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Abstract: Quantile regression has emerged as a powerful tool in survival analysis

as it directly links the quantiles of patients’ survival times to their demographic

and genomic profiles, facilitating the identification of important prognostic factors.

In view of the limited work on variable selection in this context, we develop a

new adaptive-lasso-based variable selection procedure for quantile regression with

censored outcomes. To account for random censoring of data with multivariate

covariates, we employ the redistribution-of-mass and effective dimension reduction.

Asymptotically, our procedure enjoys model selection consistency. Moreover, as

opposed to the existing methods, our new proposal requires fewer assumptions,

leading to more accurate variable selection. The analysis of a cancer clinical trial

demonstrates that our procedure can identify and distinguish important factors

associated with patient subpopulations characterized by short or long survivals,

which is of particular interest to oncologists.
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1. Introduction

Quantile regression, as a valuable alternative to the commonly used Cox pro-

portional hazards model and accelerated failure time (AFT) model (Koenker and

Geling (2001); Portnoy (2003)), directly links the quantiles of subjects’ survival

times to their demographic and genomic profiles, and thus can facilitate the iden-

tification of important prognostic factors. Direct applications of this model lie in,

for example, cancer studies, where physicians are often interested in identifying

effective treatments for the more severe cases (with shorter survival times). As

might be expected, treatments often cause different impacts among patients that

fall within the upper or lower quantiles of the survival distribution. It is well

known that both Cox and AFT models restrict the covariates to affect only the

location but not the shape of the survival distribution, and thus may overlook

interesting forms of heterogeneity. For instance, these models do not permit the

treatment effect to be positive for severe cases while negative for the other cases.

http://dx.doi.org/10.5705/ss.2011.100
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In contrast, quantile regression offers a convenient approach to capture the vari-

ation caused by heterogeneities by allowing the covariates to exhibit different

impacts at different tails of the survival distribution.

Current literature on quantile regression for censored survival outcomes often

focus on coefficient estimation (Portnoy (2003); Peng and Huang (2008); Huang

(2009); Wang and Wang (2009)), but little effort has been devoted to variable

selection. In contrast, various penalization-based variable selection methods have

been developed for Cox and AFT models, for instance, Huang, Ma and Xie

(2006), Zhang and Lu (2007), Wang, Nan and Beer (2008), Engler and Li (2009),

among others.

The nature of the existing estimating procedures for censored quantile re-

gression prohibits the direct usage of the popular penalization methods. The

point estimation methods of Portnoy (2003) and Peng and Huang (2008) require

fitting an entire quantile process, as the estimation at an upper quantile depends

on the estimations at all the lower quantiles. Therefore, even if our main in-

terest was to identify variables with strong impacts on the median survival, we

would have to estimate and select variables for all the lower quantiles as well.

This imposes both computational and theoretical challenges. Alternative esti-

mation methods such as those proposed by Subramanian (2002), and Wang and

Wang (2009) rely on kernel-smoothing estimation, and thus are practically fea-

sible only for data with few covariates. Recently, Shows, Lu and Zhang (2010)

developed a variable selection approach for censored median regression by using

the inverse-probability-weighting scheme of Bang and Tsiatis (2002). However,

the method requires the restrictive unconditional independence assumption be-

tween survival and censoring times. Moreover, the procedure uses information of

only the uncensored observations, leading to an efficiency loss in the estimation.

We develop a new and flexible variable selection method based on the adaptive-

lasso penalization for censored quantile regression. Our work advances the field

in three ways. First, our method adapts the redistribution-of-mass idea of Efron

(1967) to account for the censoring in quantile regression. Different from exist-

ing estimation procedures (Portnoy (2003); Wang and Wang (2009)), the pro-

posed method estimates the masses for redistribution by using the conditional

Kaplan-Meier estimation on a reduced data space. Therefore, the new method is

more flexible and is able to accommodate high-dimensional covariates. Secondly,

our variable selection procedure enjoys computation readiness and requires fewer

stringent assumptions than those in the literature. As a result, our procedure

is model selection consistent under mild conditions and gives better finite sam-

ple performance than existing methods. Lastly, the proposed method is able to

capture important heterogeneities in the survival population, and to identify ef-

fective biomarkers that have impacts at different tails of the survival distribution.
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Such results will be of particular interest to physicians who are keen on designing

effective treatments for targeted patient subpopulations, often characterized by

short survival times.

2. Variable Selection for Censored Quantile Regression

2.1. Model setup

Let Ti be the uncensored survival outcome, xi the observable p-dimensional

covariates, and Ci the censoring variable. Consider the quantile regression model

Ti = xT
i β0(τ) + ei(τ), (2.1)

where 0 < τ < 1 is the given quantile level of interest, β0(τ) is the p-dimensional

unknown quantile coefficient vector, and ei(τ) is the random error whose τth

conditional quantile given xi is zero. Without loss of generality, we assume that

the first element of xi is 1, corresponding to the intercept. In practice, we only

observe (xi, Yi, δi), where Yi = min(Ti, Ci) is the observed response variable and

δi = I(Ti ≤ Ci) is the censoring indicator. Our main objective is to select

important predictors that have nonzero effect on the τth conditional quantile of

T in the model (2.1).

2.2. Variable selection via redistribution-of-mass

We briefly review the idea of redistribution-of-mass in censored quantile re-

gression. For censored data without covariates, that is, p = 1 in (2.1), Efron

(1967) proposed a simple algorithm for deriving the Kaplan-Meier estimator by

redistributing the mass of each censored observation uniformly to observations

on the right. In the regression setup, this means to redistribute the probability

masses P (Ti > Ci|Ci,xi) of censored cases to observations on the right.

Let F0(t|x) = P (T < t|x) denote the conditional distribution function of T

given x, and take π0i = F0(Ci|xi) as the conditional probability for the ith subject

not to be censored. Consider an ideal scenario where the π0i are known. Then

β0(τ) can be estimated by minimizing a weighted quantile objective function with

respect to β,

L(β, w0) =

n∑
i=1

{
w0iρτ (Yi − xT

i β) + (1− w0i)ρτ (Y
+∞ − xT

i β)
}
, (2.2)

where ρτ (u) = u{τ − I(u < 0)}, Y +∞ is any value sufficiently large to exceed
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xT
i β0(τ) for all i, and

w0i =


1, δi = 1,

0, δi = 0 and π0i > τ,

τ − π0i
1− π0i

δi = 0 and π0i ≤ τ.

(2.3)

It can be shown that a subgradient of the weighted objective function,

nMn(β, w0) =
n∑

i=1

xi

{
1− w0iI(Yi < xT

i β)
}
, (2.4)

is an unbiased estimating function of β0(τ). Therefore, minimizing L(β, w0) with

respect to β leads to a consistent estimator of β0(τ). More explanation of the

intuition behind the above weighting scheme in (2.2) can be found in Wang and

Wang (2009) and Portnoy and Lin (2010).

To select variables, we consider the penalized objective function

LAL(β, w0) = L(β, w0) + λn

p∑
j=1

νj |βj |, (2.5)

where λn is the positive penalization parameter and νj are the adaptive weights.

