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Abstract: This paper shows that nonparametric estimation of 8 for generalized Leh-
mann’s alternative models h(F';8) is possible, even in the one-sample problem, when
symmetry of the basic distribution function F' about zero, F(z) = 1 — F(—=z), is
assumed. Simultaneous nonparametric estimators of u and 6 for the model h(F(- —
p); @) are also provided under the symmetry of F. The asymptotic normality of these
estimators is proved under certain regularity conditions.
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1. Introduction

In this paper we consider the following model: the observations X, Xo,.. .,
X, are independent and identically distributed (i.i.d.) with a distribution func-
tion (d.f.) G(z;u,0) = h(F(z — p);8), where h(t;6) is a known transformation
on (0,1) which satisfies the conditions (1) and (2) below, and F is an unknown
d.f. Then the observations are said to follow a distribution called Lehmann’s
alternative (Lehmann (1953)). The Lehmann’s alternative is in general a trans-
formation on the space of distributions, but in our model we parametrize this
transformation and define as follows (Miura (1985)).

Definition. Let © be an interval in the real line. A function h(¢;8) for t € (0,1)
and § € © which satisfies the following (1) and (2) is called the generalized
Lehmann’s alternative model;

(1) h(0;6) = 0 and h(1;0) = 1 for any 6 € ©. h(t;0) is a strictly monotone
function of ¢.

(2) There exists 8* € © such that h(t;6*) = ¢ for t € (0,1). And for § > &',
h(t;60) < h(t;6’) for all t (or < may be reversed for all t and 6 > ¢').

We shall also call A(F'(-);0) a generalized Lehmann’s alternative model. In
terms of random variables, the observations following a generalized Lehmann’s
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alternative model h(F;6) are somehow the transformed values of the basic ran-
dom variables whose d.f. is F. The d.f. F is treated as a nuisance parameter
and we consider the problems of estimating 6 when p is known to be zero and of
estimating 6 and pu simultaneously. This model includes many useful models as
follows.

Ezamples. Let F and G be d.f.’s which are connected through the generalized
Lehmann’s alternative model G = h(F';6).
(i) If h(t;0) =1 — (1 — t)° for 6 € (0,00), then

log Ag = 0log AF,

where Ar and Ag are cumulative hazard functions corresponding to F and G
respectively. This model is the well-known proportional hazards model proposed
by Cox (1972).

(ii) Taking h(t;8) = t[(1 —t)6 +t]! for 6 € (0,00) yields the proportional odds
model:

G . F

1-G 1-F°
This model has been considered by Ferguson (1967) and in more general regression
setting by Pettitt (1984), among others.
The above two models have useful and important applications in survival analysis.
Other examples of our model include
(iii) h(t;0) = (1 — 8)t + 6t2 for 8 € [0,1) (Contamination),
(iv) h(t;0) = (e —1)/(ef — 1) for 6 € (0,00). .
(iii) was considered in Lehmann (1953) and (iv) was found in Ferguson (1967).
Both of these are Lehmann alternatives for which the locally most powerful rank
test is Wilcoxon.
(v) h(t;0) = t® for 6 € (0,00) (Lehmann (1953)),
(vi) h(t;0) = ¥; ci(6)t' with 3, ¢;(8) = 1 and ¢;(f) > 0 for 6 € © (Mixture of
extremals by a discrete distribution).
(vii) h(t;8) = E(E~1(t) —log8) for 6 € (0,00) where E is a known distribution
function over the real line. This model can be rewritten as ¥(X) = log8 + ¢
where X ~ G,e ~ E and 9 = E~1 o F, and includes (i) and (ii).
See Dabrowska, Doksum and Miura (1989) for other examples and Tsukahara
(1991) for interesting relations among such models.

In the one-sample problem, it is not possible to estimate 6 for generalized
Lehmann’s alternative models h(F';6), when F is unknown and no restrictions
are made on the shape of F'. The parameter 6 is not even identifiable in that
case. Throughout this paper we assume:

F is continuous and F(z) =1 — F(—=z). (1.1)
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Also note that (2) in the definition of the generalized Lehmann’s alternative
model implies

h(t;0) + h(1 —t;0) #1 for t € (0,1) and 6 € © — {6*}. (1.2)

Under (1.1) and (1.2), 6 is identifiable and can be estimated.

