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Abstract: Best mean square prediction for moving average time series models is

generally non-linear prediction, even in the invertible case. Gaussian processes

are an exception, since best linear prediction is always best mean square predic-

tion. Stable numerical recursions are proposed for computation of residuals and

evaluation of unnormalized conditional distributions in invertible or non-invertible

moving average models, including those with distinct unit roots. The conditional

distributions allow evaluation of the best mean square predictor via computation

of a low-dimensional integral. For finite, discrete innovations, the method yields

best mean square predictors exactly. For continuous innovations, an importance

sampling scheme is proposed for numerical approximation of the best mean square

predictor and its prediction mean square error. In numerical experiments, the

method accurately computes best mean square predictors for cases with known

solutions. The approximate best mean square predictor dominates the best linear

predictor for out-of-sample forecasts of monthly US unemployment rates.

Key words and phrases: Discrete time series, importance sampling, non-invertible,

non-minimum phase, non-Gaussian.

1. Introduction

Consider a qth order moving average process (MA(q))

Xt = θ(B)Zt, (1)

where {Zt} is an independent and identically distributed (i.i.d.) sequence of

random variables with zero mean and finite variance, B is the backshift operator

(BkYt = Yt−k for k = 0,±1,±2, . . .), θ(z) = 1 + θ1z + · · · + θqz
q, and θq 6= 0.

The moving average polynomial, θ(z), is said to be invertible if all the roots of

θ(z) = 0 are outside the unit circle in the complex plane, and non-invertible (or

non-minimum phase) otherwise (Brockwell and Davis (1991, Theorem 3.1.2)).

Invertibility is a standard assumption in the analysis of moving average time

series models, because without this assumption the model (1) is not identifi-

able using estimation methods based on second-order moments of the process.
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Such methods include Gaussian likelihood, least-squares, and various spectral-

based methods (see, for example, Brockwell and Davis (1991)). But in the non-

Gaussian case, invertible and non-invertible moving averages are distinguishable

on the basis of higher-order cumulants or likelihood functions. The invertibil-

ity assumption in the non-Gaussian case is entirely artificial, and removing this

assumption leads to a broad class of useful models.

Indeed, non-invertible moving averages and the broader class of non-mini-

mum phase autoregressive moving average (ARMA) models are important tools

in a number of applications, including seismic and other deconvolution prob-

lems (Wiggins (1978), Ooe and Ulrych (1979), Blass and Halsey (1981), Donoho

(1981), Godfrey and Rocca (1981), Hsueh and Mendel (1985) and Scargle (1981)),

design of communication systems (Benveniste, Goursat and Roget (1980)), pro-

cessing of blurry images (Donoho (1981) and Chien, Yang and Chi (1997)), and

modeling of vocal tract filters (Rabiner and Schafer (1978) and Chien, Yang and

Chi (1997)).

Estimation methods for general moving average processes include cumulant-

based estimators using cumulants of order greater than two (Wiggins (1978),

Donoho (1981), Lii and Rosenblatt (1982), Giannakis and Swami (1990), Chi and

Kung (1995) and Chien, Yang and Chi (1997)); quasi-likelihood methods which

lead to least absolute deviation-type estimators (Huang and Pawitan (2000),

Breidt, Davis and Trindade (2001)); and maximum likelihood estimation (Lii

and Rosenblatt (1992)).

In contrast to estimation, the problem of prediction for general MA processes

has received far less attention. Kanter (1979) provides lower bounds for the best

mean square prediction error in general MA processes, but does not provide the

predictors. Shepp, Slepian and Wyner (1980) extend Kanter’s result and provide

explicit formulas for one-step-ahead prediction of MA(1) processes driven by ex-

ponential, uniform, or binary noise. Rosenblatt (2000, Chap.5) summarizes these

and other results for prediction in minimum and non-minimum phase systems,

but notes (p.217) that “little is known about the form of best predictors in mean

square except for very special examples”.

In Section 2, we consider numerical evaluation of the best mean square pre-

dictor for invertible or non-invertible moving average models, including those

with distinct unit roots. We first derive stable recursions for computing residuals

from a realization of a moving average process, given r initial and s final condi-

tions, where q = r+ s. (Stability of these recursions is established in a technical

appendix.) These residuals are used in computation of unnormalized conditional

distributions, which in turn allows evaluation of the best mean square predictor

via a q-dimensional integration. For finite, discrete innovations, the integration

method yields best mean square predictors exactly. For continuous innovations,
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an importance sampling scheme is proposed for numerical approximation of the

integral. This leads to approximate best mean square predictors and prediction

mean square errors.

In Section 3, we conduct numerical experiments using the proposed algo-

rithm. In the discrete case, we compare the best mean square predictor to the

best linear predictor for MA(1) and MA(2) with binary innovations. In the con-

tinuous case, we evaluate the numerical approximations to the best mean square

predictors in a simulation study, and compare to the best linear predictors. For

cases with closed-form best mean square predictors (MA(1) with exponential or

uniform innovations; Gaussian MA(q)) the importance sampling method accu-

rately reproduces the predictors. The importance sampling method can be tai-

lored to specific innovations distributions for improved numerical performance.

In Section 4, we apply the importance sampling methodology to the com-

putation of best mean square predictors for a non-invertible MA(29) model of

monthly changes in seasonally-adjusted US unemployment rates. The approxi-

mate best mean square predictors dominate the best linear predictors in out-of-

sample forecasts.