This type of adaptive lasso penalization was first proposed by Zou (2006) for

least squares regression and later extended to quantile regression for uncensored

data by Wu and Liu (2009), and to Cox’s model by Zhang and Lu (2007). The

adaptive lasso assigns heavier penalties to the potentially irrelevant variables,

so the corresponding effects are shrunk more toward zero. This approach leads

to sparse coefficient estimation, and thus provides a convenient way to conduct

model fitting and variable selection simultaneously. The choice of the adaptive

weights νj is explained in (2.8) of Section 2.3.

2.3. Estimation of the redistributed mass

In practice, the masses for redistribution, 1 − π0i = 1 − F0(Ci|xi), are un-

known, and a variety of attempts have been made to estimate them. For example,

Portnoy (2003) proposed to estimate π0i through fitting an entire quantile regres-

sion process under the global linearity assumption of the conditional quantile

functions. McKeague, Subramanian and Sun (2001) suggested fitting a semi-

parametric regression model, such as Cox proportional hazards model, to obtain

an approximation of π0i. Lindgren (1997), Subramanian (2002), and Wang and

Wang (2009) employed a fully nonparametric approach based on the conditional

Kaplan-Meier estimator of F0(·|x). Though flexible, this nonparametric approach
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is only feasible when the covariate dimension is low. The theoretical results in

Subramanian (2002) and Wang and Wang (2009) were developed only for cases

with univariate covariate.

We propose an index-based procedure to obtain a nonparametric estimation

of π0i for multivariate covariates. The main idea is to summarize the regression

information contained in x by indices through dimension reduction. Specifically,

we adopt a global dimension reduction (DR) formulation:

Ti ⊥⊥ xi|(xT
i γ1, . . . ,x

T
i γq), (2.6)

where ⊥⊥ stands for independence. This formulation stipulates that the depen-

dence of Ti on the p-dimensional xi only comes from q indices, zi,1 = xT
i γ1, . . .,

zi,q = xT
i γq, where q is smaller than p. For randomly censored data, γj , of-

ten referred to as effective dimension reduction (EDR) directions, can be es-

timated by using the sliced inverse regression (SIR) method of Li, Wang and

Chen (1999) or the hazard-function-based minimum average variance estimation

(MAVE) method of Xia, Zhang and Xu (2010). Under some regularity assump-

tions, both methods lead to estimators γ̂j that are root-n consistent for γ0,j ,

where γ0,j ∈ Rp, j = 1, . . . , q, is a set of EDR directions. Hereafter, we de-

note the estimated indices as ẑi = (ẑi,1, . . . , ẑi,q) with ẑi,j = xT
i γ̂j , and write

z0i = (z0i,1, . . . , z0i,q) with z0i,j = xT
i γ0,j , j = 1, . . . , q.

Under (2.6), we have F0(t|xi) = F0(t|z0i) for any t and i. We then proceed

to use Beran’s local Kaplan-Meier estimator F̂ (·|z) (Beran (1981)) to estimate

F (·|z). Specifically,

F̂ (t|z) = 1−
n∏

j=1

{
1− Bnj(z)∑n

k=1 I(Yk ≥ Yj)Bnk(z)

}ηj(t)

, (2.7)

where ηj(t) = I(Yj ≤ t, δj = 1), Bnk(z) = Kq ((z− zk)/hn) /
∑n

i=1Kq ((z− zi)/hn),

hn is the bandwidth, andKq((z− zi)/hn) = Kq((z1 − zi,1)/hn, . . . , (zq − zi,q)/hn).

We adopt the commonly used product kernel functionKq(u1, . . . , uq) =
∏q

i=1K(ui),

where K(·) is a univariate kernel function. We opt for Beran’s estimator as it

is nonparametric and thus flexible, avoiding estimating the entire quantile pro-

cess assuming global linear models as in Portnoy (2003). Therefore, π0i can

be estimated by π̂i = F̂ (Ci|ẑi), the nonparametric estimate of the conditional

distribution of T given the indices with a reduced dimension q.

For variable selection, we take β̂(τ) for β0(τ) in model (2.1) as the minimizer

of the penalized objective function

LAL(β, ŵ) =

n∑
i=1

{
ŵiρτ (Yi − xT

i β) + (1− ŵi)ρτ (Y
+∞ − xT

i β)
}
+ λn

p∑
j=1

νj |βj |,

(2.8)



150 HUIXIA JUDY WANG, JIANHUI ZHOU AND YI LI

where ŵi are the weights for redistribution-of-mass as defined by replacing the

π0i with π̂i in (2.3), and the νj are the adaptive weights. We let νj = |β̃j(τ)|−r,

where β̃j(τ) is the jth element of the initial consistent estimator of β(τ). We take

the initial estimator β̃(τ) to be the unpenalized estimator, that is, the minimizer

of LAL(β, ŵ) with λn = 0. In our implementations, we choose r = 2.

We further stress that our aim is to select the important predictors that

have nonzero effect on the τth conditional quantile of T in the parametric quan-

tile regression model (2.1). This variable selection is for the local quantiles of

T and thus is different from the global nonparametric dimension reduction in

the formulation (2.6). In addition, the proposed penalization procedure does not

require the unconditional independence between the survival times Ti and cen-

soring times Ci, which is a significant improvement compared to Shows, Lu and

Zhang (2010).

2.4. Computation and tuning

The proposed procedure requires choosing the bandwidth parameter hn. Our

experience suggests that the performance of the proposed procedure is not sen-

sitive to the choice of hn (see Section 3). In practice, we can use K-fold cross

validation to choose it. We first divide the data set randomly into K parts with

roughly equal size. For the kth part, k = 1, . . . ,K, we fit model (2.1) using the

other K−1 parts of the data, and then evaluate the quantile loss from predicting

the τth conditional quantile of T for the uncensored data that are left out. For

simplicity, we use the unpenalized estimator β̃(τ) with λn = 0 when calculating

the quantile loss. We choose the hn that gives the minimum average quantile

loss.

The proposed estimation also involves the penalization parameter λn, which

determines the sparseness of the resulting estimator. In practice, the penalization

parameter is often selected by minimizing some model-selection criterion, and one

commonly used criterion is the Bayesian Information Criterion (BIC, Schwarz

(1978)) that provides a large-sample approximation to twice the logarithm of the

Bayes factor. Specifically,

BIC = −2{logL(β̂R)− logL(β̂F )}+ (pR − p) log n,

where L(β̂R) and L(β̂F ) are the maximized likelihoods under a reduced model

with pR parameters and under the full model with p parameters, respectively. It

is known that Rao’s score test statistics (Rao (1948)) are asymptotically equiv-

alent to the likelihood ratio statistics under both null and Pitman alternative

hypotheses (Serfling (1980, p. 156)). Koenker and Machado (1999) discussed

tests based on these two types of statistics in the linear quantile regression setup.
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Motivated by this, we propose to choose the λn that minimizes the Score-based

Bayesian Information Criterion (SBIC):

SBIC(λn) = nMn{β̂λn(τ), ŵi}D−1
n Mn{β̂λn(τ), ŵi}+ pλn log(n), (2.9)

where β̂λn(τ) is the penalized estimator with the penalization parameter value of

λn, pλn is the number of non-zero elements in β̂λn(τ), and Dn = n−1
∑n

i=1 xix
T
i

{τŵ2
i +τ2(1−2ŵi)} is the asymptotic covariance matrix of the subgradient based

on the plugged-in weights ŵi. A similar score-based information criterion was

employed and justified by Leng (2010) for regularized rank regression.

