis of the LRT, the chi-square

test and the exact test are validated. This last observation also resolves the long-

term debate on the criticism of Fisher’s exact test. That is, Berkson’s dispraise
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against the exact test, in terms of conservative p values and improved power eval-

uations, was logically flawed due to the different models and hypotheses under
evaluation.
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Appendix

Proofs for Lemmas 2 and 3 will be carried out by a naive approach using as-

sumptions under the conditioning argument. For ease of exposition, the following

notation for the 2 × 2 table will be used:

A Ā

Group 1 a b

Group 2 c d .

Proof of Lemma 2. Suppose that the above table defines the fourfold vector

X = (a, b; c, d) with X ′ = (a′, b′; c′, d′) and Y = (a∗, b∗; c∗, d∗) analogously
defined. By the basic identity a log(a/a∗) = a[log(a/a′) + log(a′ / a∗)], (3.1) is

valid if

a log(
a′

a∗
) + b log(

b′

b∗
) + c log(

c′

c∗
) + d log(

d′

d∗
)

= a′ log(
a′

a∗
) + b′ log(

b′

b∗
) + c′ log(

c′

c∗
) + d′ log(

d′

d∗
). (A.1)

Using the common odds ratio a′d′/b′c′ = ψ = a∗d∗/b∗c∗, it is found that (A.1) is

equivalent to

a log

(

a′

a∗

b′

b∗

)

+ (a+ b) log(
b′

b∗
) + c log

(

c′

c∗

d′

d∗

)

+ (c+ d) log(
d′

d∗
)

= a′ log

(

a′

a∗

b′

b∗

)

+ (a′ + b′) log(
b′

b∗
) + c′ log

(

c′

c∗

d′

d∗

)

+ (c′ + d′) log(
d′

d∗
). (A.2)

It is seen that the four log terms with large brackets are equal due to the common

odds ratio ψ and a+c = a′+c′ since (X; P ) and (X ′; P ′) have the same margins.

Likewise, as a + b = a′ + b′ and c + d = c′ + d′, (A.2) holds, so does (A.1), and

the proof is complete.

Proof of Lemma 3. It suffices to prove the case J = 3, without loss of gener-

ality. To fix notations, let X be a 2 × 3 table with the first row (a, c, e) and
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the second row (b, d, f), likewise, Y has its first row (a∗, c∗, e∗) and second

row (b∗, d∗, f∗); write, in short, Z = ((a′, c′, e′), (b′, d′, f ′)). By definition,

it suffices to prove (4.1) as an equation between three relative divergence terms,

where each one is a sum of six log-likelihood ratios. The equation holds invariant

if the middle column entries (c, d), (c′, d′) and (c∗, d∗) are doubled (or rescaled

by the same positive constant), and by (A.1), it is equivalent to verifying the

equation between two similar terms:

a log(
a′

a∗
)+2c log(

c′

c∗
)+e log(

e′

e∗
)+b log(

b′

b∗
)+2d log(

d′

d∗
)+f log(

f ′

f∗
)

= a′ log(
a′

a∗
)+2c′ log(

c′

c∗
)+e′ log(

e′

e∗
)+b′ log(

b′

b∗
)+2d′ log(

d′

d∗
)+f ′ log(

f ′

f∗
). (A.3)

By the assumption of having equal ratio between the corresponding odds ratios:

a′d′

b′c′

a∗d∗

b∗c∗

= ψ =

c′f ′

d′e′

c∗f∗

d∗e∗

, (A.4)

equation (A.3) is reduced to the following equation:

a logψ + (a+ b) log

(

b′

b∗

d′

d∗

)

+ (a+ c) log(
c′

c∗
) + (b+ d) log(

d′

d∗
)

+c logψ + (c+ d) log

(

d′

d∗

f ′

f∗

)

+ (c+ e) log(
e′

e∗
) + (d+ f) log(

f ′

f∗
)

= a′ logψ + (a′ + b′) log

(

b′

b∗

d′

d∗

)

+ (a′ + c′) log(
c′

c∗
) + (b′ + d′) log(

d′

d∗
)

+c′ logψ + (c′ + d′) log

(

d′

d∗

f ′

f∗

)

+ (c′ + e′) log(
e′

e∗
) + (d′ + f ′) log(

f ′

f∗
).

This final equation holds because the two tables X and Z have equal row and

column margins. The proof of Lemma 3 is complete.
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