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Abstract: The method of composite likelihood is useful for dealing with estimation
and inference in parametric models with high-dimensional data where the full like-
lihood approach renders computation intractable. We develop an extension of the
EM algorithm in the framework of composite likelihood estimation given missing
data or latent variables. We establish key theoretical properties of the composite
likelihood EM (CLEM) algorithm: the ascent property, algorithmic convergence,
and convergence rate. The proposed method is applied to estimate the transition
probabilities in a multivariate hidden Markov model. Simulation studies are pre-
sented to demonstrate the empirical performance of the method. A time-course
microarray data is analyzed using the proposed CLEM method to dissect the un-
derlying gene regulatory network.
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1. Introduction

This paper focuses on the development of statistical theory and method of the
EM algorithm in the context of composite likelihood (CL) for analyzing incom-
plete high-dimensional correlated data. The CL paradigm (e.g., Lindsay| (1988)))
helps to make statistical estimation and inference via dimension reduction, in the
sense that a pseudo likelihood is constructed with the help of low-dimensional
likelihood objects. This is particularly appealing in dealing with data with high-
dimensional response variables. High-dimensionality in the response variables
appears in many studies, such as a genetic pathway analysis involving gene reg-
ulatory networks, and longitudinal cohort studies involving space-time measure-
ments. A significant difficulty in parameter estimation with high-dimensional
data via Fisher’s full likelihood approach is computational feasibility. The like-
lihood function is often too complex to be numerically manageable. The CL
method sets a compromise between the estimation efficiency and computational
ease: a high-dimensional full likelihood is simplified to several low dimensional
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pseudo-likelihoods for the benefit of computing. This simplification comes with
some efficiency loss.

1.1. Composite likelihood methodology

The history of the CL method is relatively short, though it has drawn much
attention in recent years. The method has been used in many areas, including
generalized linear mixed models (Renard, Molenberghs, and Geysl (2004)), sta-
tistical genetics (Fearnhead and Donnely| (2002)), spatial statistics (Hjort and
Omre (1994); [Heagerty and Lele| (1998); [Varin, Host, and Skare (2005)), mul-
tivariate survival analysis (Parner (2001))), and high-dimensional data (Fieuws
and Verbeke (2006)); [Faes et al.l (2008)), among others. It has been demonstrated
to possess good theoretical properties, such as consistency for the parameter
estimation, and can be utilized to establish hypothesis testing procedures.

This general formulation of composite likelihood comprises two main types.
The first type is the omission method, which forms the composite likelihood by
removing some terms in the full likelihood to simplify the evaluation. This in-
cludes Besag pseudolikelihood (Besagl (1977)), the m-order likelihood for station-
ary processes (Azzalinil (1983)), and the approximate likelihood (Steinl (2004)),
among others. The other type includes pseudolikelihood constructed from lower
dimensional densities (Cox and Reid| (2004))), which is the focus of this paper.

We begin the discussion of the second type with some necessary notation.

Let z = (z1,..., 2,)" be the vector of n variables observed from a single unit. Let
{f(z;%),z € Z,4¢ € ¥} be a class of parametric models, with Z C R", ¥ C RY,
n > 1, and ¢ > 1. For a subset of {1,...,n}, say a, z, denotes a subvector of z

with components indexed by the elements in set a; for instance, given a set a =
{1,2}, 24 = (21, 22)T. Let ¢ = (8,7), where 8 € © C RP, p < g, is the parameter
of interest, and 7 is the nuisance parameter. According to [Lindsay| (I988), the
CL of a single vector-valued observation is L.(6;2) = [[,c 4 La(0;2a)"*, where A
is a collection of index subsets called the composite sets, L, (0;2,) = fo(2a;604),
and {w,,a € A} is a set of positive weights. Here f, denotes all the different
marginal densities and 6, indicates the parameters that are identifiable in the
marginal density f,. The subscripts of f, and 6, are later omitted for notational
simplicity. The weights w, are positive, to ensure the ascent property of the
proposed CLEM algorithm discussed later.