In Section 2, X;’s are i.i.d. with d.f. G(z;0) = h(F(z);0) and we introduce
a statistic based on ranks of transformed X;’s. We then define our estimator of 6
by a generalization of the method of Hodges and Lehmann (1963), and prove its
asymptotic normality under certain mild regularity conditions. In Section 3, the
observations X;’s are i.i.d. with d.f. G(z; u,0) = h(F(z — p); ) and simultaneous
nonparametric estimators for p and 6 are defined using rank statistics similar to
the one in Section 2. We show joint asymptotic normality of the simultaneous "
estimators assuming some conditions in addition to those for the case of Section
2. See also Miura (1987) for the principle of these estimation procedures. .

2. Estimation of ¢

In this section, X1, Xs,...,X,, areii.d. with d.f. G(z) = h(F(z);6p) and 6,
is to be estimated.
Let G,(-) be the empirical distribution function of X;’s, that is,

A _ n
Gn(z) =0 Iix,<a)s

i=1

where I4 is an indicator function of a set A and let én(z) be a linearized version
of Gp: let X(;) < X(2) < -+ < X(n) be the order statistics of X;’s and define

Gn(z) by
& (z) 2 T+ iX(,-_H) - i+ 1)X(i)
" (n +1)(X(y1) — X))

, TE [X(i),X(i-l—l)]a

for 1 = 0,1,...,n with X(Q) = X(l) - l/n and X(n-l—l) = X(n) + l/n. For 7z =

1,2,...,n,let _
() 2 A-1 _r .
Zi(r) =G, <h<n+1,r)>,

R} (r) = the rank of |Z;(r)| among {|Z;(r)|: j =1,2,...,n}.

and define

Note that G;1(h(-;60)) may be viewed as an estimator of F~! and so Z;(6g)’s
can be regarded as an approximation of the ordered sample from F. Also, by
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virtue of the smoothness of G,,, we can cope with the problem of ties among the
Z;(r)’s. Let J(t) be a score function which is monotone increasing in t € (0,1)
and assume that J(t) has a continuous derivative J'(t) and satisfies fo t)dt = 0.
Then the statistic we shall use for inference concerning 6y is

Sn('r)é% ZJ(( R())/z) % ZJ((I—R+ 7')>/2> (2.1)

:Z;(r)>0 i:Z;(r)<0

If J is symmetric about % in the sense that J(t) = —J(1—1t),0<t <1, then it
is easy to see that

1 R (r)
Sp(r) = - ; J* (n 1 )s1gnZ (r),
where J*(t) = J((1 +t)/2), 0 < t < 1. So that the statistic S,(r) may be
regarded as a signed linear rank statistic. The point is that under (1.1) and (1.2)
Z1(r), Zo(r), ..., Zn(r) are thought of as a sample from a symmetric distribution
only when r = 6y, and S,(r) gives the strongest support to r = 6y when it is
closest to zero. This makes it possible to estimate § even in the one-sample
situation. Then our estimator én of 0y is defined as the value of » which makes
|Sn(7)]| closest to zero. Such r exists since S,(r) is nonincreasing in 7.
We can write

Sp(r) = /O - J(-l-i—fg‘ﬁ)un,,(z) + / ° J(l — H;”(_w)>dLn,,(x),

—00
where
a1 :
un(t) = — (the number of {z : < t}), te (0,1),
n n+1
Lp.(x) 2 i—(th_e number of {3 : Z;(r) < m})
= up (k7 (Gal2)im)), z€R,
H, .(z) 2 1 (the number of {z:|Z;(r)| < x}) z € (0,00)
n,r = n+1 . |44 > 3 3 .

We set H(z) 2 F(z) — F(-z) for z € (0,00).
Next we shall state the assumptions which are necessary to prove the asymp-

totic normality of our estimator. Assume that h(t;6) is continuously differentiable
with respect to t and 6 and let

0 0
hi(ti6) £ h(0),  ha(t;6) £ h(t:0).



ESTIMATION FOR GENERALIZED LEHMANN’S ALTERNATIVE MODELS 87

Let u(t) = t(1 — t). Assume, uniformly in 6 in a neighborhood of 6,

(A1) @Ol < Muh(t60)] ", for >0
1
1/2-6'
(A.3) |ha(t; 6)| < M [u(h(t; 60)))] . for 8 >0

where M is a universal constant. We require p 256 > 0. Further, assume
(A.4) hi(t;0) ~ hy(t;6¢) uniformly in ¢ € (0,1) as 8 — 6y, (k=1,2).