2. Main Results

Rewrite (1) as

Xt = θ(B)Zt = θ†(B)θ∗(B)Zt, (2)

with θ∗(z) = 1+θ∗1z+· · ·+θ∗szs 6= 0 for |z| > 1, and θ†(z) = 1+θ†1z+· · ·+θ†rzr 6= 0

for |z| ≤ 1, where r + s = q, θ∗s 6= 0, and θ†r 6= 0. We further assume that any

unit roots of θ∗(z) = 0 are not repeated roots. The moving average polynomial,

θ(z), is said to be invertible if s = 0 and non-invertible (or non-minimum phase)

if s 6= 0. We refer to the case in which r = 0 and s > 0 as purely non-invertible.

Define θ0 = 1. We seek the best mean square predictor of Xn+k given

X1, . . . , Xn,

E [Xn+k |X1, . . . , Xn] =
q∑

j=0

θjE [Zn+k−j |X1, . . . , Xn]. (3)

Clearly this predictor is zero for k > q. In the case of Gaussian noise, the best

mean square predictor is well-known to be a linear function of X1, . . . , Xn. If

θ(z) is invertible, then the best mean square predictor based on the infinite past

{. . . , X−1, X0, X1, . . . , Xn} is a linear predictor (Rosenblatt (2000, pp.83-84)).

In general, however, the best mean square predictor is a non-linear function of

X1, . . . , Xn.

We use g to denote a generic probability density function (or probability

mass function in the discrete case) for one or more random variables, which can
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be inferred from the argument(s) of g. We assume Zt ∼ f(zt), where f is known.

Since

Zn−q =
Xn − Zn − θ1Zn−1 − · · · − θq−1Zn−q+1

θq
,

it suffices for the computation of (3) to consider

g(zn−q+1, . . . , zn |x1, . . . , xn) ∝ g(zn−q+1, . . . , zn, x1, . . . , xn).

In general, this distribution is not known, so that the integrals in (3) are in-

tractable.

As the referee has pointed out, the standard change-of-variable approach to

this problem is to write




X1
...

Xn

Zn+1−q
...

Zn




=

(
A C

0 Iq×q

)




Z1−q
...

Zn−q

Zn+1−q
...

Zn




, (4)

where A consists of the first n columns of the n× (n+ q) matrix




θq θq−1 · · · θ1 1 0 0 0 · · · 0
0 θq θq−1 · · · θ1 1 0 0 · · · 0
0 0 θq θq−1 · · · θ1 1 0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .

0 0 · · · · · · 0 θq θq−1 · · · θ1 1




,

C consists of the remaining columns, and Iq×q is the q× q identity matrix. Then

g(zn−q+1, . . . , zn, x1, . . . , xn) ∝
n∏

t=−q+1

f(zt),

where 


z1−q
...

zn−q


 = A−1








x1
...

xn


− C




zn+1−q
...

zn







.
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Since A is an upper triangular matrix, its inverse has the form

A−1 =




a1 a2 · · · · · · an

0 a1 a2 · · · an−1

0 0
. . .

. . .
...

...
...

. . .
. . . a2

0 0 · · · 0 a1



,

where {ak : k = 1, . . . , n} can be solved recursively by AA−1 = In×n; that is,

a1θq = 1,

a2θq + a1θq−1 = 0,

a3θq + a2θq−1 + a1θq−2 = 0,

...

aqθq + aq−1θq−1 + · · · + a1θ1 = 0,
q∑

j=0

θq−jak−j = 0, k = q + 1, q + 2, . . . , n,

where θ0 = 1.

The last equation is equivalent to the following difference equation:

(
1 +

θq−1

θq
B +

θq−2

θq
B2 + · · · + 1

θq
Bq
)
ak = 0.

As n increases, the general solution of this difference equation remains bounded

for all k if and only if all roots of the polynomial

1 +
θq−1

θq
z +

θq−2

θq
z2 + · · · + 1

θq
zq

are outside the unit circle or on the unit circle but distinct. Equivalently, A−1

is numerically stable with increasing n if and only if all roots of the polynomial

θ(z) = 1 + θ1z + θ2z
2 + · · · + θqz

q are inside the unit circle or on the unit circle

but distinct, which corresponds to the purely non-invertible case.

For illustration, consider the MA(1) process, for which the elements in A−1

satisfy

ak =

(
1

θ1

)k

(−1)k−1, k = 1, 2, . . . , n.

In the invertible case, |θ1| < 1, so that A−1 is numerically unstable for large n.

We work around the numerical difficulty of the standard approach by devel-

oping a set of forward-backward recursions that exploit the structure of the time
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series to yield numerically stable computations. Effectively, we split the unstable
linear transformation in (4) into a pair of stable linear transformations, expressed
in time series operator notation. The first transformation is defined as

Wt = θ†(B)Zt, (5)

so that Zt = Wt − (θ†(B) − 1)Zt. The second transformation is defined as

Xt = θ∗(B)Wt

= (1 + θ∗1B + · · · + θ∗sB
s)Wt

= θ∗s θ̃(B
−1)Wt−s, (6)

where

θ̃(z) = 1 + (
θ∗s−1

θ∗s
)z + · · · + (

θ∗1
θ∗s

)zs−1 + (
1

θ∗s
)zs.

Thus,

Wt−s =
Xt

θ∗s
− (θ̃(B−1)−1)Wt−s.