As an example, the independence CL can be formulated as a product of
one-dimensional marginal likelihood objectives, namely L. = [[,c4 f(2a;6)"°,
with A = {{1},...,{n}}, and z,,a € A, denotes a single variable indexed by the
element in a. Likewise, the pairwise CL takes the production of all possible two-
dimensional marginal likelihoods, where A = {{1,2},{1,3},...,{n—1,n}} is the
collection of all indices for pairs. Both independence CL and pairwise CL can be
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combined in some optimal way to ensure the satisfactory asymptotic properties
of the resulting estimator (Cox and Reid| (2004)).

A key regularity assumption required in the application of the CL method
is that the parameter @ be identifiable and estimable by maximizing the CL
function. The fundamental argument for the CL method lies on the theory of
estimating functions (Song| (2007, Chap. 3)). Under the assumption that the
true parameter Oy belongs to the interior of a compact parameter space, the
maximum composite likelihood estimator solves the composite score equation,

Zwaw ~ 0. (1.1)

00

a€A

As the composite score function is a linear combination of several valid likelihood
score functions, it is unbiased under the usual regularity conditions. Therefore,
even though the composite likelihood is not a real likelihood, the maximum
composite likelihood estimate is still consistent for the true parameter. The
asymptotic covariance matrix of the maximum composite likelihood estimator
takes the form of the inverse of the Godambe information (Godambel (1960)):

H(0)"J(0)"'H(8),
where

0%log f(zq; 0
HO)=E{- 3 agej(;fsvT )}

a€A
and

J(0) = Var{; Olog /(243 6) (J;(eza; ) }

are the sensitivity matrix and the variability matrix, respectively. The difference
between the Fisher and Godambe information is always positive semi-definite;
this is useful in considering the efficiency loss incurred by using the CL instead
of the full likelihood. Readers are referred to [Cox and Reid (2004) and [Varin
(2008)) for a more detailed discussion on the asymptotic behavior of the maximum
composite likelihood estimator.

1.2. EM algorithm in non-standard settings

In practical applications, missing data further complicates the analysis of
high-dimensional correlated data. The traditional EM algorithm plays an im-
portant role in the full MLE with missing data. The procedure iterates between
the E step, in which the expected log likelihood of the complete data is com-
puted conditionally on the observed data, and the M step, in which the expected
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log likelihood of complete data is maximized to update the parameter estimate.
However, to naively apply the EM strategy in high-dimensional settings, we en-
counter the difficulties of solving the expectation step conditionally on the high-
dimensional observed data, and often involve high-dimensional integrals that are
hard to evaluate. Thus a modified EM algorithm that is computationally less in-
tensive is desired for the composite likelihood inference in the presence of missing
data. We anticipate the composite likelihood EM (CLEM) algorithm developed
here will provide a basic tool to the analysis of high-dimensional data with miss-
ing observations. We intend a thorough investigation on the EM algorithm in
the CL framework.

Extending the EM algorithm to non-standard likelihood settings has been
considered by many researchers, McLachlan and Krishnan| (2008)) and references
therein. Some simple versions of the CLEM algorithm have been proposed in the
literature. [Liang and Yu| (2003]) proposed a pseudo EM algorithm to solve net-
work tomography problems, and [Varin, Host, and Skare| (2005]) proposed pairwise
EM (PEM) in the context of spatial generalized linear mixed models. In both
works, the subsets on which the lower dimensional likelihoods are formed only
contain pairs of random variables. There is a clear need of developing a general
CLEM algorithm based on arbitrary sizes of the subsets so as to deal with a wide
range of high-dimensional data types. In a subsequent section, we demonstrate
the application of the CLEM to a multivariate Hidden Markov Model where the
CL is formed on subsets which contain pairs of time series. In other areas like
the analysis of familial data of genetic copy number variations (e.g., [Wang et al.
(2007)), it appears desirable to form the CL based on nuclear families of trios
(i.e., two parents and one offspring), as a trio pertains to a full inheritance core
in a pedigree. Another example is spatio-temporal data analysis where, in order
to model the spatio-temporal interactions, quadruplets seem to be the minimal
elementary set in the formulation of the CL. To accommodate this kind of need,
the proposed CLEM is formulated for arbitrary sizes of subsets, and theoretical
properties of the CLEM are investigated under this general setup.