Assumptions (A.2)-(A.4) hold for Examples (i) and (v) with 6y < 1 and Examples
(i1)-(iv). Note that (A.2) implies )

1 -1
/ [h(t:0)(1 — h(;6))] " dt < o0 (2.2)
0
by an easy change of variables. Also note that (A.1) and (A.2) imply
—1/246 :
[T < M[u(h(t;80))] " ; (2.3)

in fact, letting ¢y be such that J(t;) = 0 and m £ h(to; 69) > 0, we have

<M t [u(h(s; 00))] —3/2+6ds

to

¢
J'(s)ds

to

t
< mH Yy (1 — h(s;6p)

to

< Mu(h(so)]

7@ =

—3/2+6
) 2 hi(s;6¢)ds

for t > t9, and it can be proven similarly for t < ;.

For a function g on I (I = [0,1] or R), define ||g|| = sup,cs|g(t)]- By
Skorohod’s representation theorem, there exists a probability space on which a
sequence of i.i.d. uniform (0,1) random variables U,;’s and a Brownian bridge U
are defined and satisfy

U =U|| 2250, n— o, (2.4)

where

>

Tn(t) n Uy Ip<ys t€(0,1),
=1

Ua(t) 2 a(Tat)—t), te(0,1).
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Using these U,;’s, we shall represent the observation as X; = G™1(U,;) for i =

1,2,...,n, which is called the special construction following Shorack and Wellner

(1986). We shall then obtain convergence in probability of the estimator, but on

the original probability space we can claim convergence in distribution only.
The following lemma is needed.

Lemma 2.1. Let r = 6y + b/\/n. Then for the spectal construction X; =
G~ Y(Uyi) and any given positive number B, we have, uniformly in z and |b| < B,

V| Lns(2) = F(z)] 2% A(F(z), n— oo, (2:5)
where
A(t) é U(h(t,OO)) —b h2(t; 00) (26)

ha (t; 6o) ha(t;60)’
provided (A.2)-(A.4) hold.
Proof. Let K, »(z) 2 h~1[l,(G(z));7]. We first prove that, uniformly in = and
b,

Vi Lnp(z) = Knp(z)] 220 (2.7)

as n — oco. This follows from

s (@) = Kns (@)
o D~} (Ga(@);7)]

n

~ h™H(Gn(2);7)

- \h‘l(én(w);r) - h"l(Gn(w);r)|

_ %I[(n + DAY (Gn(e); )] ~ b (Caz)i )|

1 -
G (@ G"(””’)l

+

< la+m,
n

where [a] denotes the largest integer less than or equal to a and G**(z) is a
random function taking values between G, (z) and G, (z). Therefore it is enough
to prove that \/n[K, »(z) — F(z)] converges to the process on the right-hand side
of (2.5). Now we have

V| Knr(@) - F(2)]

VAR Ta(G(2))ir) = b7 (G (e)ir)| + Va k™M (G(e)ir) — A7 (G(=); 60)]
Un(G(z)) b ho(h=1(G(z);7*);7*)
hi(h=1(G*(2);r)ir) ha(h=1(G(z);r*);r)

(2.8)
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Here G*(z) is a random function taking values between G(z) and I',(G(z)), and
r* lies between 0g and . Then

Un(G)) U(G())
mh1(G*(2)ir);r) | hi(F(2);60)
ha(F(); 60)
m(A-1(G"(z)i7);7)

< M

1 N ACON RS ACOREON

It follows from Glivenko-Cantelli theorem that ||G*(z) — G(z)]] = 0. Also
r* — 6 uniformly in b as n — 0o. Thus the first term converges almost surely
to 0 by virtue of (A.4) and ||U,(G(z))|| 2 O(1), which is an easy consequence
of (2.4). Next by (2.4) and (A.2), we see that the second term converges almost

surely to 0. Furthermore it follows from (A.2)-(A.4) that )

ho(h~1(G(x);r*);r*)  ha(F(2);60) “
ri(h~1(G(z);*);r)  ha(F(z);60)

Therefore (2.8) converges almost surely to

U(G(=)) _ . h2(F(2);60)
h1(F(z);60) h1(F(z);60)’

uniformly in = and b, which completes the proof of the lemma.