In addition, to obtain the weights for redistribution-of-mass, we need to

determine the number of indices q. Li, Wang and Chen (1999) proposed a chi-

squared test for determining the number of significant EDR directions obtained

by SIR. Xia, Zhang and Xu (2010) developed an alternative selection criterion;

this method was shown to be consistent for selecting q, but it is based on cross-

validation and thus is computationally more intensive than the chi-squared test

of Li, Wang and Chen (1999).

2.5. Asymptotic properties

To establish the asymptotic results in this paper, we require the following

assumptions.

A1 The random design vector x is bounded in probability, has a bounded density

function, and E(xxT ) is a positive definite p× p matrix.

A2 If F0(t|x) and G(t|x) are the survival functions of Ti and Ci conditional on x,

respectively, their first derivatives with respect to t, denoted as f0(t|x) and
g(t|x), are uniformly bounded with respect to t and x; F0(t|x) and G(t|x)
have bounded (uniformly in t) second-order partial derivatives with respect

to x; supt |F0(t|x′)−F0(t|x)| = O(∥x′−x∥), where ∥·∥ denotes the Euclidean

norm.

A3 The true coefficient β0(τ) is in the interior of a bounded convex region B.
For β in a neighborhood of β0(τ), E

{
xxT f0(x

Tβ0|x)
}
is positive definite,

and 1−G(xTβ|x) = P (C > xTβ|x) > 0 with probability one.

A4 There exists an EDR direction γ0,j ∈ Rp such that for any j = 1, . . . , q, (i)

γ̂j − γ0,j = Op(n
−1/2); (ii) n−1/2(γ̂k − γk) = n−1

∑n
i=1 dki, where dki are

independent p-dimensional vectors with means zero and finite variances.

A5 The univariate nonnegative kernel function K(·) has a compact support.

It is a νth order kernel function satisfying
∫
K(u)du = 1,

∫
K2(u)du < ∞,∫

ujK(u)du = 0 for j < ν,
∫
|u|vK(u)du < ∞, and it is Lipschitz continuous

of order ν, where ν ≥ 2 is an integer.
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A6 The bandwidth hn satisfies hn = O(n−α) with (i) 0 < α < min(1/ν, 1/q);

(ii) 1/(2ν) < α < 1/(3q) and ν > 3/2q.

Remark 1. The boundedness condition of x in A1 is posed for technical conve-

nience. It is possible to allow the bound on x to grow slowly with n but this com-

plicates the proof. Assumption A2 is needed to obtain the asymptotic properties

of the local Kaplan-Meier estimator. Assumption A3 ensures the identifiability

of β0(τ). Assumption A.4(i) states the root-n consistency of the estimated EDR

direction, which is needed to establish the root-n consistency of β̃(τ). This as-

sumption holds for the modified sliced inverse regression estimation in Li, Wang

and Chen (1999) and for the hazard-function-based minimum average variance

estimation in Xia, Zhang and Xu (2010). The linear presentation of γ̂k is as-

sumed in A4 to help establish the normality of β̃(τ), and this condition can be

obtained for the dimension reduction methods of Li, Wang and Chen (1999) and

Xia, Zhang and Xu (2010) with more technical endeavors, under some higher-

level conditions. Assumption A5 requires K(·) to be a νth order kernel, where

the requirement of ν depends on the dimensionality of indices q. For larger q, a

higher order kernel function is needed in order to control the bias; see Hu and

Fan (1992) for a discussion of the construction of higher order kernel functions.

Assumption A6 specifies the conditions on the bandwidth hn, where the weaker

condition is needed for establishing the consistency and the stronger one is needed

for the normality.

We first establish the consistency and asymptotic normality of the initial

unpenalized estimator β̃(τ).

Theorem 1. Suppose (2.1), (2.6) and A1−A4(i), A5, A6(i) hold, then β̃(τ) →
β0(τ) in probability as n → ∞. Furthermore, if A4(ii) and A6(ii) hold, then

n1/2{β̃(τ) − β0(τ)}
D−→ N(0,Γ−1

1 V Γ1), where V = cov(vi) with vi defined in

(A.9) of the Appendix and Γ1 = E
[
xxT {1−G(xTβ0(τ)|x)}f0{xTβ0(τ)|x}

]
.

We next establish the property of consistency in variable selection of the

proposed penalized estimator β̂(τ). Let A(τ) = {j : βj(τ) ̸= 0} and Ac(τ) =

{j : βj(τ) = 0}.

Theorem 2. If (2.1), (2.6) and A1−A6(ii) hold, and if n−1/2λn → 0 and

nr/2−1λn → ∞, then P
(
{j : β̂j(τ) ̸= 0} = A(τ)

)
→ 1 as n → ∞.

Remark 2. Theorem 2 states that the proposed procedure is able to select the

correct model with probability approaching one. To achieve the same efficiency as

the oracle estimator obtained under the true model, we can update the estimates

for the non-zero coefficients in β̂(τ) by minimizing the weighted objective function
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(2.8) using only the selected covariates with λn = 0. By Theorem 1, the updated

estimator is asymptotically normal and has the same efficiency as the oracle

estimator. For finite samples, our numerical studies show that the re-estimation

helps reduce the estimation bias of non-zero coefficients caused by shrinkage, and

thus leads to more efficient estimation.

3. Simulation Study

We set two examples to investigate the performance of the proposed penal-

ized estimator via redistribution of mass, referred to as PROM. The dimension

of covariates was 20 in Example 1 and 100 in Example 2. We focused on quantile

levels τ = 0.25 and 0.5, and sample sizes n = 200 and 500. For each scenario,

the simulation was repeated 500 times.

Example 1. The survival times were generated as

Ti = 1 + 1.5xi1 + 0.7xi2 + xi3 − 0.5xi4 + (1 + γxi4)ϵi,

where i = 1, . . . , n, ϵi ∼ N(0, 1), and γ measures the heteroscedasticity. We

included another 16 independent noise variables, xi5, . . . , xi20. For j = 1, . . . , 20,

xij ∼ U(−1, 1). We set γ = −0.742, so that the quantile coefficients were

(0.326, 1.5, 0.7, 1.0, 0, . . . , 0) at τ = 0.25 and (1.0, 1.5, 0.7, 1.0,−0.5, 0, . . . , 0) at

τ = 0.5. Under this heteroscedastic model, the covariate xi4 has a negative im-

pact on the median but no impact on the first quartile of the conditional distribu-

tion of Ti. The observed responses were Yi = min(Ti, Ci), where Ci ∼ U(−2, 18),

yielding an average of 15% censoring, and Ci ∼ U(−2, 8), yielding an average of

30% censoring.

We compared PROMS and PROMM , variations on the proposed PROM

estimator, where the indices were estimated by using the sliced inverse regres-

sion (SIR) estimation of Li, Wang and Chen (1999) and the minimum average

variance estimation (MAVE) of Xia, Zhang and Xu (2010), respectively. The SIR

estimation was obtained by using the R function implemented by Sun available at

http://www.bios.unc.edu/~wsun/, and the MAVE estimation was obtained by

using the matlab program provided by Xia. The oracle estimator was obtained

by using the proposed unpenalized method under the true model, that is, with

the first three covariates at τ = 0.25 and the first four covariates at τ = 0.50.