(Alternatively, we could have written (5) as a lower-triangular linear transfor-
mation from (Z−q+1,. . . ,Zn) to (Z−q+1,. . . , Z−q+r,W−s+1,. . . ,Wn), and (6) as
an upper-triangular linear transformation from the latter vector to (Z−q+1, . . .,
Z−q+r, X1, . . . , Xn,Wn−s+1, . . . ,Wn).)

The corresponding numerical recursions, given a realization xn=(x1, . . . , xn)′

and arbitrary initial conditions z
(i)
r =(z

(i)
−q+1, . . . , z

(i)
−q+r)

′ and w
(i)
s =(w

(i)
n−s+1, . . .,

w
(i)
n )′, are as follows:

• Starting from w
(i)
n , . . . , w

(i)
n+1−s, compute

w
(i)
t−s =

xt

θ∗s
−
(
θ̃(B−1) − 1

)
w

(i)
t−s, for t = n, n− 1, . . . , 1. (7)

• Starting from z
(i)
−q+1, . . . , z

(i)
−q+r, compute

z
(i)
−s+t = w

(i)
−s+t −

(
θ†(B) − 1

)
z
(i)
−s+t, for t = 1, 2, . . . , n+ s. (8)

Basically, the backward recursion (7) is stable since the roots of θ̃(z) are
either outside the unit circle, or on the unit circle but distinct. The forward
recursion (8) is stable since all the roots of θ†(z) are outside the unit circle. See
the Appendix for proofs of these assertions and for details on the solutions of the
systems of difference equations implied by the backward and forward recursions.

From the linear transformations in (5)−(6), we have that

g(zn−q+1, . . . , zn, x1, . . . , xn) ∝ g(z−q+1, . . . , z−q+r, x1, . . . , xn, wn+1−s, . . . , wn)

∝
n∏

t=−q+1

f(zt). (9)
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Then, for t = n− q, . . . , n, we evaluate E [Zt |x1, . . . , xn] via

E [Zt |x1, . . . , xn] =

∫
ztg(zn−q+1, . . . , zn |x1, . . . , xn) dz

=

∫
ztg(zn−q+1, . . . , zn, x1, . . . , xn) dz∫
g(zn−q+1, . . . , zn, x1, . . . , xn) dz

=

∫
ztg(z−q+1, . . . , z−q+r, x1, . . . , xn, wn−s+1, . . . , wn) dzr dws∫
g(z−q+1, . . . , z−q+r, x1, . . . , xn, wn−s+1, . . . , wn) dzr dws

=

∫
ztg(zr,xn,ws) dzr dws∫
g(zr,xn,ws) dzr dws

=

∫
zt
∏n

t=−q+1 f(zt) dzr dws∫ ∏n
t=−q+1 f(zt) dzr dws

, (10)

where zr = (z−q+1, . . . , z−q+r)
′, ws = (wn−s+1, . . . , wn)′, and {zt}n

t=−q+r+1 are

computed from (7)−(8).

2.1. Exact best mean square prediction for discrete innovations

If Zt is a discrete random variable with mass at k < ∞ distinct points,

then the integrals in (10) can be evaluated exactly. First, use the kr+s possible

values of (zn−r−s+1, . . . , zn)′ to enumerate all possible values of the vector ws.

There are at most kr+s possible values. Starting from each possible value, run

the backward recursion (7). Next, enumerate the kr possible values of zr. Using

each possible value of zr together with each possible backward recursion, run the

forward recursion (8) to get at most k2r+s possible residual sequences. Evaluate

(10) by summing over all possible residual sequences, noting that some of these

sequences may have probability zero. Plugging in to (3) then yields the exact

best mean square predictor.

2.2. Importance sampling for continuous innovations

In the case of continuous innovations, the q-dimensional integrals in (10) can

be evaluated numerically via importance sampling (see, for example Chap.6 of

Evans and Swartz (2000), and the references therein) as follows. Let h(z r,ws)

be a q-dimensional joint density, the importance sampler. Assume the support of

h is supp(h) ⊃ supp (
∫
g(zr,xn,ws) dxn) . For any (z

(i)
r ,w

(i)
s ) ∈ supp(h), define

the importance weight

A(z(i)
r ,xn,w

(i)
s ) =

∏n
t=−q+1 f(z

(i)
t )

h(z
(i)
r ,w

(i)
s )

,

where the {z(i)
t }t=−q+r+1,...,n are computed recursively from (7)−(8).
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Note that (10) can be written as

E [Zt |xn] =

∫
zt

∏n
t=−q+1 f(zt)

h(zr,ws)
h(zr,ws)dzrdws

∫ ∏n
t=−q+1 f(zt)

h(zr,ws)
h(zr,ws) dzrdws

≡ Eh [ZtA(Zr,xn,W s)]

Eh [A(Zr,xn,W s)]
, (11)

where the expectation in (11) is taken with respect to h(zr,ws). The ratio in

(11) can be approximated via Monte Carlo (MC) as

Ê [Zt |xn] =

∑m
i=1 z

(i)
t A

(
z

(i)
r ,xn,w

(i)
s

)

∑m
i=1A

(
z

(i)
r ,xn,w

(i)
s

) , (12)

where m is the number of draws in the importance sampling, {(z (i)
r ,w

(i)
s ); i =

1, . . . ,m} are q-dimensional random vectors drawn from the importance sam-

pler h(zr,ws), and {z(i)
t } is the corresponding residual sequence computed from

(z
(i)
r ,xn,w

(i)
s ) according to the backward and forward recursions (7)−(8). By the

Strong Law of Large Numbers, this MC estimator converges to E [Zt |xn] almost

surely as m→ ∞. By the Central Limit Theorem, the magnitude of the approx-

imation error has order m−1/2 if Varh(ZtA(Zr,xn,W s)) and Varh(A(Zr,xn,

W s)) are both finite, where Varh is taken with respect to h(zr,ws).