Now set
20 & [ a1 — [ [ aan0)]
+ [[@@anso - | [ awan o
s [ aawant0) - [ aints0) [ ant: ),

and
r(6) 2 / " ha(t; 0)d{a(t) + a2},
0
where a(t) and &(t) are defined by

da(t)  J'(t) da(t)  J'(1-1t)
dt ~ hy(t;6) and =2~ = hi(t; 6)

respectively.
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Theorem 2.1. Assume that h(t;8) is continuously differentiable with respect to
t and 6 and 7(6p) > 0. Also let the assumptions (1.1), (A.1)-(A.4) hold. Then,
as n — 0o, we have

(6~ 06) % (0, %0)),
Proof. Noting that [y J(t)dt = 0, v/nS,(r) can be expressed as
Ao [ E

0 — _ 0 — —
+ m [/ J(l Hus( "”'))dLM(m) - / J(I—M) dF(:c)] (2.9)
—00 2 ’ —00 2
Then the first term in (2.9) is decomposed to 2 1 Bin + Y2, Cin, where
A 1+ H
B, 2 /J( )d{f (Kny — F)},
By, = /f(HM mr (5= H)dF
1+ Hn,'r
/J( 2 )d{‘/’;(LW - Kar)},
1 (1+H
5/\/ﬁ (Hap — H)J (-——2——)d(Kn,, - F),
1+ H,, 1+HY 1 (1+H
AT (E) o (45) Yo (o
Note that (1+ H)/2 = F due to the symmetry of F', which we shall use repeatedly
without mention.

We now show that Z‘_l B;, converges in probability to a normal random
variable. By (A.1)-(A.3) and the mean value theorem,

B = [1(757)a{valkn, -1}
+ J(l;—H)d{\/ﬁ(h'l(G;r) - k(G 60))}

/ J<F>d{hl<hff’zé‘f? >.,.>} o 1o i

{]>

Cln

1>

C2n

>

C3n

a.s. ho(h~1(G; T*);r*)
- /hl(h 1(G* b/h (h—1(G;r* *)‘”(F)
Un(G(O))J(1/2) ha(h~1(G(0); 7 *), ")

—bJ(1/2)

hi(h=1(G*(0);7);7) h1(R=1(G(0); 7*); )
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where G* and r* are as in the proof of Lemma 2.1. Integration by parts is valid
since J, h; and hy are continuous and U, is right continuous and

Un(G)
h1(h=1(G*;7);7)

J(F)l <Mu(G) -0 as G —1,

and

ha(h™H(G;r*)sr*
hl(h' 1(C;,T*),
Here we use (2.3), (A.2)-(A. 4) and Lemma 2.2 of Pyke and Shorack (1968).

Also Pyke and Shorack (1968) show that ||(U.(t) — U(t))/q(2)]] £, 0 for q(t) =
[u(t)]/2~¢ for some § > 0. Note that this implies

) F)|<M[u(G)]”——+O as G — 1.

Un (h(t;6)) —
Fuh(t; O/ 0, n = oo, (2.10)
Un(h(t;6))
“[u(h(t oy pirs| = Opll)y m = oo (2:.11)
Now it follows from (A.1) and (A.2) that
G) U(G)
|/ i ® - [ e )
h1(F(z); 6o) Un (h(t; 60))

5M|

[tuthe; o1+

hl(h—1<G*(z>- rir) N u(h(E 60)]2F
U (h(t;60))

[u(h(t 8o))]1/2~¢ ”/ u(h(t; 0))] " *7dt,

which converges in probability to 0 by (2.2), (2.10), (2.11) and (A.4). On the
other hand, by (A.1) and (A.3), for all |b| < B there exists an N such that

—14p

‘hg(t; r*)J'(t)' < [U(h(t§ 90))]

whenever n > N. It hence follows from the dominated convergence theorem that

hao(R™1(G5r*); ™) ha(t; 6o)
1y Y ) | R ™
Consequently
P L U(h(t; 60)) 1 ha(t; 6o)
B = [ Sty O +b/1 g0 + A/,
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where U (h(1/2; 60))7(1/2) ha(1/2; 86)
A ; 6o B 2(1/2; 6o
M= e Y k)
Concerning Bs,, note that Lemma 2.1 implies
Vi(Has(2) = H(z)) =% A(F() - AL - F(=)), (212)

uniformly in z > 0 and [b| < B. Then, using argument as in By, it is easy to
see from (2.2), (2.12) and (A.1)-(A.4) that

