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Abstract: A remarkably accurate approximation is proposed for a marginal density,
for finite sample situations where the tails of the posterior density are not accurately
represented by a more standard Laplacian approximation. An approximation is de-
veloped for the posterior density of an arbitrary linear combination of the means, in
the context of the Bayesian analysis of the multi-parameter Fisher-Behrens problem.
Advantages of Laplacian methods for non-linear regression problems, when compared
with sampling based methods, are discussed.
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1. The Laplacian T-Approximation

A px1 vector 6 is said to possess a multivariate t-distribution, with  degrees
of freedom, mean vector g, and precision matrix R, if 6 possesses density

(v 11y B) = CuplRIE[14+ 0710 = wfT RO - )] 27 (0 e B), (11
where Ol +7)/2)
_ v+p
v,p — I‘(l//z)ﬂ'%pu%p’ (12)

and RP denotes p-dimensional Euclidean space.

Consider a posterior density my(n,€) for unconstrained parameters 7 and
£€=(&,-- -, {Q)T, and suppose that an approximation is required to the marginal
posterior density

myn) = [ mn,0d (ne R (13)
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Following Leonard (1982), Leonard and Novick (1986), Tierney et al. (1989),
and Hsu et al. (1991), let £, denote some choice of conditional vector for £, given
n, and let

. 32 log 7ry(77’ 577)
n— T )
9(&,¢n)
denote the corresponding conditional information matrix. When €, conditionally
maximizes 7 (7, €), given 7, these authors develop the Laplacian approximation

7y(n) o my(n, €,)/|U4?  (n € RY), (1.5)

to my(n). The approximation (1.5) is exact whenever my(n, £) is either a p = ¢+ 1
dimensional multivariate t-density, or a multivariate normal density. It is also
remarkably accurate in situations where a preliminary transformation has been
chosen to ensure that the conditional distribution of &, given 7, is approximately
multivariate normal. It can be justified via a second order Taylor Series approx-
imation to log my(n, £).

Nevertheless, in a range of examples, in particular the Behrens-Fisher prob-
lem discussed in Section 3, and the hierarchical models analysed by Sun (1992),
(1.5) inadequately approximates the tails of the marginal posterior density (1.3).
Therefore we consider, instead, a Taylor Series expansion of [m,(n, £)]™* about
an arbitrary £ = §,, where a is typically constant in 7, but may depend on 7,
giving

(1.4)

[”y(ﬂa 6)]—0 = [Wy(n, fn)]_a [1 - a‘eg’({ - 617) + %CY(& - E'q)TQn(g - gn)
+ cubic and higher terms], (1.6)

where 51 (n.6)
, = 08 Ty\", &y , (17)
o€,
Q'I = U,,+a£,,£;€, (1.8)
and U,, satisfies (1.4). Now, set
2
= , 1.9
o= (1.9

where v is assumed positive. Then, neglecting cubic and higher terms in (1.6),
and raising both sides to the power —(v +¢)/2, yields, after some rearrangement,
the approximation

m(n,€) = my(m €)M TV L4 v - ) T - €] VY, (o)
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where
& =¢,+Q, Ly, (1.11)
M=1- v+ Qe (112)
and
V@,

To= Gr o (1.13)

If A\, > 0, and T, is positive definite, then the right hand side of (1.10)
is proportional to a t¢(v, q,{n,Tn) density. Therefore, integrating over £ € R
yields the approximation

my(n,€,) -1 T(/2)(v + 9)3°
Q7 Tlv+a)/2]

(1) o (1.14)

to the marginal posterior density my(n) of 7, where v could depend upon 7. In
the special case where £, is the conditional maximum of (1.10), with respect to
¢, given 7, the “Laplacian T-approximation” (1.14) reduces to

ey o (o D/ + )30
mn) & BTN G g /2)

(1.15)

where 7y(n) is the ordinary Laplacian approximation (1.5). Therefore, if v is
constant in 7, the Laplacian T-approximation based upon the conditional mode
¢,, does not improve (1.5). A choice of v, dependent upon 7, would modify (1.5).
However, our primary recommendation for improving the approximation to (1.3)
is to seek alternative choices of &, (see Section 3). The approximation (1.14) is
then dependent upon the choice of v, but is rather robust under modest changes
to v. The latter should be chosen to ensure that the conditional posterior density
of £, given 7, is approximately a multivariate t-density with v degrees of freedom,;
and this would be implied by the requirement that the posterior density m, (@) of
0 = (n,&)T is approximately a multivariate t-density with v degrees of freedom.