Consequently, by substitution in (3), the MC estimator of E [Xn+k |xn] is

B̂P = Ê [Xn+k |xn] =
q∑

j=0

θjÊ [Zn+k−j |xn] . (13)

Theoretically, the MC estimator is valid for any h(zr,ws) satisfying the con-

dition on its support. However, the performance of the MC estimator, i.e., the

variability of Ê [Zt |xn], depends on the choice of h(zr,ws). A bad choice of

importance sampler produces a lot of small importance weights and a few ex-

tremely large and influential weights so that the variability of the MC estimator

is large. A good choice of importance sampler for the particular innovations dis-

tribution at hand leads to improved numerical performance. Even with a good

choice of importance sampler, variance reduction methods can be employed to

make the importance sampling algorithm still more accurate. Methods for choos-

ing and evaluating importance samplers and for reducing variance in importance

sampling are thoroughly reviewed in Evans and Swartz (2000, Chap.6).

The prediction MSE of E [Xn+k |xn] can also be approximated using the

importance sampler. First, for 1 ≤ k ≤ q, Xn+k can be represented as

Xn+k = θ(B)Zn+k =
q∑

j=0

θjZn+k−j = θ
′
k1Zn1 + θ

′
k2Zn2,
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where θk1 = (θk, θk+1, . . . , θq, 0, . . . , 0)
′, θk2 = (0, . . . , 0, θ0, . . . , θk−1)

′, Zn1 =

(Zn, Zn−1, . . . , Zn−q+1)
′, Zn2 = (Zn+q, Zn+q−1, . . . , Zn+1)

′. Therefore, the con-

ditional prediction MSE of E [Xn+k |xn] satisfies

E
[
(Xn+k −E(Xn+k|xn))2 |xn

]

= E
[(

θ
′
k1 (Zn1 − E(Zn1|xn)) + θ

′
k2Zn2

)2 |xn

]

= θ
′
k1E

[
(Zn1 −E(Zn1|xn))2

]
θk1 + θ

′
k2 [Var (Zn2)] θk2

= θ
′
k1

{
E
[
Zn1Z

′
n1|xn

]
− E [Zn1|xn] E

[
Z

′
n1|xn

]}
θk1 +

(
θ
′
k2θk2

)
Var(Zt).

This quantity can be approximated by a MC estimator using the same importance

sampling draws used for B̂P:

Ê
[
(Xn+k − E(Xn+k|xn))2 |xn

]

= θ
′
k1

{
Ê
[
Zn1Z

′
n1|xn

]
− Ê [Zn1|xn] Ê

[
Z

′
n1|xn

]}
θk1 +

(
θ
′
k2θk2

)
Var(Zt),

where Ê(Zn1|xn) is the vector version of (12) and

Ê
[
Zn1Z

′
n1 |xn

]
=

∑m
i=1 z

(i)
n1

(
z

(i)
n1

)′
A
(
z

(i)
r ,xn,w

(i)
s

)

∑m
i=1A

(
z

(i)
r ,xn,w

(i)
s

) ,

in which z
(i)
n1 = (z

(i)
n , z

(i)
n−1, . . . , z

(i)
n−q+1)

′.

3. Numerical Experiments

The performance of our methodology for computing or approximating the

best mean square predictor (BP) is investigated numerically for several MA pro-

cesses in the following subsections. We consider discrete innovations in Sec-

tion 3.1 and continuous (Gaussian or non-Gaussian) innovations in Section 3.2.

Both invertible and non-invertible cases are included. In what follows, the best

linear predictor (BLP) has prediction MSE σ2
BLP

, while the best predictor (BP)

has prediction MSE σ2
BP

. The prediction MSE of the BLP is evaluated analyti-

cally for all innovations distributions. The prediction MSE of the BP is evaluated

analytically for discrete innovations, and via simulation for continuous innova-

tions.

3.1. Discrete innovations

We consider the binary innovations distribution with P (Zt = 1) = P (Zt =

−1) = 0.5. For this case, the best MS predictor can be evaluated exactly using

our backward-forward algorithm as noted in Section 2.1. The performance of
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the BP is judged in terms of its efficiency relative to the BLP. We consider both

invertible and non-invertible MA(1), as well as non-invertible MA(2) processes.

For an invertible MA(1), the relative efficiency of BP to BLP converges to

one as n→ ∞, since the BP based on the infinite past is linear. This convergence

is evident even for n = 10 in the binary case. For θ = 0.9, the relative efficiency

of BP to BLP decreases smoothly from 1.362 at n = 1 to 1.021 at n = 10. For

θ = 0.5 the decay is even faster, from 1.050 at n = 1 to 1.000 at n = 10. This is

not surprising, since the coefficients in the corresponding AR(∞) representation

decay much faster for the case with smaller |θ|.
For non-invertible MA(1) processes with θ†(z) = 1 and θ∗(z) = (1 + θz), BP

can be much more efficient than BLP as θ−1 approaches zero. This is shown in

Table 1 both at n = 1 and n = 10. Indeed, it can be shown that the relative

efficiency approaches θ2 as n→ ∞.