The key theoretical properties of the CLEM algorithm include the ascent
property, algorithmic convergence, and rate of convergence. We apply the CLEM
algorithm in the construction of gene networks with time-course microarray data
based on multivariate hidden Markov models where the computational complex-
ity prohibits us from using the full likelihood EM (FLEM) algorithm. The paper
is organized as follows. Section 2 presents the CLEM algorithm and its prop-
erties. Section 3 discusses the application of CLEM to a multivariate hidden
Markov model. Simulation studies on a three-variate and a 21-variate hidden
Markov model are presented. Section 4 is devoted to a data analysis example of



COMPOSITE LIKELIHOOD EM ALGORITHM 169

gene network construction, and Section 5 gives some concluding remarks. The
necessary proofs are in the Appendix.

2. Algorithm and Its Properties
2.1. Composite likelihood EM algorithm

In many practical settings, we observe incomplete data. Assume under
the composite likelihood framework, that for each composite set a, there ex-
ists a many-to-one mapping z, — y, from Z, to ),, where Z, and ), de-
note the sample spaces. Instead of observing the complete data z,, we observe
the incomplete data y,. Let the full set of the incomplete data be denoted as
Y = (Ya,a € A). Then, the observed CL is by L2(0;y) = [[,c4 L3(6;y4)"* with
L%(6;y,) = fZa(ya) f(zq;0)dz,, where Z,(ya) = {24 : Yo = Ya(Za)}, which is the
subset of Z, determined by the equation y, = y,(24).

Our goal is to develop a CL version EM (CLEM) algorithm that can produce
the maximum CL estimation of the model parameter € in the presence of missing
data. Suppose the CLEM algorithm has completed the (r — 1)-th iteration and
produced an update 87 ~D. At the r-th iteration, the CL E-step for a single
vector-valued observation takes the form

Q.(0]67 V) = Z Wq 10g L(za; 0) f (Za|ya, 0" V) dz,. (2.1)
acA a(ya)

When applied to data, the Q. takes an additional summation over the sample
replicates.

It is worth noting that in the calculation of the (). function, we propose
replacing the full set of observed data y by a subset-specific observed data y, in
the conditional part in order to make related computations feasible. This leads
to a further dimension reduction in addition to the previous one taken in the
formulation of the CL.

The proposed CLEM algorithm iterates the following E-step and M-step
until convergence.

e CL-E Step: Given the previous update O(T_l), obtain the expected composite
likelihood Q.(0]67~1);

e CL-M Step: Maximize QC(HIO(T_I)) with respect to @ to produce an update
6.

As the CLEM algorithm converges to a stationary point of the observed
composite likelihood, it may be trapped in local maxima. This can occur with
any EM-type algorithm. To avoid this problem, multiple starting points are typ-
ically used so that the algorithm can search over the entire parameter space. To
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generate reasonable initial values, certain simple estimation methods, such as the
method of moments estimation, are often applied. In the CL-E step, evaluating
the conditional expectation can become a numerical challenge. Following [Wei
and Tanner! (1990), one can invoke Monte Carlo method to approximate the in-
tegration. In the CL-M step, Newton Raphson method or quasi-Newton method
can be used to update the parameter value. It is known that the M step can
be relaxed to seek an updated value that only increases the objective function
Q.(A]0"=1), not necessarily to the maximum. The CLEM algorithm iterates be-
tween the CL-E step and CL-M step until the difference in (") or the difference
in Q.(A[A"—1)) is below a pre-specified tolerance level.

2.2. Main properties

To justify the proposed CLEM algorithm, we investigate three key properties
similar to those in the establishment of the full likelihood EM (FLEM) algorithm:
the proposed CLEM algorithm retains the ascent property; it is a fixed point
algorithm converging to a stationary point; the convergence rate of the CLEM
depends on the curvature of the CL function surface.

We proceed to our justification in a sequence of steps, the technical details
are in the Appendix. First, for each subset index a € A, we define a conditional
density of z, on y,:

_ f(2a; 0)
fZa(ya) f(z,;0)dz,’

where the denominator is the likelihood of the observed data y,, namely L¢.

f(2alya; ) (2.2)

Define a CL version H-function as

Hc(é‘e) = Z wa/l()g f(Za’yw é)f<za‘ya§ 0>dza-

acA

The inequality in Lemma 1 is crucial to the establishment of the ascent property.
Lemma 1. For any pair of (6',0) in © x ©, H.(0'|0) < H.(6]0).