P U(h(t;60)) U(h(1 - t;6p))
Bon — z/ [ Ri(t:00)  ha(l— % 6o) ]‘”(t’

b ha(t;60)  ho(1 —t;60)
2 /l [hl(t; o) hi(1-—t¢; 90)](”(#’)’

Thus

| U(h(ti00) | U(h(1 ~1;60))
ZB‘" = 2/ [ hi(t:00) © hi(1—1;00) ]‘”“)

ha(tibo) | ha(l —¢;6p)
2 / [hl(t 00) hi(l—t; 00)}dJ(t) +A(1/2). (2.13)

Next we show that E 1Cin 2%, 0. For Cin, note that H,, < n/(n +1).
Then, by (2.3), (A.2) and the proof of (2.6), we obtain

2n + 1 2n + 1 —3+6
< . _
Cia| < M[h(2n+2 90)( h(2n+2,oo)>] \/E/dan,, Kn,

1
2n+1 -3+
< 1-h : -
< M[t-n(Ega)] s

1/(2(n +1)) 3-8 ' s
1= h((2n+1)/(2n+2);90)J [2(n +1))2 "7
< M'rL—‘s — 0,

N =

=M[

as n — o0.

For functions ¢ on (0,1) let ¢(*) denote the step function defined by ¢(*)(0) =
0 and ¢*)(t) = ¢(i/k) for (i — 1)/k <t <i/kand 1 < i < k. Then it easily

follows that HUn k) —Unll = 0 as n, k — oo.
For some small £ € (0,1) let D = [0,F~(1 - ¢)], D¢ = [0,00) — D and
Caon = Ca15 + Co2, where

Can =3 [} vty - 07 () asc,,, -
D
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d
= 1 1+ H
2 Jpe 2 !
Also .
/D Un(G)J (FYd(Kpr — F) = ZR,-n
=1
where
B & [ [0(6)7'(F) - U$(@) 7D ()] dke,
D b
Ry % /D UR(G) T (F)d(Knp - F),
B £ [ [U0(@)I®(F) - UnG)I ()] dF.
D

Both |R;,| and |R3,| are bounded by

sup | [Un(G) ~ UR(@N'(F) + UM (@) (B) - 70 (P)]|

]-3/2+5

< M|UP - U, [u(r(t - &60)) + [[Unlf sup
D

ORRRIO
25 g

From now on let € > 0 be arbitrary. Let I3,..., I, denote the intervals of D on
which the step function Uk (G)J"*)(F) takes different values ai,...,an; note
that m < k2 for all n. Also, with probability exceeding 1 — € the |a,,|’s are
bounded uniformly in 7 and k¥ by Lemma 2.2 of Pyke and Shorack (1968) and
since supp |J'(F)| < [u(h(1 — £;60))]73/2+%; denote the bound on the |an|’s by
K. Thus with probability exceeding 1 — ¢ we have

m
> e
i=1

< 2KK?|K., - F|.

|Ron| =

[ @Kz~ F)

k]

m
P
=1

Since ||[Kn, — F|| == 0 as n — oo, which is implied by the proof of Lemma 2.1,
then for fixed k we have Ra, £, 0 as » — oo. In analogous fashion we can obtain
Jp Un(1=G)J'(F)d(Knr—F) <5 0 and [p ho(h=1(G;r*); r*) T (F)d(Kp » —F) —
0 as n — oo. Thus Csi, £, 0 for fixed €. By Lemma 2.2 of Pyke and Shorack
(1968) and (A.1)-(A.4), with probability exceeding 1 — ¢ we have

(Coznl < M [ [w(G))7H+*d(Knp + F).
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Thus Cys, £,0as £ — 0 and n — oo by (2.2). Therefore Con Li0asn— 0.
Finally, by the mean value theorem,