Table 1. Prediction mean square errors of the best mean square predictor

(BP) and the best linear predictor (BLP) and relative efficiency of BP to
BLP in non-invertible MA(1) processes with binary innovations.

n = 1 n = 10

θ−1 σ2
BLP

σ2
BP

σ2
BLP

σ−2
BP

σ2
BLP

σ2
BP

σ2
BLP

σ−2
BP

1.0 1.500 1.500 1.000 1.091 1.001 1.090
0.9 1.682 1.000 1.682 1.260 1.000 1.260

0.7 2.370 1.000 2.370 2.041 1.000 2.041

0.5 4.200 1.000 4.200 4.000 1.000 4.000

0.3 11.194 1.000 11.194 11.111 1.000 11.111

0.1 100.010 1.000 100.010 100.000 1.000 100.000

We consider two classes of non-invertible MA(2) processes:

Xt = (1 + θ−1B)(1 + (1 − θ)−1B)Zt, (14)

Xt = (1 + θ−1B)(1 + θB)Zt, (15)

where θ = 0.1, 0.3, . . . , 0.9. The former is purely non-invertible and the latter is

not. Note that, in (14), the cases with θ = a and θ = 1−a are identical, therefore

the results for θ = 0.1, 0.3 are omitted below.

In Table 2, the BP is much more efficient than the BLP for one-step-ahead

prediction in nearly all cases considered, with greater efficiency gains at the larger

sample size. Large efficiency gains are also evident for two-step-ahead prediction

in the purely non-invertible models. For the non-purely non-invertible model, on

the other hand, the BLP is fairly competitive with the BP for two-step-ahead

prediction.
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3.2. Continuous innovations

For the continuous innovations case, the performance of the MC estimator

(denoted by B̂P) for approximating BP is judged in terms of its bias, root mean

square error and efficiency relative to both BP and the BLP:

BIAS = E
[
Ê[Xn+k |Xn] − E[Xn+k |Xn]

]
,

MSE = E
{
Ê[Xn+k |Xn] − E[Xn+k |Xn]

}2
,

RMSE = {MSE}1/2 ,

RE(B̂P,BP) =
E {Xn+k − E[Xn+k |Xn]}2

E
{
Xn+k − Ê[Xn+k |Xn]

}2 ≡ σ2
BP

σ2
BP

+ MSE
,

Table 2. Prediction mean square errors of the k-step BP and BLP (k = 1, 2),

and relative efficiency of BP to BLP in non-invertible MA(2) processes with

binary innovations.

purely non-invertible MA(2): θ(z) = (1 + θ−1z)(1 + (1 − θ)−1z)

k = 1 k = 2
θ σ2

BLP
σ2

BP
σ2

BLP
σ−2

BP
σ2

BLP
σ2

BP
σ2

BLP
σ−2

BP

n = 1 0.9 174.870 62.728 2.788 247.416 124.457 1.988

0.7 30.110 12.338 2.440 45.862 23.676 1.937

0.5 20.879 9.000 2.320 32.515 17.000 1.913

n = 10 0.9 126.156 1.000 126.156 246.941 124.457 1.984

0.7 22.684 1.000 22.684 45.352 23.676 1.916
0.5 16.000 1.000 16.000 32.000 17.000 1.882

non-purely non-invertible MA(2): θ(z) = (1 + θ−1z)(1 + θz)

k = 1 k = 2
θ σ2

BLP
σ2

BP
σ2

BLP
σ−2

BP
σ2

BLP
σ2

BP
σ2

BLP
σ−2

BP

n = 1 0.9 3.368 3.022 1.114 5.879 5.545 1.060

0.7 3.756 3.265 1.150 6.378 6.031 1.058

0.5 5.220 4.125 1.265 8.129 7.750 1.049
0.3 11.727 7.601 1.543 15.135 14.701 1.030

0.1 100.087 52.005 1.925 104.000 103.510 1.005

n = 10 0.9 1.431 1.000 1.431 5.363 5.045 1.063

0.7 2.054 1.000 2.054 6.046 5.531 1.093

0.5 4.000 1.000 4.000 8.000 7.250 1.103

0.3 11.111 1.000 11.111 15.111 14.201 1.064
0.1 100.000 1.000 100.000 104.000 103.010 1.010

RE(B̂P,BLP) =
E {Xn+k − BLP}2

E
{
Xn+k − Ê[Xn+k |Xn]

}2 ≡ σ2
BLP

σ2
BP

+ MSE
.
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These quantities can be evaluated numerically by

bias =
1

R

R∑

i=1

(
Ê
[
Xn+k |x(i)

n

]
− E

[
Xn+k |x(i)

n

])
, (16)

mse =
1

R

R∑

i=1

(
Ê
[
Xn+k |x(i)

n

]
− E

[
Xn+k |x(i)

n

])2
,

rmse = {mse}1/2, (17)

re(B̂P,BP) =
σ2

BP

σ2
BP

+ mse
, (18)

re(B̂P,BLP) =
σ2

BLP

σ2
BP

+ mse
, (19)

where R is the number of replications and x
(i)
n is the realization of Xn in the ith

replication.

In our importance sampling experiments, the importance sampler is set to

be h(zr,ws) =
∏
hz(zt)

∏
hw(wt), in which hz(z) and hw(w) are uniform densi-

ties when the domain of f(z) is bounded and Gaussian densities (or truncated

Gaussian densities) otherwise. These are fairly naive importance samplers. They

have not been tailored for optimality with a particular innovations distribution.