Theorem 1. The composite log-likelihood of the observed data 'y, 12(0;y) =
log L°(0;y), satisfies 12(0T);y) > 19(07V;y), r=1,2,....

We next present sufficient conditions under which any limit points of the
CLEM updates 0" are stationary points, and log Lg(O(T);y) converges mono-
tonically to log L2(6*;y) for some stationary point 8*. For a bivariate function
f(u,v), let V) f(u,v) denote the i-th and j-th derivatives with respect to u and
.
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Lemma 2. If differentiation and expectation can be exchanged, for all 8 € O,

(a) VOO H,.(6]0) =0, and

(b) VAV H,(6]6) = Y acA WaVar {%‘M \ya;O}, where f(-) is given in
22).

Theorem 2. Assume

(i) O = {0 € © : L2(O;y) > L%60;y)} is compact for any O satisfying
L2(6o;y) > —oo,

(i1) L2(8;-) is continuous in © and differentiable in the interior of ©, and

(iii) the function Q.(€'|@) in (1)) is smooth in both 6" and 6.

Then the limit points of the CLEM algorithm {O(T)} are stationary points, and

Lo(0"):y) converges monotonically to L2(6%;y) for some stationary point *.

We investigate the factors that affect the convergence rate of the CLEM
algorithm. This provides useful insights on the algorithmic speed.

Theorem 3. Assume the conditions of Theorem 2. In addition, assume that

(i) an instance of the CLEM algorithm 0", r=0,1,..., converges to 0* in the
closure of ©, and

(i) VEIQ. (011001 is negative definite with eigenvalues bounded away from
zero.

Then 0% is a stationary point. Moreover, let
-1
M(8%) = — { VI H.(07107) } {VIQ.(0%167) ) .

Then, the convergence rate of the CLEM is M, for a scalar parameter, or is the
largest eigenvalue of M for a parameter vector.

When 0 is a scalar, it is easy to see that the convergence rate is proportional
to the information due to the missing data, I, mis(60*), and is anti-proportional
to the information due to the complete data, I, com (6%), in the form

-1
M(0*) = {Zwafa,mis(e*)} {Zwalwom(é?*)} : (2.3)

a€A acA

where

_ 0? log f(Zalya; ) .
Ia,mzs((g) —E{_ 892 ’)’aﬁ} ’

B 0? log f(zq) .
Ia,com(e) =E {892 |ya» 9} .
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The CLEM convergence rate in (Z3]) may be slower than that of the FLEM
algorithm, depending on how the current choice of term y, in the CLEM is
chosen. Obviously, the size of composite set a plays a key role in the trade-off
between the convergence rate and computational convenience.

In order to estimate the standard error of the CLEM estimates, we need
to estimate the Godambe information matrix H(0)T.J(6)"1H(0). For H(), un-
der standard regularity conditions, a consistent estimator is the negative Hes-
sian matrix evaluated at the maximum composite likelihood estimator. Given
y',...,y™, independent samples of the observed data, the estimate takes the
form

M
~ 92 log Lo(0;y™)
H=— e .
2 0007 10

m=1

If the Hessian is difficult to compute,

Z Z alogLO 0,y" )‘9*)(8long(9,y;”) |0*)T
00 ’

m=1acA

as the second Bartlett identity, remains true for each subset.
The estimation of J(80) poses more difficulties , since the corresponding naive
estimator

(ZZ alogL 9 Yo )(ZZ 8logL° 0, ya)’9*>T

m=1acA m=1acA

vanishes when evaluated at the maximum composite likelihood estimator. In-
stead, J can be estimated by the sample variances of the individual contribu-
tions to the composite score function. An interesting alternative is to perform a
jackknife (Zhao and Joel (2005)) for the evaluation of the variance matrix. For
non-independent samples, one might partition the sample Y so that the corre-
sponding contributions to the composite score function are approximately un-
correlated; the empirical and jackknife estimation can be derived based on these
contributions. A more detailed discussion on the estimation of .J, especially for
time series and spatial data, may be found in Varinl (2008]).