The oracle estimator serves as a gold standard. Two variations of the oracle es-

timator, OracleM and OracleS were included corresponding to MAVE and SIR

indices estimation, respectively. The PIPW is the penalized estimator devel-

oped by Shows, Lu and Zhang (2010) by using the inverse-probability-weighting

scheme of Bang and Tsiatis (2002).

http://www.bios.unc.edu/~wsun/
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For both examples, the number of true indices was q = 2. Therefore, for the

PROM and oracle estimators, we used the fourth-order kernel function (Müller

(1984)): K(x) = (105/64)(1 − 5x2 + 7x4 − 3x6)I(|x| ≤ 1). The bandwidth hn
was selected by 5-fold cross validation as described in Section 2.4. Our numerical

studies suggest that the proposed estimator PROM based on the selected q̂

performs very similarly as that based on the the true q; see Table 4 for comparison

in Example 2. For computational convenience, in Example 1, we used q = 2 for

both MAVE and SIR estimation.

Table 1 summarizes the variable selection results of the penalized estimators

PROMM , PROMS , and PIPW . There one sees that the proposed PROM

methods outperform the PIPW method in variable selection. The PROM and

PIPW methods perform comparably for selecting the relevant variables (TP),

but the PIPW selects irrelevant variables more often and thus has much lower

oracle proportions in all scenarios considered. As n increases to 500, the PROM

methods have oracle proportions close to 1 at both quantiles.

Table 2 summarizes the mean squared errors of estimators for the non-

zero quantile coefficients from all methods. Compared to the other coefficients,

β2(0.25) = β2(0.5) = 0.7 and β4(0.5) = −0.5 have smaller magnitudes. When

n = 200, the proposed methods PROMM and PROMS tend to overshrink

these small coefficients to trade for simpler models, which results in larger mean

squared errors than PIPW . However, when n increases to 500, the PROM

estimator becomes more efficient than PIPW , and their mean squared errors

become comparable to those of the oracle estimator.

To study the sensitivity of the developed PROM method to the bandwidth

hn, we chose hn = cn−0.15 and applied PROM to the same data sets used in

Tables 1 and 2 for c = 0.2, 0.4, 0.6, . . . , 2.0. The results showed the developed

PROM method to be robust to the bandwidth hn in both variable selection

and parameter estimation. We report, in Table 3, part of the results for 15%

censoring, τ = 0.25, n = 500, and three selected values of c.

As for the methods to obtain the EDR subspace and the corresponding

indices in PROM , Tables 1 and 2 show that the SIR and MAVE estimators

performed comparably. Since SIR was computationally more convenient, we

used SIR to estimate the dimension q and the dimension reduction directions γi
in Example 2.

Example 2. In this study, we increased the number of covariates to 100, and

generated data as

Ti = 1 + xi1 + xi2 + xi3 + xi4 + (1− 0.5xi4)ϵi,

where i = 1, . . . , n, ϵi ∼ N(0, 1), and xij ∼ U(−1, 1), j = 1, . . . , 100. The true

quantile coefficients were (0.326, 1, 1, 1, 1.337, 0, . . . , 0) at τ = 0.25 and (1, 1, 1, 1, 1,
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Table 1. Variable selection results for Example 1. TP denotes the average
number of relevant variables that are correctly selected; FP denotes the aver-
age number of irrelevant variables that are incorrectly selected; OP denotes
the oracle percentage of times that the true model is correctly selected.

15% censoring 30% censoring
τ = 0.25 τ = 0.50 τ = 0.25 τ = 0.50

Method TP FP OP TP FP OP TP FP OP TP FP OP
n = 200

PIPW 3.96 1.72 0.31 4.92 1.33 0.36 3.94 2.55 0.19 4.89 2.30 0.19
PROMM 3.95 0.19 0.80 4.64 0.12 0.58 3.92 0.16 0.78 4.45 0.12 0.41
PROMS 3.95 0.15 0.82 4.66 0.15 0.58 3.91 0.15 0.78 4.47 0.10 0.41

n = 500
PIPW 4.00 0.71 0.58 5.00 0.52 0.68 4.00 1.27 0.40 5.00 1.07 0.46
PROMM 4.00 0.08 0.92 5.00 0.08 0.91 4.00 0.09 0.92 4.91 0.05 0.87
PROMS 4.00 0.09 0.92 5.00 0.09 0.90 4.00 0.09 0.92 4.90 0.07 0.83

0, . . . , 0) at τ = 0.50. The observed responses were Yi = min(Ti, Ci), where

Ci ∼ U(−2, 18), yielding an average of 15% censoring, and Ci ∼ U(−2, 8), yield-

ing an average of 30% censoring. For the PROMmethod, we used SIR to estimate

the indices, as well as the dimension q selected by the chi-square test (Li, Wang

and Chen (1999)). We report the results with both the true q = 2 and the

estimated q̂ by SIR in Tables 4 and 5.

Table 4 suggests that the performance of PIPW in variable selection dete-

riorates with higher dimension of covariates, and PIPW selects many irrelevant

variables in all scenarios. In contrast, the PROM methods have much higher

accuracy in variable selection, and their oracle proportions approach one as n in-

creases. For those nonzero quantile coefficients, the PROM estimator has mean

squared errors smaller than PIPW in most cases. For n = 500, the PROM is

almost as efficient as the oracle estimator. In addition, both Tables 4 and 5 show

that the PROM method based on the estimated q̂ behaves very similarly to that

based on the true q.

4. Data Analysis

We applied the proposed variable selection procedure to a head and neck

cancer clinical trial, conducted by Eastern Cooperative Oncology Group and the

Southwest Oncology Group (Adelstein et al. (2003)). In addition to the evalu-

ation of the overall effectiveness of standard radiotherapy (treatment A), radio-

therapy plus simultaneous Cisplatin (treatment B), and split-course radiotherapy

plus simultaneous cisplatin and 5-fluorouracil (treatment C), it was of substantial

interest to detect the treatment effectiveness over high-risk patient populations

(often characterized by the lower quantiles of the survival distribution). Such
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Table 2. Mean squared errors (×100) of the estimates for nonzero quantile
coefficients in Example 1.

τ = 0.25 τ = 0.50
β0(τ) β1(τ) β2(τ) β3(τ) β0(τ) β1(τ) β2(τ) β3(τ) β4(τ)

n = 200, 15% censoring
OracleM 0.67 1.95 2.05 1.79 1.14 1.75 1.69 1.49 2.20
OracleS 0.68 1.92 2.02 1.79 1.12 1.76 1.69 1.54 2.24
PIPW 1.46 2.38 3.33 2.56 1.50 2.01 2.61 2.19 4.79
PROMM 0.77 2.01 4.27 1.85 1.81 1.95 3.25 1.72 9.12
PROMS 0.78 2.03 4.20 1.89 1.76 1.86 2.80 1.65 8.80

n = 200, 30% censoring
OracleM 0.78 2.29 2.36 2.03 1.54 2.06 1.94 1.67 2.83
OracleS 0.81 2.24 2.35 2.06 1.66 1.97 2.00 1.71 3.10
PIPW 1.75 3.08 3.54 3.03 1.80 2.89 3.51 2.89 6.00
PROMM 1.02 2.42 5.95 2.24 2.70 2.32 5.22 2.00 12.86
PROMS 1.08 2.42 6.32 2.12 2.80 2.14 4.91 2.26 13.36

n = 500, 15% censoring
OracleM 0.23 0.75 0.71 0.79 0.44 0.63 0.64 0.71 1.08
OracleS 0.23 0.73 0.72 0.78 0.48 0.62 0.64 0.72 1.12
PIPW 0.48 0.84 1.01 0.96 0.51 0.68 0.87 0.83 1.60
PROMM 0.26 0.75 0.70 0.81 0.49 0.65 0.65 0.71 1.55
PROMS 0.26 0.73 0.71 0.79 0.49 0.64 0.64 0.73 1.63

n = 500, 30% censoring
OracleM 0.27 0.80 0.77 0.88 0.84 0.76 0.67 0.81 1.59
OracleS 0.27 0.79 0.76 0.87 0.88 0.75 0.67 0.79 1.66
PIPW 0.56 0.98 1.10 1.10 0.65 0.91 1.10 1.00 2.03
PROMM 0.30 0.82 0.81 0.89 0.92 0.77 0.69 0.83 3.23
PROMS 0.31 0.78 0.77 0.90 1.03 0.75 0.68 0.84 3.59