While our procedure does not give a general criterion for choosing &, some
natural choices are available for the Behrens-Fisher problem (see Section 3), and
for Bayesian hierarchical models (see Sun (1992) and Sun, Guttman, and Leonard
(1993)). As a general guideline, £, might be viewed as some reasonable approx-
imation to the conditional posterior mean vector of £, given 7, or as some rea-
sonable measure of center of the posterior density of &, given n. Mode vectors
do not necessarily provide sensible measures of center. The choice of v can vary,
according to the particular parameter of interest under consideration.
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2. Choosing the Degrees of Freedom

In cases where the exact second and fourth central posterior moments Ms
and My of n exist, and are computable, v can be evaluated by equating the exact
kurtosis K = My/M2 to the kurtosis of the approximation (1.14), obtained via
the appropriate one-dimensional numerical integrations.

More generally, the posterior density m,(8) = my(n, &) of 8 = (n,€)T may be
approximated by a tg(v,p, é, T) density, where p = ¢ + 1, 0 denotes the uncon-
ditional posterior mode vector, and T = vQ/(v + p), where Q is the posterior
information matrix. Consequently, the marginal posterior density of n may be
approximated by a t,(v, 1, aT8,(aTT'a)~1) density, where a = (1,0,0, ... ,0)T.
This t-density may be compared graphically with the Laplacian T-approximation
(1.14), for the same choice of v. We recommend a choice of v which ensures that
these two alternative approximations, to the marginal posterior density of 7, are
as numerically close to each other as feasible. This also provides a general pro-
cedure for approximating a posterior density by a multivariate t-density, when a
particular parameter is designated to be of interest. Methods based upon equat-
ing fourth derivatives do not appear to possess general applicability, owing to their
restrictive forms, when differentiating the logarithm of a multivariate t-density.
The proposed procedure is, however, designed to correctly evaluate v, whenever
the posterior density of 8 is exactly a t-density with v degrees of freedom.

3. The Multi-Parameter Fisher-Behrens Problem

Given (61,¢1),...,(0p, ¢p), consider observations y;; which are independent,
with respective means 6; and variances ¢;, (1 =1,...,m;j =1,...,n;). Take the
6; and log ¢; to be a priori independent and uniformly distributed over R'. Then
the posterior density of 6;,...,6, is

(oly) [T [ti0] ™, (31)

where
Ui(6;) = S? + ni(6; — §:)°, (3.2)

and 7; and S? denote the sample mean, and within group sum of squares, for the
1th group.

The methodology of Section 1, may be used to approximate the posterior
density of an arbitrary linear transformation 7 = ) a;0; of 61,...,0,. Let
& = 601,...,& = 04, with ¢ = p — 1. Following O’Hagan (1976), we note that,
when the joint posterior density is the product of multivariate t-densities, and the
parameters are not independent, the joint posterior mode vector need not reason-
ably characterize the posterior distribution. This aspect is investigated in detail
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by Sun (1992) in the context of the “Lindley-Smith collapsing phenomenon”. In
the current context, the joint posterior modes of &1, .. .,&q, given 7, may not rea-
sonably represent the location of the conditional posterior density of &1, ..., &g,
given 7. Therefore, following a suggestion by O’Hagan, we consider instead, the
joint posterior modes §§”), e ,5(5"), of é1,...,&q, given ¢1,. .., ¢y, and 77, and then
replace ¢; by &i =n; 1512, for i = 1,...,p. These conditional modes are denoted
by

£ = g+ n Gias(n —2) /D niptakde (i=1,...,9). (3.3)

k

The matrix (1.4) can be obtained in algebraic form from the joint posterior

density of n and £1,...,&;, unconditionally upon #1,...,%q. It will not remain

positive definite for all values of n and £, = (én)’ ey gf,”))’f, in particular for val-

ues of n lying in the tails of the posterior density. However, when calculating the
Laplacian T-approximation (1.14), the 55") can be replaced by the corresponding

51(") for a<n<b
EM =2 € for n<a (3.4)
¢? for >0,

where a and b are chosen to ensure that U, in (1.4) is replaced by a matrix
f],, which always remains positive definite. The corresponding Laplacian T-
approximation (1.14) is continuous, and well-defined, even in the tails. It will be
different from the ordinary Laplacian approximation (1.5), owing to the choices
(3.3) and (3.4).