1 *
on = - p ()15,
= C31n + Cson,

1 *
cuw & [ bt [r () (),

1 *
Cs9, é —‘/E(Hn,'r _ H) [J/(l__'ifz) _ Jl(ﬂ.)} dKn,r-
De 2 2 2

Since || Hy — H|| = 0, ||\/n(H,, — H)| = Op(1) and J' is uniformly continuous
on D, then for any fixed ¢ we have Csy, £, 0asn— oo. Let (1+Hy)/2 2 F;.
Now |J'(Fy) = J'(F)| < 2[u(h(F};60) A h(F;60))]3/2+5; and by Inequality 10.4.1
of Shorack and Wellner (1986), this in turn is bounded by 2[u(8h(F; 6y))]~3/2+6
for some small § with probability exceeding 1 — €/2. Also we have again by
Lemma 2.2 of Pyke and Shorack (1968) that |U,(G)| < Mu(Bh(F;6))]2/2-¢
and similarly |Un(1 — G)| < M[u(Bh(F;6)))]'/>=% with probability exceeding
1 — €/2. Hence we obtain

o VA = BB = T F)Kor < 40 [ [ulBh(Fs00))) 0,
De Dec

with probability exceeding 1 — ¢. Thus Csa, £, 0as § — 0 and n — oo.

Therefore Csy, Zi0asn — oo
It can be seen in the similar way that the second term in (2.9) converges in

probability to

1 (2 [U(h(t;80))  U(h(1 —t;6p))
_5/0 [ hi(t; 60) hi(1 —t;60) ]dJ(t)

b 3 [ha(t;60) | ha(1 —t;60)
+3 ) [hl(t; 0) T (=% eo)J‘“ () = A(1/2).

Noting that

1 Tha(t;60) | ha(l —t;6p) _.
/o [hl(t§90) * hi(1 — t; 90)}‘1‘7“) = 7(6o),

we obtain asymptotic linearity: for any B > 0

sup
lb|l<B

JaSa(r) + %T - %br(ao)’ 2,0, (2.14)
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where

(h(t;80)) | U(h(1—t;60))
T= / [ k1 (2; 6o) hl(l—t;0o) }dJ( )

Now let € > 0 be a given number small enough to satisfy € < 7(6g)/2. Take
B, > 1 so large that
BeT(60) } ¢
P{ITI > — <3

By asymptotic linearity (2.14), there exists an N, such that for all n > N,

€

P{ sup |vVnS.(r) + %T— gr(eo)’ > e} <3

bl < Be

Thus for all n > N, any value b, of b which minimizes |/nS,(r)| = |v/nSn (60 + -
b/+/n)| lies in [—Be, B, and it follows that
|bn — T'/7(60)| < ¢/7(60)
with probability exceeding 1—e¢ (note that T'/7(6p) minimizes | ~T/2+br(6o)/2]).
Noting that v/n(6, — 6p) is a value of b which minimizes |v/nSy(r)|, we obtain
R P T
\/ﬁ(o‘n bo) — (0 )

An easy calculation shows that the random variable on the right-hand side has
a normal distribution N(0,02%(6p)/7%(6)). Thus, as remarked above, we obtain
the desired convergence in distribution of our estimator.

Remark. If J(t) = —J(1 —t), then a(t) = &(t), so that the asymptotic variance
becomes simpler; in this case 02() and 7(6) are given by

o2(8) = /0 " a?(t)dh(t; 6) — [ /0 ' a(t)dht; o)] ¢
and

(6) = /0 ot 6)dat).

3. Simultaneous Estimation of x and ¢

In this section, let X1, Xo,..., X, beii.d. with d.f. G(z) = h(F(z— uo); o).
The parameters po and 6y are both unknown and are to be estimated simultane-
ously.

Let Z;(r) be as in Section 2 and define

Rf(r,q) = (the number of {7 : |Z;(r) — ¢q| < |Z;i(r) — q[})
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In this section assume that F' has a bounded continuous density . Let Ji(-) and
J2(+) be the score function used for estimation of  and p respectively. J1(+) and
Jo(-) satisfy the conditions for the score functions in Section 2. In addition, Jy(:)
and Ja(-) are assumed different enough to satisfy

1Tha(t;60) | ha(1l —t;60) 1
J [h1<t;eo>+h1<1_t;ao)]“1<t> | 1E @ane

1 [ho(t;80) | ha(1 —t;60) 1 ) .
/0 [hl(t;eg)+h1(1_t;90)]‘“2(t) /Of(F ())dJa(t)

(3.1)