The performance of B̂P could be improved through a better choice of importance

sampler, a larger value of m, or both.

Section 3.2.1 considers invertible MA processes with Gaussian and non-

Gaussian innovations, checking equivalence of the approximated BP and the BLP

in the Gaussian case, and the convergence of the approximated BP to the infinite-

past BLP in the non-Gaussian case. Section 3.2.2 compares the approximated

BP to the known BP for certain non-invertible non-Gaussian MA(1) processes.

Finally, Section 3.2.3 compares the approximated BP to the known BP=BLP for

Gaussian MA(2) processes.

3.2.1. Invertible MA(1) with Gaussian and non-Gaussian innovations

We consider invertible MA(1) processes with θ†(z) = 1+θz for both Gaussian

(GAUSS) and non-Gaussian innovations, all centered and scaled to zero mean

and unit variance. Two continuous, non-Gaussian innovations distributions are

considered: the centered exponential (EXP) with probability density function

e−(z+1)1{z>−1} and the uniform (UNIF) on [−1/
√

3, 1/
√

3].

Table 3 presents the empirical values of relative efficiency for n = 1, . . . , 10

under each innovations distribution evaluated when R, the number of replica-

tions, is set to be 100 for each process and m, the number of draws in the

importance sampling, is set to be 4,000 for each replication.
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Table 3. The relative efficiency of B̂P to BLP, re(B̂P,BLP), for invertible

MA(1) processes with continuous innovations.

θ = 0.5

n GAUSS UNIF EXP

1 1.000 1.003 1.006

2 1.000 1.001 1.007
3 1.000 1.001 1.002

4 1.000 1.000 1.000

5 1.000 1.000 1.000

6 1.000 1.000 1.000
7 1.000 1.000 1.000

8 1.000 1.000 1.000

9 1.000 1.000 1.000

10 1.000 1.000 1.000

θ = 0.9

n GAUSS UNIF EXP

1 1.000 1.001 1.009

2 1.000 1.019 1.088
3 1.000 1.026 1.060

4 1.000 1.027 1.055

5 1.000 1.026 1.053

6 1.000 1.021 1.036
7 1.000 1.020 1.033

8 1.000 1.017 1.025

9 1.000 1.013 1.021

10 1.000 1.011 1.016

The MC estimator correctly reproduces the BLP in the Gaussian case, as

re(B̂P,BLP) = 1 to three decimal places. As in the binary case, the relative

efficiency of BP to BLP converges to one as n → ∞, since the BP based on the

infinite past is linear. The convergence is slower for larger |θ|.

3.2.2. Non-invertible MA(1) with non-Gaussian innovations

We next consider non-invertible MA(1) processes satisfying (2) with θ†(z) =

1 and θ∗(z) = 1 + θz where θ−1 = ±0.1,±0.3, . . . ,±0.9. As above, we consider

EXP and UNIF as the non-Gaussian innovations distributions. Results on bias,

rmse and relative efficiency of B̂P are reported in Table 4 and 5 for n = 1 and

n = 10, based on R = 1, 000 and m = 4, 000. The true values of BP and

the corresponding prediction mean square error are derived in Shepp, Slepian

and Wyner ((1980); noting that the right-hand expression in (17) of that paper

should be negated, and that each δ in an exponent in (28) of that paper should

be replaced by δ−1).

Our results show that the MC predictors do deviate from the true BP’s, with

greater empirical bias and rmse as |θ−1| approaches zero for both innovations

distributions. However, the values of re(B̂P,BP) exceed 0.998 in Table 4 and

equal 1.000 in Table 5, indicating our algorithm works extremely well for finding

BP for these non-Gaussian, non-invertible MA processes. Moreover, the MC

predictor under n = 10 performs better than that under n = 1 in terms of

smaller bias and rmse. The small efficiency losses are due to sampling errors;

better performance could be achieved by increasing the number of draws in the

importance sampling or choosing a better importance sampler.
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Table 4. Bias, rmse and relative efficiency of MC predictor B̂P = Ê[Xn+1|Xn]

for approximating the best one-step MS predictor in a non-invertible MA(1) with

exponential innovations, centered to zero mean and scaled to unit variance.

n = 1

θ−1 bias rmse re(B̂P,BP) re(B̂P,BLP)

0.9 -0.012 0.045 0.999 0.999

0.7 -0.022 0.065 0.998 1.009

0.5 -0.028 0.069 0.999 1.037
0.3 -0.052 0.102 0.999 1.051

0.1 -0.162 0.282 0.999 1.036

-0.1 0.139 0.309 0.999 1.158

-0.3 0.019 0.090 0.999 1.515

-0.5 0.011 0.051 0.999 1.512
-0.7 0.006 0.034 0.999 1.409

-0.9 0.002 0.024 1.000 1.288

n = 10

θ−1 bias rmse re(B̂P,BP) re(B̂P,BLP)

0.9 -0.005 0.004 1.000 1.170
0.7 -0.003 0.015 1.000 1.499

0.5 -0.011 0.034 1.000 1.431

0.3 -0.037 0.081 0.999 1.221

0.1 -0.160 0.287 0.999 1.057

-0.1 0.112 0.307 0.999 1.288
-0.3 0.020 0.087 0.999 1.822

-0.5 0.002 0.040 0.999 2.104

-0.7 -0.001 0.023 1.000 1.596

-0.9 -0.001 0.012 1.000 1.228

As a benchmark, the relative efficiency of B̂P to BLP is evaluated and re-

ported in the tables. The efficiency gain is large for the exponential innovations,

especially for the cases with negative θ. Under the uniform innovations, the

efficiency gain from using BP instead of BLP is up to 20%. These empirical

results are consistent with those presented in Figures 2, 5, 6 of Shepp, Slepian

and Wyner (1980).