Table 3. Results of PROM methods at different bandwidth values hn =
cn−0.15 in Example 1 with 15% censoring, τ = 0.25, and n = 500.

Variable Selection 100×MSE
Method c TP FP OP β0 β1 β2 β3

PROMM 0.2 4.00 0.10 0.91 0.29 0.72 0.73 0.80
1.0 4.00 0.08 0.93 0.26 0.75 0.71 0.81
2.0 4.00 0.08 0.93 0.25 0.73 0.70 0.80

PROMS 0.2 4.00 0.09 0.92 0.29 0.73 0.72 0.79
1.0 4.00 0.07 0.94 0.27 0.73 0.71 0.79
2.0 4.00 0.08 0.93 0.26 0.73 0.71 0.79
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Table 4. Variable selection results for Example 2. TP denotes the average
number of relevant variables that are correctly selected; FP denotes the aver-
age number of irrelevant variables that are incorrectly selected; OP denotes
the oracle percentage of times that the true model is correctly selected. The
methods PROMS(q) and PROMS(q̂) are based on the true and the esti-
mated number of indices, respectively.

15% censoring 30% censoring
τ = 0.25 τ = 0.50 τ = 0.25 τ = 0.50

Method TP FP OP TP FP OP TP FP OP TP FP OP
n = 200

PIPW 4.99 39.64 0.00 5.00 25.16 0.01 4.98 68.70 0.00 4.99 62.65 0.00
PROMS(q) 4.91 0.34 0.68 4.97 0.34 0.70 4.78 0.48 0.52 4.85 0.38 0.60
PROMS(q̂) 4.91 0.40 0.64 4.97 0.27 0.76 4.77 0.53 0.50 4.85 0.43 0.58

n = 500
PIPW 5.00 5.04 0.18 5.00 3.19 0.24 5.00 11.37 0.08 5.00 9.48 0.06
PROMS(q) 5.00 0.13 0.90 5.00 0.14 0.89 5.00 0.17 0.88 5.00 0.10 0.93
PROMS(q̂) 5.00 0.16 0.87 5.00 0.13 0.90 5.00 0.19 0.86 5.00 0.09 0.92

Table 5. Mean squared errors (×100) of the estimators for nonzero quantile
coefficients in Example 2. The methods PROMS(q) and PROMS(q̂) are
based on the true and the estimated number of indices, respectively.

τ = 0.25 τ = 0.50
β0(τ) β1(τ) β2(τ) β3(τ) β4(τ) β0(τ) β1(τ) β2(τ) β3(τ) β4(τ)

n = 200, 15% censoring
OracleS 1.14 3.02 2.67 2.42 3.42 1.15 2.44 2.35 2.25 2.60
PIPW 2.86 4.25 4.48 4.44 5.69 1.33 3.43 3.94 3.18 3.33
PROMS(q) 1.20 5.10 6.50 5.03 3.72 1.18 3.17 3.40 2.91 3.43
PROMS(q̂) 1.27 5.24 6.03 5.36 4.11 1.17 3.20 3.45 3.10 3.50

n = 200, 30% censoring
OracleS 1.24 3.44 3.21 2.97 3.59 1.53 3.04 2.71 2.67 3.13
PIPW 6.42 11.13 12.24 9.89 11.58 3.03 8.93 8.77 7.73 7.97
PROMS(q) 1.65 8.74 10.59 10.46 7.17 1.61 6.36 7.42 7.05 5.81
PROMS(q̂) 1.61 7.18 12.14 9.60 8.67 1.59 5.90 9.32 6.83 4.91

n = 500, 15% censoring
OracleS 0.45 1.06 1.07 1.11 1.22 0.38 1.02 0.97 0.88 1.04
PIPW 0.58 1.18 1.35 1.36 1.36 0.37 1.30 1.14 1.07 1.28
PROMS(q) 0.45 1.03 1.09 1.11 1.23 0.40 1.01 0.93 0.89 1.02
PROMS(q̂) 0.46 1.02 1.10 1.11 1.25 0.37 1.04 0.99 0.89 1.04

n = 500, 30% censoring
OracleS 0.51 1.21 1.31 1.29 1.38 0.67 1.15 1.04 1.06 1.34
PIPW 0.67 1.47 1.56 1.38 1.69 0.49 1.59 1.46 1.29 1.55
PROMS(q) 0.52 1.22 1.28 1.29 1.36 0.70 1.16 1.07 1.06 1.36
PROMS(q̂) 0.50 1.25 1.28 1.30 1.36 0.51 1.17 1.09 1.08 1.33
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investigations would potentially lead to more effective next generation therapies

for targeted subpopulations.

After excluding the ineligible patients and those with missing data, the data

set has 171 subjects, of whom 129 died during the follow-up period. We applied

the proposed variable selection method PROM to study the impacts of the

predictors on the τth quantile of the overall survival times (in months). We

focused on two quantiles τ = 0.25 and 0.5. The standard radiotherapy treatment

(treatment A) was treated as the baseline.

Besides the three treatment arms, we also considered such continuous or or-

dinal confounders as age, height, weight, weight loss, tumor differentiation, size

of the primary tumor (cm), and categorical variables gender (1 = female, 0 =

male), race (1 = white, 0 = black), smoking (nonsmoker, light cigarette smoker

with less than 20 packs a year, moderate cigarette smoker with 20-40 packs a

year, heavy cigarette smoker with more than 40 packs a year), alcohol drinking

(light drinker: consuming less than 10oz whiskey a week or equivalent, moder-

ate drinker: consuming 10-32 oz whiskey a week or equivalent, heavy drinker:

consuming more than 32 whiskey a week or equivalent) and primary tumor site

(oralcavity, orapharynx, hypopharynx, larynx with oralcavity). The continuous

and ordinal variables were standardized to have mean zero and standard devi-

ation one. For the categorical variables smoking, alcohol drinking and primary

tumor site, we treated nonsmoker, light drinker and oralcavity as the baseline.

Therefore, the full model contained p = 19 coefficients including the intercept

effect that presents the τth quantile of survival times for a male, black, non-

smoking, and light-alcohol-drinking patient who received standard radiotherapy

treatment and had average age, height, weight, weight loss, average tumor size,

and moderately well-differentiated oral cavity tumor.