The rank statistics for the simultaneous inference of z and § are defined as follows:

Sin(r,g) 21 J( G ) ) J( R+(“’) 2)
w0t () B (05500
and
E; R}(r,q)
52"(”@% = (( if))/)““j%(j (( 7:11)/2)-
(3.3)

Our estimators of y and 6 are derived from the simultaneous equations Sy, (r,q) =
0 and S3,(r,q) =~ 0. Define

0.2 {(0): S 1m0 = min .

k=1

D, C © x R is not empty for all X1, X»,...,X, since Sk,(r,q), as a function of
r and ¢ with fixed X1, Xao,...,X,, takes on a finite number of different values.
Skn(r,q), (k = 1,2) are nonincreasing in each coordinate r and ¢ separately, but
it does not ensure the convexity of D,, which may be used to determine the
estimators uniquely. Our estimator (én, fin) is thus defined to be any point of
D,,. Since (ém fin,) may not be unique, there may be some arbitrariness in this
definition. But, as will turn out in Theorem 3.2 below, all points in l?n are
asymptotically equivalent; so, for large n, it will not matter much how (6,, ji,)
chosen.
Define, for z > 0,

2

Hp,q(x) —1——1-(the number of {7 :|Z;(r) — ¢q| < :c})

Then we can write

R (r,q) = (n+ 1) Hung(1Z:(r) - ql),
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so that, for k = 1,2, Sgn(r, ¢) can be written as

Suira) = [T (FHHeaE=Dgr,

+/ ( nr,qé (z — )))dLn,,(m).

To investigate the asymptotic behavior of Sj,, we assume, in addition to (A1)
with J replaced by Ji and (A.2)-(A.4),

(A.5) [Je@®)] < Mu(®)] 71, 6> 0.

We also introduce the following notation: let r = 6 + b1//n, ¢ = po + b/ Vnoo
and

Sn(r,0) = (S1a(r,0), S2n(r,0)) s B2 (b1,bo)".

Furthermore, for k = 1,2

A [L(U(h(;60)) | U(R(l - t;6p))
T’“"/o { hi(t;00)  hi(l— % 6o) }‘”k(t)’

and set T 2 (T1,T2)'. Let D = [dy;] denote a 2 x 2 matrix, where

& Y (ha(t;60)  ho(l - tseo)}
4y 2 dJe(2),
k1 /(; {hl(t; 6o) + hi(1 — t;6p) k)

1
-2 / FEL)ARE) (k=1,2).
0

e

dk2
Note that D is nonsingular because of (3.1). Then we have the following asymp-
totic linearity result.

Theorem 3.1. Suppose that F' has a bounded continuous density f and that
(A.1) with J replaced by J and (A.2)-(A.5) all hold. Then

max sup |vnSen(r,q) + Tk - —(dk1b1 +droba)| 550, n o oo,  (3.4)

k= 12Qbk|<B

for each 0 < B < oo.

Using matrix notation, express the relation (3.4) as

£,0, n— oo. (3.5)

VnS,(r, q)+—T——Db

sup
|bx|<B
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Proof of Theorem 3.1. Without loss of generality assume ug = 0. Note first
that, as n — oo,

| g (2) - H@)| 2% 0, 220,
[Zar(@) = F()|
and for the special construction X; = G~1(U,;),
Va|Las(@) - F(z)] 2% A(F(a)),
Vi Hapg(@) - H(z)] *% A(F()) - A(1-F(z)), >0,

uniformly in z and |bx| < B, where A(t) is given by (2.6). Making use of

/_Z i (1—“1259—)) dF(z) = 0,

we have

Sng) = [ qoo N (1 + Hn,;q(m - q)>dLn,,(z) - /q A <1+—f@> dF(:c)]
[ ( Hn,r,qé-(w - q))) dL...(z)
/_ qoo Jr (———1 - ‘E;('“’))dp(z)] . (3.6)

We decompose the first term of the right-hand side of (3.6) to 35, B;, +
>3 | Cin, where

B &[5 (D)ol vaKa, @) - F),

3 [ VA(Ergle -9 - B - ) 7 (FEE=D)ar),

va [ [ (R EE=D) g (LEE))] 4,
/ 7 (1 + Hppg(z - )d{ VLap (@) = Knp(2)},

>

B2n

>

B3n

>

Cln

2

3 [ VA(Hurae =0 - B@) 3 (FEE=D)a(k,,2) - Fo)