3.2.3. Non-invertible MA(2) with Gaussian innovations

In this section, we study the same non-invertible MA(2) processes ((14)−
(15)) used in the case of binary innovations. All innovations {Zt} are Gaussian

with mean zero and variance one. We consider the Gaussian case because the

form of the best mean square predictors for MA(2) is known, which is not the

case for other continuous distributions.
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Table 5. Bias, rmse and relative efficiency of MC predictor B̂P = Ê[Xn+1|Xn]
for approximating the best one-step MS predictor in a non-invertible MA(1)
with uniform innovations, centered to zero mean and scaled to unit variance.

n = 1

θ−1 bias rmse re(B̂P,BP) re(B̂P,BLP)

0.9 0.000 0.013 1.000 1.002

0.7 -0.001 0.019 1.000 1.019

0.5 0.000 0.027 1.000 1.049
0.3 0.000 0.047 1.000 1.071

0.1 -0.005 0.153 1.000 1.039

-0.1 0.006 0.154 1.000 1.043

-0.3 0.001 0.048 1.000 1.074
-0.5 -0.001 0.028 1.000 1.053

-0.7 0.000 0.018 1.000 1.018

-0.9 0.000 0.013 1.000 1.002

n = 10

θ−1 bias rmse re(B̂P,BP) re(B̂P,BLP)

0.9 0.000 0.006 1.000 1.128
0.7 0.000 0.013 1.000 1.234

0.5 0.000 0.025 1.000 1.189

0.3 0.001 0.046 1.000 1.137

0.1 0.006 0.156 1.000 1.043
-0.1 -0.005 0.158 1.000 1.050

-0.3 -0.001 0.047 1.000 1.134

-0.5 0.000 0.024 1.000 1.214

-0.7 -0.001 0.013 1.000 1.229
-0.9 0.000 0.005 1.000 1.132

The performance of the MC estimator for approximating the k-step ahead

BP for MA(2) (k = 1, 2) is summarized in Table 6. For all of the cases,

our importance sampling algorithm accurately reproduces the BP=BLP, since

re(B̂P,BLP) ≈ 1.

4. Application

Huang and Pawitan (2000) have fitted the following non-invertible SARIMA

(0, 1, 5) × (0, 0, 2)12 to seasonally-adjusted, monthly US unemployment rates

{Yt}598
t=0 for the n + 1 = 598 months from January 1948 to October 1997.

These data plus additional months through the present are available online at

http://data.bls.gov/cgi-bin/surveymost?bls. The fitted model is

Xt = (1 −B)Yt =

(
1 +

5∑

i=1

θ†iB
i

)
(1 + θ∗12B

12 + θ∗24B
24)Zt,
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Table 6. Bias, rmse and relative efficiency of MC predictor B̂P = Ê[Xn+k|Xn]
for approximating the best k-step MS predictor (k = 1, 2) in a non-invertible
MA(2) with Gaussian innovations.

purely non-invertible MA(2): θ(z) = (1 + θ−1z)(1 + (1 − θ)−1z)

k = 1 k = 2

θ bias rmse re(B̂P,BP) bias rmse re(B̂P,BP)
n = 1 0.9 0.066 0.289 1.000 0.047 0.246 1.000

0.7 0.020 0.110 1.000 0.012 0.101 1.000

0.5 0.000 0.097 1.000 -0.000 0.091 1.000

n = 10 0.9 -0.020 0.291 0.999 -0.005 0.307 1.000

0.7 0.007 0.120 0.999 0.006 0.120 1.000

0.5 -0.006 0.102 0.999 -0.011 0.099 1.000

non-purely non-invertible MA(2): θ(z) = (1 + θ−1z)(1 + θz)

k = 1 k = 2

θ bias rmse re(B̂P,BP) bias rmse re(B̂P,BP)

n = 1 0.9 -0.013 0.100 0.997 -0.009 0.062 0.999

0.7 -0.007 0.096 0.998 -0.005 0.055 1.000
0.5 -0.006 0.092 0.998 -0.003 0.050 1.000

0.3 0.002 0.106 0.999 -0.001 0.048 1.000

0.1 0.001 0.161 1.000 -0.001 0.045 1.000

n = 10 0.9 0.006 0.056 0.998 0.003 0.050 1.000

0.7 -0.001 0.087 0.996 -0.001 0.062 0.999

0.5 0.010 0.113 0.997 0.005 0.065 0.999
0.3 0.008 0.114 0.999 0.004 0.057 1.000

0.1 0.010 0.188 1.000 0.003 0.052 1.000

where (θ†1, . . . , θ
†
5)=(−0.0163, 0.1844, 0.1329, 0.1235, 0.1834), (θ∗12, θ

∗
24)=(1.1832,

−4.415) and Var(Zt) = (0.0483661)2 . The non-seasonal MA(5) is purely invert-

ible and the seasonal MA is purely non-invertible, so r = 5, s = 24, and q = 29.