Consider the Poland China Pig data, reported by Scheffé (1959, p.87). The
data comprise the birthweights in p = 8 litters, with 10, 8, 10, 8, 6, 4, 6, and
4 pigs in the different litters. The group sample means were respectively 2.84,
2.66, 3.18, 2.98, 2.37, 2.90, 1.98, and 2.35, and the maximum likelihood estimates
of the sample variances were respectively 0.818, 0.435, 0.068, 0.089, 0.122, 0.060,
0.328 and 0.293. A parameter of particular interest is the contrast

1 1
N =501+ 0+ 0s) = £ (02 + 05 + b6 + b7 + Os) (3.5)

since this relates to the difference in average weights between the offspring of two
particular boars. However, results of similar accuracy were obtained for many
choices of contrast.

Curve (a) of Fig.1 describes the Laplacian T-approximation (1.14) to the
posterior density of 7, with v = 13.5, the elements of §, replaced by the appro-

priate é? in (3.3), a = 0.1103, and b = 1.2020. The choice v = 13.5 was obtained
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by the graphical method of Section 2, and curve (a) of Fig. 1 is virtually indis-
tinguishable from a t,(13.5,1,0.546,32.161) density. The kurtosis K = My/M}
corresponding to density (a) is K = 0.355. Curve (b) of Fig. 1 describes a similar
Laplacian T-approximation, but with v = 6. The value v = 6 was obtained by
the method described in the first paragraph of Section 2, and evaluates the exact
kurtosis K = 0.294 correctly, to three decimal places. Curve (c) is the Lapla-
cian approximation (1.5), and is also virtually indistinguishable from an ordinary
Laplacian approximation based upon the joint posterior density of the 6; and
log ¢;. Histogram (d) represents the exact posterior density, based upon 500,000
Monte Carlo simulations (consuming 23 mins. of CPU time on a Sunsparc sta-
tion, where, on each simulation, values were generated from the eight independent
t-distributions appearing in the posterior distribution (3.1). Hence, straightfor-
ward Monte Carlo, rather than more complicated importance sampling, (e.g.,
Leonard, Hsu, and Tsui (1989)) was employed.

We conclude that the Laplacian T-approximation gives greater accuracy in
the tails, in the current situation, when compared with the ordinary Laplacian
approximation, and that it would only be necessary to obtain a sensible evalu-
ation of v in order to establish this superiority. The exact, computer simulated
probability, that n < 0, is 0.00530, and this may be compared with the approx-
imations 0.00475, 0.00382, and 0.00118, which respectively correspond to curves
(a), (b), and (c) of Fig. 1. These results indicate that v should not be taken too
small (e.g., v = 6), or too large (e.g., ¥ = o0), but that the choice v = 13.5 is
adequate. The tails of the approximations (a) and (b) are slightly too thin out-
side the interval (—0.1103, 1.2020), but in the left tail this causes differences from
the exact result of an area no greater than 0.00168. Note that the usual t-test,
for n = 0, assuming equal variances, yields a one-sided significance probability of
about 0.0008, and does not therefore approximate our results well in the unequal
variance case.