By using the selection criterion in Xia, Zhang and Xu (2010), the dimension

of the central subspace (CS) was selected to be four. The four indices were

then estimated by the MAVE method of Xia, Zhang and Xu (2010) and the

SIR method of Li, Wang and Chen (1999). Results based on the MAVE indices

estimation were very similar to those based on SIR and thus are omitted. The

sparse index-based estimation of the coefficients was obtained for τ = 0.25 and

0.5 as in Sections 2.3 and 2.4 with the bandwidth hn selected by 5-fold cross

validation and the tuning parameter λn selected by minimizing SBIC(λn). We

used the eighth-order kernel function (Hu and Fan (1992)): K(x) = 1/13(1 −
x2)(35− 385x2 + 1001x4 − 715x6)I(|x| ≤ 1).

The penalized coefficient estimates from the PIPW method (Shows, Lu

and Zhang (2010)) and the proposed PROM method are summarized in Table

6. Previous analysis (without accounting for any confounders) found that, in

terms of effect, treatment A differed from C significantly, while only differring
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Table 6. Spare coefficient estimates for the head and neck cancer data set.

τ = 0.25 τ = 0.5
Variable PIPW PROM PIPW PROM
(Intercept) 7.464 10.056 23.0092 35.296
Treatment B 0.000 2.371 0.000 4.806
Treatment C 0.000 0.000 0.000 5.556
Age 0.000 0.000 0.000 0.000
Tumor differentiation 0.000 0.000 0.000 0.000
Weight loss 0.000 0.000 0.206 0.000
White 0.000 0.000 0.000 2.789
Height 0.000 0.000 -4.222 -2.979
Weight 1.370 0.000 8.898 3.882
Gender -0.088 0.000 -8.108 -5.972
Tumor size -1.286 -0.641 0.000 0.000
Hypopharynx 0.000 1.281 0.000 6.756
Larynx 0.000 3.588 5.032 2.261
Oropharynx 0.000 0.000 0.000 0.000
Light smoker 0.000 0.000 0.000 -14.506
Moderate smoker 0.000 -0.542 0.000 -15.644
Heavy smoker 0.000 -0.268 -4.022 -22.128
Moderate drinker 0.000 -3.139 -4.701 -6.056
Heavy drinker 0.000 -3.531 -5.391 -5.561

from B marginally (Adelstein et al. (2003)). Our quantile regression analysis

revealed some interesting heterogeneity in the population. Treatment B tended

to be more effective for more severe cases (at the lower quartile), while both

treatments B and C showed positive effects for the typical cases (at the median).

In addition, height showed negative effects at the median, while white patients

tended to have longer median survival than black patients. These two effects

were not selected for more severe cases. On the other hand, larger size of primary

tumor was associated with shorter survivals for more severe cases, but not at the

median. The two tumor sites hypopharynx and larynx showed positive effects at

both quantiles, while oropharynx tended to have no effect. As suggested by the

simulation study, PIPW had difficulty identifying the correct model for data

sets with larger numbers of predictors. Here, PIPW yielded more shrinkage,

leading to much more sparse models at both quantiles. More specifically, PIPW

suggested that both treatments B and C have no difference than the baseline

treatment at both quantiles, and only tumor size, weight, and gender have effects

on the lower quartile of the survival distribution.

To further compare the results from PIPW and PROM , we evaluated the

risk prediction accuracy of the models selected by the two methods. For each

subject i, we took the risk score as the estimated conditional quantile, m(xi) =
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Table 7. Ct0 statistics of the models selected by PIPW and PROM for the
head and neck cancer data set.

τ = 0.25 τ = 0.5
t0 PIPW PROM PIPW PROM
20 0.580 0.613 0.612 0.647
40 0.566 0.602 0.600 0.638
60 0.565 0.599 0.599 0.637
80 0.565 0.598 0.598 0.637

xT
i β̂(τ), where xi is the covariate vector and β̂(τ) is the penalized coefficient

estimate from either PIPW or PROM at quantile level τ . In our context, good

risk scores are expected to better discriminate among subjects with longer and

shorter survivals. In medical studies, the concordance measure Ct0 = P{m(x2) >

m(x1)|T2 > T1, T1 < t0} is commonly used to evaluate the overall performance of

a risk scoring system, where t0 is a prespecified follow-up time point. To account

for the censoring, we employed the C-statistic of Pencina and D’Agostino (2004):

Ĉt0 =

∑
i ̸=j δiI(Yi < Yj , Yi < t0)I{m(xi) < m(xj)}∑

i̸=j δiI(Yi < Yj , Yi < t0)
.

The Ct0-statistics with different values of t0 are summarized in Table 7. Results

show that the model selected by PROM has higher risk prediction accuracy than

that selected by PIPW at both quantile levels for all values of t0 examined.

5. Discussion

We have developed a new variable selection approach for censored quantile

regression. Our models depict more completely the survival distribution of in-

terest, identifying important factors leading to poor prognosis in survival. This

is of particular interest to physicians who are keen on designing effective treat-

ments for targeted patient sub-population, often characterized by short survival.

Such a small group can get overlooked when using the more popular Cox and

AFT models. As opposed to the existing methods for censored quantile regres-

sion, our developed methods require fewer assumptions, and enjoy computational

readiness.

We propose to estimate the censoring probabilities nonparametrically based

on effective dimension reduction indices. This can be extended to situations

where the number of predictors grow with the sample size. However, this is be-

yond the scope of the current paper. To avoid the curse of dimensionality, an

option is to estimate the censoring probabilities by fitting a semiparametric re-

gression model (e.g. Cox proportional hazards model). McKeague, Subramanian

and Sun (2001) showed that this method works reasonably well even when the
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Cox model is slightly misspecified. However, this approach requires the semi-

parametric and the quantile regression models to be compatible. We leave the

formal investigation of this semiparametric approach to a future study.

Acknowledgement

Wang’s research is supported by National Science Foundation grant DMS-

1007420 and CAREER Award DMS-1149355. Zhou’s research is supported by

National Science Foundation (DMS-0906665). Li’s research is supported by Na-

tional Institutes of Health (R01CA95747). The authors would like to thank

Professor Robert Gray and the Eastern Cooperative Oncology Group for provid-

ing the head and neck cancer data set, and Professor Yingcun Xia for providing

the matlab program of the MAVE method. We would like to thank two anony-

mous reviewers, an associate editor and the Editor for constructive comments

and helpful suggestions.

Appendix

To simplify the presentation, we omit τ in such expressions as β(τ), ei(τ),

and A(τ), and we focus on the cases with q = 1. Proof for q > 1 follows the

same line by using the asymptotic properties of the local Kaplan-Meier estimate

F̂ (·|z) for general cases with q ≥ 1, but the notations are more complicated. Let

ẑi = xT
i γ̂, zi = xT

i γ, and z0i = xT
i γ0. To reflect the dependence of the weights wi

for redistribution of masses on F and γ, we take wi as wi(F, γ). In addition, we

define Mn(β, F,γ) = n−1
∑n

i=1mi(β, F,γ) as the subgradient of the weighted

quantile objective function n−1L(β,w) of (2.2), where

mi(β, F,γ) = xi

{
τ − wi(F,γ)I(Yi ≤ xT

i β)
}

= xi

[ {
τ − I(Ci > xT

i β, Ti ≤ xT
i β)− I(Ci ≤ xT

i β, Ti ≤ Ci)
}

− I(Ci ≤ xT
i β, Ti ≥ Ci)I {F (Ci|zi) < τ}

{
τ − F (Ci|zi)
1− F (Ci|zi)

}]
.