\/ﬁ/ [Jk<1+Hn,,;(z —q)) _ Jk(1+Héz— q))

5 (Frnate -0 - B - 0) 5 (AHEE= DY e, o)

>

C2n

>

C3n
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Noting that the proof of Theorem 2.1 is valid uniformly in all continuous and

symmetric F, one can use the same argument as in the proof of Theorem 2.1 to

show the convergence of By, and B, and the asymptotic negligibility of E?=1 Cin.
Concerning Bs,, we have

Ban = b / Je(F(z — bzlfz\//_j)% = WF@) 45

— b [ HFE)I@FE) = b [ FEE)IO,

since f is bounded and continuous and (A.5) holds. This is verified by the
dominated convergence theorem.

We can prove the convergence of the second term of the right-hand side of -
(3.6) quite similarly. We therefore obtain

1 1 :
VS (r,q) - "‘2'Tk + ’2’(dk1b1 + diabs), n — oo,

for k = 1,2. Compactness of [—B, B] and monotonicity of Sk, establishes the
claimed uniformity in |bs| < B for each 0 < B < co.

Once asymptotic linearity holds, one can see that each point of D, has the
same distribution as in Jureckova (1971). Let ¥ denote the covariance matrix of
T. Then its k,! th entry oy is given by

A

1 1
o 2 /olak(wal(t)dh(t;eo)- JRZCLACTY /0 u(2)dh(t; bo)

1 1 1

+ /0 &k () (£)dh(t; o) — /0 & () dh(t; 6o) /0 o (2)dh(t; 6o)
1 1 1

+ /0 o ()G (t)dh(t; B) — /0 o (£)dh(t; 6o) /0 G1(t)dh(; 6o)
1 1 1

+ /0 ax ()@ (t)dh(t; 6,) — /0 &, () dh(t; 60) /0 & (t)dh(t; 6o),

for k,1 = 1,2, where oy (t) and &(t) are defined by

do(t) _ Ji(®) . d&a(t) _ Ji(1-t)
dt ~ hi(t;9) dt —  hi(t;6)

respectively. Then dj; becomes fol ha(t; 60)d{ar(t) + ar(t)} for k =1,2.
Theorem 3.2. Suppose that all the conditions of Theorem 3.1 are satisfied. Then
each point of D, is asymptotically normal N(0,D~1X(D~1)), that is,

~

Vi( Bt ) 4, w(o,ptmmy),

fin — po
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as n — oo.

Proof of this theorem proceeds in a fashion quite similar to the last part of
the proof of Theorem 2.1 and is not given here.

Remark 3.1. The above results are also simplified in the case that J(t) =
—J(1 —1t). The k,1 th entry of the matrix D becomes, for k = 1,2,

dr1 = 2/(;1 ha(t; 6o)dax(t).
Also we get
o =4[ [ ar@autant;o0) ~ [ en(ian(s00) [ ea(tran o)

Further, letting A denote a 2 x 2 matrix with k,[ th entry Ay given by

/ FEH®)dda(t), Azl / FFL(0)dA (1),

Ao 2 / ha(t;00)daz(t), Aoz = /0 ha(t; aq)dal(t),
and

2 f ha(t; 60)daa (?) / FFY () d(t) f Ba(t; 60)docs (2) / FP1(1))dJa (1),

we have X
- 1
ﬁ( b = 0o ) _"LN(O, —2A2A’>.
Hn — K0 Y
Remark 3.2. The efficient scores for estimation are not yet known. But for

testing, the locally most powerful rank test may be given with the following score
functions:

Jn Zo(z; p, _ h(h71(4;6);6)
g(w;/"ae) e=G~1(t;,0) hl(h_l(t;a);e),
where
s 0°
hia(t;0) = 5190 h(t;6).

This is independent of p and f, but depends on 6. For testing, § may be the
value for the null hypothesis.

2 9(=z; 1,6)
9@ 1 6) |, _g1(n0)

_hu(hTHt;6);0) f(FHRTHE6)  FI(FTH(RTME:S)))
h1(h=1(t;6);6) f(F-1(h1(t;0)))’

Jo
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where
h11(t; 6) = ———2 h(t; 6)
11 b atz ) *

This is independent of x, but depends on f and 6.
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