4. Non-Linear Transformations

Consider now a vector £ = ({y,... ,§q)T of unknown parameters, which pos-
sesses posterior density my(£), and consider approximations to the marginal pos-
terior density

my(n) = lim [ 7 (€)de, (4.1)

of a specified non-linear transformation n = g(§) of &, where D = {¢ : |[n—g(£)| <
e}. By a parallel development to the theory of Section 1, my(n) is approximated
by

_1(y .
m3(n) o Oy Tyl ™2 my(€,)20 20 fo (v, £, T), (4.2)
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where Cyq, &7, Ay, and T, respectively satisfy (1.2), (1.11), (1.12), and (1.13),
but with my(n,£,) in the expressions for U, and £, in (1.4) and (1.7), replaced
by my(€,). Also, £, in (1.11) denotes an arbitrary conditional vector for £, given
n, and fn(v,€",T) is the density of n = g(£) when £ possesses a i(v, q,¢*,T)
density.

Some further approximations or simulations may be needed for the f, contri-
bution to (4.2). As v — 00, (4.2) reduces to the LHT approximation, which was
shown in several numerical examples, by Leonard et al. (1989), and Hsu et al
(1991), to possess excellent numerical accuracy, when compared with the exact
simulated result. The refinement (4.2) will affect the tails of the approximation.
The degrees of freedom v can be evaluated by comparing (4.1) with the density
of 7, under a multivariate t-approximation of the type introduced in Section 2,
to the posterior density of §.

In the special case when 7 = g(¢) = aT¢ denotes a linear transformation of
¢, the f, contribution to (4.2) satisfies

Fov, €5, T) = t (1,1, 67€;, (a7 T a) ™) (4.3)

yielding an alternative representation of the Laplacian T-approximation (1.14),
and generalizing an algebraic rearrangement of (1.5), recommended by Tierney
et al. (1989).

5. Laplacian and Sampling Based Methods in Non-Linear Regression

Consider non-linear regression models of the form
yi = f(z;,0)+e (i=1,...,n) (5.1)

where the ¢; are independent, and normally distributed with zero means and
common unknown variance o2, f is a specified function of z; and 6, @ is an
unknown p x 1 vector of parameters, and i, ..., T, are specified constants. If
0 is a priori uniformly distributed over R!, and independent of log o® which is
uniformly distributed over R!, then the posterior density of @, if this exists, is

ry(6) o [p(8)] 737, (5.2)

where .
p(8) = > (yi - f(,6))%, (5.3)

=1

and w = n — p. If instead ¢? is uniformly distributed over (0, cc), then w =
n —p — 2. If the posterior density exists then the approximation (1.5) often



134 TOM LEONARD, JOHN S. J. HSU, AND CHRISTIAN RITTER

works well, and may be applied to compute the marginal posterior density of any
element of 6 e.g., n = 6;. The conditional maximum 6, may be computed by
reference to the profile likelihood methods of Bates and Watts (1988, p.205). The
underlying algorithms are currently in the statistical software package S. The al-
gorithms can break down, e.g., the conditional optimization procedures may fail
in the tails of the posterior density, or the conditional Hessian U,, in (1.4) may
become close to singular. In such circumstances it is better to refer to sampling
based methods, e.g., importance sampling, (e.g., Leonard et al. (1989) and their
bibliography, Tanner and Wong (1987), Leonard and Hsu (1992)), the Gibbs sam-
pler (Carlin and Gelfand (1990), Gelfand and Smith (1990)), or the Metropolis
algorithm (Metropolis et al. (1953), Miiller (1991)). However, if the Bates-Watts
algorithm succeeds, then the ordinary Laplacian approximation (1.5) can be ex-
tremely accurate, and can be much less computer intensive than sampling based
methods. Leonard and Hsu (1992) consider more complex examples where the
profile likelihood methods become overcomplicated, and it is necessary to de-
vise special sampling methods. However, in the current context, (1.5) frequently
works well without the modification (1.14), so that further choices of £, and v
are unnecessary.

As an illustrative example (see Ratkowsky (1983, p.58)), consider the choice
of regression function

2!
f(z:,0) = 1+ byz; + 6322

The parameter 6, refers to a genetic potential, while ; and 63 relate to the
loss in yield y; due to the value of a density z;. Owing to unusual shapes of the
tails of the likelihood function, the posterior density of 61, 6,5, and 63 does not
properly exist under the prior assumptions discussed above. Therefore we assume
instead that our uniform prior distributions for 6y, 62, and 63, are truncated to
the finite regions 0 < 6; < 2000, 0 < 62 < 1, and —0.001 < A3 < 0.001, and
that o2 is uniformly distributed over (0,00). This ensures that the posterior
density captures the domain of reasonable parameter values, while reaching out
far enough to expose some of the tail behavior of the likelihood. This problem
provides a possible counterexample to importance sampling, since it is difficult to
find an approximation to the posterior density, sufficiently accurate in the tails,
from which it is possible to simulate trial vectors 8 = (6,65, 63)7.