Let M(β, F,γ) = Ex {m(β, F,γ)} = E
[
x
{
τ −H(xTβ|x)−R(β, F, γ|x)

}]
,

where

H(t|x) = {1−G(t|x)}F0(t|x) +
∫ t

−∞
F0(u|x)g(u|x)du,

R(β, F,x) =

∫ xTβ

−∞
{1− F0(u|x)} g(u|x)

τ − F (u|zi)
1− F (u|zi)

I {F (u|zi) < τ} du.
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Lemma A.1. Suppose assumptions A1−A5 hold, then for any q ≥ 1,

(i) ∥F̂ − F0∥H
.
= supt supx |F̂ (t|ẑ) − F0(t|x)| = supt supx |F̂ (t|ẑ) − F0(t|z0)| =

Op({log n/(nhpn)}1/2 + hνn);

(ii) F̂ (t|z) − F0(t|z) =
∑n

j=1Bnj(z)ξ(Yj , δj , t, z) + Op

(
{log n/(nhpn)}3/4 + hνn

)
a.s.,

where ξ(Y, δ, t, z)={1−F0(t|z)}
[
−
∫ min(Y,t)
0 f0(s|z){1−F0(s|z)}−2{1−G(s|z)}−1ds

+I(Y ≤ t, δ = 1){1− F0(Y |z)}−1{1−G(Y |z)}−1
]
.

Proof. Note that

F̂ (t|ẑ)− F0(t|z0) =
{
F̂ (t|xT γ̂)− F0(t|xT γ̂)

}
+

{
F0(t|xT γ̂)− F0(t|xTγ0)

}
.

(A.1)

By extending Theorem 2.1 of Gonzalez-Manteiga and Cadarso-Suarez (1994) to

q ≥ 1, we have

sup
t

sup
z

|F̂ (t|z)− F0(t|z)| = Op

({ log n

nhpn

}1/2
+ hνn

)
. (A.2)

Lemma A.1(i) thus follows by combining (A.1), (A.2), assumptions A1, A2 and

A4. Lemma A.1(ii) gives the linear representation of F̂ (·) for q ≥ 1. Its proof is

similar to that of Theorem 2.3 in Gonzalez-Manteiga and Cadarso-Suarez (1994).

The main difference is that the bias influence and the variance influence are hν

and (nhqn)−1, respectively, for a νth order kernel function in the q-dimensional

context, in contrast to h2 and (nhn)
−1 for a second order Kernel function in the

one-dimensional context.

Proof of Theorem 1. The consistency of β̃ can be easily shown by using

Lemma A.1(i) and similar arguments as in the proof of Theorem 1 in Wang and

Wang (2009). Therefore, we omit the details.

To establish the asymptotic normality, we first prove the
√
n-consistency of

β̃ to β0. Let

Γ1 =
∂M(β, F0,γ0)

∂β
|β=β0 = −E

[
xxT

{
1−G(xTβ0|x)f0(xTβ0|x)

}]
,

and that Γ1 is continuous at β = β0, and has full rank under A3. Therefore,

there exists a constantK such that ∥β̃−β0∥ ≤ K∥M(β̃, F0,γ0)∥ with probability

tending to one. It then suffices to show that ∥M(β̃, F0,γ0)∥ = Op(n
−1/2).

Using similar arguments as in the proof of Lemma 2 in Wang and Wang

(2009), we have

∥Mn(β, F,γ)−Mn(β0, F0,γ0)−M(β, F,γ)∥ = op(n
−1/2), (A.3)
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uniformly over (β, F,γ) such that ∥β−β0∥ ≤ an, ∥F−F0∥H ≤ an and ∥γ−γ0∥ ≤
an, where an → 0 as n → ∞. Therefore, by the consistency of β̃, Lemma A.1

and assumption A4,

∥M(β̃, F̂ , γ̂)−Mn(β̃, F̂ , γ̂) +Mn(β0, F0,γ0)∥ = op(n
−1/2). (A.4)

Under assumptions A1, A2, and A4, ∥Mn(β̃, F̂ , γ̂)−Mn(β̃, F̂ ,γ0)∥ = op(n
−1/2).

In addition, combining the subgradient condition (Koenker (2005)) and assump-

tion A1 gives ∥Mn(β̃, F̂ , γ̂)∥ = Op(n
−1). Therefore,

∥Mn(β̃, F̂ ,γ0)∥ ≤ ∥Mn(β̃, F̂ , γ̂)−Mn(β̃, F̂ ,γ0)∥+ ∥Mn(β̃, F̂ , γ̂)∥ = Op(n
−1/2).

(A.5)

Let ϵ > 0 and Fϵ(t|z) = F0(t|z) + ϵ{F (t|z) − F0(t|z)}. Following some routine

algebra, we can derive the functional derivative of M(β0, F,γ0) at F0 in the

direction [F − F0] as

Γ2(β0, F0,γ0)[F−F0] = lim
ϵ→0

1

ϵ
[M{β0, F0 + ϵ(F − F0)},γ0)−M(β0, F0,γ0)]

= (1− τ)E

[
x

∫ xTβ0

−∞

F (t|z0)− F0(t|z0)
1− F0(t|z0)

g(t|x)dt

]
.

Therefore,

Γ2(β0, F0,γ0)[F̂ − F0] = (1− τ)E

[
x

∫ xTβ0

−∞

F̂ (t|z0)− F0(t|z0)
1− F0(t|z0)

g(t|x)dt

]
.

By plugging in the linear representation of F̂ (t|z)−F0(t|z) in Lemma A.1(ii) and

applying a Taylor expansion, we obtain

Γ2(β0, F0,γ0)[F̂ − F0] = n−1
n∑

i=1

(1− τ)ϕi + op(n
−1/2), (A.6)

where ϕi = xi

∫ xT
i β0

−∞ g(t|z0i)ξ(Yi, δi, t, z0i){1−F0(t|xi)}−1dt, and ξ(Y, δ, t, z) is as

in Lemma A.1(ii). Here ϕi are independent random variables with mean zero,

and Γ2(β0, F0,γ0)[F̂ − F0] = Op(n
−1/2).

Let δn = o(1) be a positive sequence such that P (∥β̃ − β0| ≥ δn, ∥F̂ −
F0∥H ≥ δn) → 0. Following a routine Taylor expansion, we can show that

under assumptions A1−A2, ∥Γ2(β̃, F0,γ0)[F̂ − F0] − Γ2(β0, F0,γ0)[F̂ − F0]∥ =

∥β̃ − β0∥op(1), and

∥M(β̃, F̂ ,γ0)−M(β̃, F0,γ0)− Γ2(β̃, F0,γ0)[F̂ − F0]∥ ≤ K∥F̂ − F0∥2H (A.7)



164 HUIXIA JUDY WANG, JIANHUI ZHOU AND YI LI

for a constant K ≥ 0. By Lemma A.1(i), for any α > 0 such that 1/(4ν) < α <

1/(2q), ∥F̂ − F0∥2H = op(n
−1/2). This together with (A.6) gives

∥M(β̃, F0,γ0)∥
≤ ∥M(β̃, F0,γ0)−M(β̃, F̂ ,γ0)∥+ ∥M(β̃, F̂ ,γ0)

≤ ∥M(β̃, F̂ ,γ0)−M(β̃, F0,γ0)− Γ2(β̃, F0,γ0)[F̂ − F0]∥+ ∥M(β̃, F̂ ,γ0)

+∥Γ2(β̃, F0,γ0)[F̂ − F0]− Γ2(β0, F0,γ0)[F̂ − F0]∥+ ∥Γ2(β0, F0,γ0)[F̂ − F0]∥
≤ ∥F̂ − F0∥2H + ∥β̃ − β0∥op(1) +Op(n

−1/2)

≤ ∥M(β̃, F0,γ0)∥op(1) +Op(n
−1/2). (A.8)

Therefore, combining (A.4)−(A.8) gives β̃−β0 ≤ K∥M(β̃, F0,γ0)∥ = Op(n
−1/2).