We compute residuals from this model and assume that the normalized resid-

uals {Zt/
√

Var(Zt)} are independently and identically distributed as tν
√

(ν−2)/ν,

which is a t-distribution with ν degrees of freedom, scaled to unit variance. Fit-

ting ν via maximum likelihood, we get ν̂mle = 4.63.

Treating the parameter estimates as fixed, we then generate multi-step out-

of-sample forecasts for the monthly differences X598+k = Y598+k − Y598+k−1

(k = 1, 2, . . . , 29) and compare to the corresponding observed values. (Out-

of-sample forecasts for k > 29 are identically zero.) The approximate best mean

square predictors {B̂Pk}k=1,2,...,29 are computed with our importance sampling

algorithm, using a rescaled t4.63 importance sampler. One million draws are

obtained from this distribution, and then a subsample of these draws of size

m = 100, 000 is selected with probabilities proportional to their importance
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weights. This importance resampling step is included to improve the impor-

tance sampling approximation (Gelman, Carlin, Stern and Rubin, (1995, Section

10.5)

In addition, the best linear predictors {BLPk}k=1,...,29 are computed, and

both sets of predictors are compared to the actual data {X598+k}k=1,...,29. Sum-

mary results show that the MC predictor dominates the BLP in out-of-sample

forecasts over these 29 months:
∑29

k=1 (X598+k − BLPk)
2

∑29
k=1

(
X598+k − B̂Pk

)2 = 1.08 and

∑29
k=1 |X598+k − BLPk|∑29
k=1 |X598+k − B̂Pk|

= 1.06.

These small advantages of the estimated BP over the BLP for forecasting

monthly differences cumulate into larger advantages in forecasting monthly un-

employment rates:
∑29

k=1 (Y598+k − BLPk)
2

∑29
k=1

(
Y598+k − B̂Pk

)2 = 1.33 and

∑29
k=1 |Y598+k − BLPk|∑29
k=1 |Y598+k − B̂Pk|

= 1.14.

Again, the MC predictor dominates the BLP in out-of-sample prediction over

these 29 months.

The predicted values are quite similar using other importance samplers, both

with heavier tails (rescaled t2.5) and lighter tails (Gaussian). This gives us some

confidence that the choice of the importance sampler is not too critical in this

particular case.

Appendix. Stability of Recursions

Write

θ̃(z) = (1 + z)u1(1 − z)u2

∏̀

j=1

(1 − 2 cos λjz + z2)
s−u1−u2−2`∏

j=1

(1 − ξ−1
j z),

where u1, u2 ∈ {0, 1}, λ1 < λ2 < · · · < λ`, and |ξj | > 1. Then, starting from

w
(i)
n , . . . , w

(i)
n+1−s, we have the backward recursion

w
(i)
t−s =

xt

θ∗s
− (θ̃(B−1) − 1)w

(i)
t−s

=
θ∗s θ̃(B

−1)wt−s

θ∗s
− (θ̃(B−1) − 1)w

(i)
t−s,

for t = n, n− 1, . . . , which can be rearranged as

0 = θ̃(B−1)
{
wt−s − w

(i)
t−s

}
≡ θ̃(B−1)δt−s, t = n, n− 1, . . .

= θ̃(B)δn−t, t = s, s+ 1, . . . ,
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subject to initial conditions δn, . . . , δn+1−s. These initial conditions are unknown

in practice, but in theory the general solution of this homogeneous linear differ-

ence equation with constant coefficients is

δn−t = u1a1 + u2a2(−1)t +
∑̀

j=1

bj cos(λjt+ cj) +
s′∑

j=1

rj∑

k=1

djkt
k−1ξ−t

j ,

where rj is the multiplicity of root j,
∑s′

j=1 rj = s − u1 − u2 − 2`, and the

constants a1, a2, {bj}, {cj}, {djk} are determined from the initial conditions

(e.g., Brockwell and Davis, (1991, Section 3.6)). This solution remains bounded

for all t = 0, 1, . . ..

Now, starting from z
(i)
−q+1, . . . , z

(i)
−q+r, run the forward recursions

z
(i)
t−s = w

(i)
t−s − (θ†(B) − 1)z

(i)
t−s t = 1, 2, . . . , n+ s

= wt−s − δt−s − (θ†(B) − 1)z
(i)
t−s

= zt−s + (θ†(B) − 1)zt−s − δt−s − (θ†(B) − 1)z
(i)
t−s.

Rearranging this expression yields

δt−s = θ†(B)(zt−s − z
(i)
t−s) ≡ θ†(B)∆t−s, (20)

a nonhomogeneous linear difference equation with constant coefficients. The

general solution of the associated homogeneous equation is

∆H
t−s =

s′+r′∑

j=s′+1

rj∑

k=1

djkt
k−1ξ−t

j ,

where
∑s′+r′

j=s′+1 rj = r. Clearly {∆H
t−s} remains bounded for all t = 1, 2, . . .. A

particular solution of (20) is

∆P
t−s =

δt−s

θ†(B)
=

∞∑

j=0

ψjδt−s−j ,

where the ψj are determined from 1 = θ†(z)(1+ψ1z+ψ2z
2+ · · ·). This particular

solution is convergent by the boundedness of {δt−s} and absolute summability of

{ψj}. Thus, the general solution of (20) is ∆t−s = ∆H
t−s +∆P

t−s (see, for example,

Hildebrand (1968, p.31)), which remains bounded for all t = 1, 2, . . .. In other

words, the recursion is numerically stable because its error remains bounded.
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