For the MG data (n = 42) set considered by Ratkowsky, the corresponding
Laplacian approximations, are described by the solid curves in Figs. 2, 3, and 4.
Each of the three approximations involved 800 evaluations of the posterior density,
and the approximations based on these curves are accurate, to about 3 decimal
places, to the exact curves obtained by numerical integration. They are also close
to the less accurate histograms in Figs. 2, 3, and 4, which involved heavy computer

(5.4)
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simulation. Note that the Laplacian approximations ignore the constraints on the
parameter space imposed by the prior, but are still virtually identical to the exact
results based upon the truncated posterior.

The histograms are based upon a combination of the Grid-based Gibbs sam-
pler (Ritter and Tanner (1992)), and the version of the Metropolis algorithm
suggested by Miller (1991). 100 parallel chains were generated by several ini-
tial iterations of the Grid-based Gibbs sampler, followed by 800 iterations of the
Metropolis algorithm. After 600 iterations, the quantile plots indicated conver-
gence, and a Monte Carlo sample of 1000 observations was extracted by combining
every 20th iteration for the last 200 iterations. A total of 100,000 evaluations of
the posterior density were therefore required. While the computer efficiency of
this sampling based method could be enhanced by reference to suggestions made
by Tierney (1991), the Laplacian approximation is clearly much more efficient
in terms of numbers of evaluations required of the posterior density. While the
histograms in Figs. 2, 3, and 4 could be replaced by smooth curves, e.g., using
a procedure recommended by Gelfand and Smith (1990), which averages condi-
tional densities, these curves would not approximate the true curves as well as
the Laplacian approximation, unless a very large Monte Carlo sample were used.
Other examples are reported by Ritter, Bisgaard, and Bates (1991) and Ritter
(1992). Overall, we conclude that the Laplacian and Laplacian T-approximations
yield distinct computational advantages, when compared with sampling based
methods, for a broad range of statistical problems. The approximation error is,
for example, typically negligible, when compared with possible inexactness in the
specification of the prior distribution. The Laplacian methods do however need to
be reformulated for every particular parameter of interest, while sampling based
methods can consider many parameters of interest simultaneously.

6. Further Work-Hierarchical Bayes Models

Sun (1992) applies the Laplacian T-approximation to Hierarchical Bayes
models, in particular the multi-way analysis of variance random effects model
with interaction effects discussed by Box and Tiao (1973, p.292). The condi-
tional mode procedures introduced in Section 3, lead to algebraically explicit
approximations, in the equally replicated two-way case, to the marginal poste-
rior density of any marginal or interaction effect of interest, and hence effectively
solve a problem which creates severe difficulties for sampling based methods. Sun
validates these further applications of the Laplacian T-approximation by demon-
strating that the corresponding approximate Bayesian intervals possess excellent
frequency properties, under particular choices of prior distribution. These results
are also reported by Sun, Guttman, and Leonard (1993).
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Figure 1.

Marginal posterior density of linear contrast
(a) Laplacian T-approximation (v = 13.5)
(b) Laplacian T-approximation (v = 6)

(c) Ordinary Laplacian approximation

(d) Histogram, simulated by Monte Carlo
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Figure 2. Marginal posterior density of genetic potential
Solid curve: Laplacian T-approximation (virtually exact)
Histogram: Simulated by Gibbs sampler/Metropolis algorithm
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Figure 3. Marginal posterior density of linear coeflicient
Solid curve: Laplacian T-approximation (virtually exact)
Histogram: Simulated by Gibbs sampler/Metropolis algorithm
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Figure 4. Marginal posterior density of quadratic coefficient
Solid curve: Laplacian T-approximation (virtually exact)
Histogram: Simulated by Gibbs sampler/Metropolis algorithm
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