Recall from (A.5) that Mn(β̃, F̂ , γ0) = Op(n
−1/2). The rest of the proof

of normality is similar to that of Theorem 2 in Chen, Linton and Van Keilegom

(2003), and we just sketch the main steps here. Let Γ3 = ∂M(β0, F0,γ)/∂γ|γ=γ0 .

By assumption A4(i) and a Taylor expansion, we get M(β̃, F̂ , γ̂)−M(β̃, F̂ ,β0) =

Γ3(γ̂−γ0)+op(n
−1/2). Let Ln(β) = Mn(β0, F0, γ0)+Γ1(β−β0)+Γ2(β0, F0, γ0)[F̂−

F0]+Γ3(γ̂−γ0). By the root-n consistency result above, Lemma A.1, (A.3), and

(A.7), we have

∥Mn(β̃, F̂ , γ̂)−Ln(β̃)∥ = ∥Mn(β0, F0, γ0) +M(β̃, F̂ , γ̂)− Ln(β̃)

+Mn(β̃, F̂ , γ̂)−M(β̃, F̂ , γ̂)−Mn(β0, F0, γ0)∥
≤ ∥M(β̃, F0, γ0)− Γ1(β̃ − β0)∥

+∥M(β̃, F̂ , γ̂)−M(β̃, F0, γ0)− Γ2(β0, F0, γ0)[F̂−F0]∥
+∥M(β̃, F̂ , γ̂)−M(β̃, F̂ ,γ0)− Γ3(γ̂ − γ0)∥
+∥Mn(β̃, F̂ , γ̂)−M(β̃, F̂ , γ̂)−Mn(β0, F0, γ0)∥

= op(n
−1/2).

Similarly, ∥Mn(β̃, F̂ , γ̂)−Ln(β̄)∥ = op(n
−1/2), where β̄ is the minimizer of Ln(β),

satisfying n1/2(β̄−β0) = −Γ−1
1

{
M0(β0, F0, γ0)+Γ2(β0, F0, γ0)[F̂ −F0]+Γ3(γ̂−

γ0)
}
. Since Γ1 is of full rank under A3, with a bit more work, we get n1/2(β̃−β̄) =

op(1). Note that Mn(β0, F0,γ0), Γ2(β, F0,γ0)[F̂−F0] and γ̂−γ0 are the averages

of independent random vectors of means zero. Therefore, applying the Central

Limit Theorem gives

n1/2
{
Mn(β0, F0,γ0) + Γ2(β0, F0,γ0)[F̂ − F0] + Γ3(γ̂ − γ0)

}
D−→ N(0, V ),

(A.9)

where V = Cov(vi) with vi = mi(β0, F0, γ0)+ϕi+di. The asymptotic normality

of β̃ is thus proven.
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Proof of Theorem 2. Let Ân = {j : β̂j ̸= 0}. We first show that for any j /∈ A,

P (j ∈ Ân) → 0 as n → ∞. Suppose there exists a k ∈ Ac such that |β̂k| ̸= 0.

Let β∗ be a vector constructed by replacing β̂k with 0 in β̂. For simplicity, we

write ŵi = wi(F̂ , γ̂). Note that |ρτ (a)− ρτ (b)| ≤ |a− b|max{τ, 1− τ} < |a− b|.
Therefore, for large enough n,

LAL(β̂, ŵ)− LAL(β
∗, ŵ)

=
n∑

i=1

ŵi

{
ρτ (yi − xT

i β̂)− ρτ (yi − xT
i β

∗)
}

+
n∑

i=1

ŵi

{
ρτ (y

+∞ − xT
i β̂)− ρτ (y

+∞ − xT
i β

∗)
}
+ λnvk|β̂k|

≥ −
n∑

i=1

|ρτ (y+∞ − xT
i β̂)− ρτ (y

+∞ − xT
i β

∗)| −
n∑

i=1

τ |xT
i β̂ − xT

i β
∗|+ λnvk|β̂k|

≥ −2

n∑
i=1

∥xi∥ · |β̂k|+ λn|β̃k|−r|β̂k| > 0, (A.10)

where the last inequality holds as
∑n

i=1 ∥xi∥ = Op(n) by assumption A1, and

n−1λn|β̃k|−r ≥ nr/2−1λn → ∞. This contradicts the fact that LAL(β̂, ŵ) ≤
LAL(β

∗, ŵ).

We next show that for any j ∈ A, P (j /∈ Ân) → 0. We write bA = (bj , j ∈ A)

for any vector b ∈ Rp, and BAA as the sub-matrix of a p× p matrix B with both

row and column indices in A. Recall from the proof of Theorem 1 that

Mn(βA, F,γ) =Mn(β0A, F0,γ0) + Γ1AA(βA − β0A)

+Γ2AA(βA0, F0,γ0)[F − F0] + op(n
−1/2) (A.11)

uniformly over βA, F , and γ such that ∥βA − β0A∥ = O(n−1/2), ∥F − F0∥H =

o(n−1/4), and γ − γ0 = O(n−1/2). Let βA − β0A = n−1/2u and K be some

positive constant. By (A.11), for ∥u∥ = K, we have

nuTMn(βA, F̂ , γ̂) = nuT {Mn(β0A, F0,γ0) + Γ2AA}
+n1/2uTΓ1AAu+ op(n

1/2), (A.12)

where Γ2AA = Γ2AA(βA0, F0,γ0)[F̂ −F0]. Therefore, with probability tending to

one,

− nuTMn(βA, F̂ , γ̂) ≥ −nuT {Mn(β0A, F0,γ) + Γ2} − n1/2uTΓ1u+ o(n1/2)

≥ k0n
1/2 (A.13)
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for some positive k0. However, the subgradient condition (see the proof of The-

orem 1 in Wang and Wang (2009)) requires that

∥nuTMn(β̂A, F̂ , γ̂)∥+ λn

∑
j∈A

vj |τ − I(β̂j < 0)| ≤ Op(max
i

∥xi∥). (A.14)

When λn = o(n1/2) and assumption A1 holds, (A.13) and (A.14) suggest that the

subgradient condition cannot hold if ∥β̂A − β0A∥ = Kn−1/2. Using the mono-

tonicity argument in Jurečková (1977), we can show that the subgradient condi-

tion also cannot hold if ∥β̂A−β0A∥ > Kn−1/2. Therefore, ∥β̂A−β0A∥ ≤ Kn−1/2

with probability tending to one. The proof of Theorem 2 is thus complete.
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