Estimation of J(6) and H (@) involves the calculation of the derivatives of the
log-likelihood, which may not be computationally convenient in some situations.
Another approach is to perform a nonparametric bootstrap. The asymptotic
covariances among the CLEM estimates from different bootstrap samples can be
used to estimate the standard errors of the CLEM estimates.
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3. Application: Multivariate Hidden Markov Models

In this section, we focus on the application of the proposed CLEM algorithm
in the estimation of transition probabilities in a multivariate hidden Markov
model; this has direct applications in the analysis of time-course microarray data.
Recent technological advances have allowed biologists to collect gene expression
data at multiple times (Rangel et al| (2004)); Kobayashi et al. (2005); [Spellman
et all (1998))). Time course expression data are essential to understanding indi-
vidual cellular behaviors, such as mobility, division and differentiation, and gene
regulatory networks provide important knowledge of biological pathways. As
pointed by [Somogyi and Kitano| (1999), the ultimate goal of researchers is to in-
fer, from the data obtained from microarray experiments, the genetic regulatory
networks that act as their bases.

Let Y ={Y},m=1,...,M,g =1,...,N,t = 1,...,T} be a time-course
microarray data set that collects M replicates of time-series expression trajec-
tories from a collection of N genes over T time points. Suppose the data Y
are generated from an HMM with the set of binary hidden variables, X =
{(Xgym =1,...,M,g = 1,...,N,t = 1,...,T}, under the conditional den-
sity functions fo and fi on states 0 and 1, respectively. The unobserved X",
ge G, t=1,2,..., are a stationary Markov order-one process. At a fixed time
point ¢, the cross-sectional set of hidden variables is a subset of X, denoted as
X = (X7}, ..., X3,). Given a collection of N genes, the joint analysis requires
one to estimate a 2V x 2V transition matrix, and the related computational
burden presents a serious challenge.

The pairwise CL method concerns only submatrices of the A, including 4 x 4
transition matrices A99" of all gene pairs (g, ¢'), and 2 x 2 transition matrices A9
of one gene g. Precisely, for a pair of genes (g, ¢’), the joint transition matrix
A99" constitutes the transition probabilities of the form

P[(Xg,t—s-lan’,tH) = (59759’)|(Xg,t’Xg’7t) = (§g7§g’)]’
(8g,847) o1 (8¢,5¢4) € S2 =1{{0,0},{1,0},{0,1},{1,1}}.

Likewise, the marginal transition matrix A9 is comprised of the transition prob-
abilities

P(Xgi11 = 59| Xgt = 3g), sg 01 55 € S1 ={0,1}.
As a result, the dimensionality of the parameter space is reduced by the CL
method to be of order N2, which is considerably smaller than that of the full

22N and hence computations in the estimation and inference

parameter space,
become feasible.
To implement the CLEM algorithm, we need to identify distinct parameters

and their constraints among the model parameters. In the HMM, the network
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parameters are involved in the following: (i) the joint limiting distribution of
bivariate vectors of hidden variables for pairs of genes (g,¢’) at two time points
(t,t+1),

/ .
Py = m Pl(Xgs Xg i) = (59,5, 89.5), (Xg 41, Xgr141) = (59,575 59,5)];

where (84,5, 54 ;) and (sq jr, 54 j1) are, respectively, the j-th and j'-th elements in
So; (ii) the cross-sectional pairwise limiting distribution of pairs of genes (g, ¢’),

4
! /
Ty = Z 1p§?' = M P[(Xg4, Xgrt) = (89,55 595)]s (39,52 597,5) € S5
j =

(iii) the cross-time pairwise limiting distribution for one gene g,

1 1
@, = g E pgg/l = lim P(Xg = 59, Xgt41 = 5¢.57); (5¢,4,5¢.57) € Sa.
77 77 {500 > » ’ 9,3 E 9,7

Sg/,]-=0 Sg/,j/ZO
Under these limiting distributions, the transition probabilities of interest are
: %
A?Jg'/ = P[(Xgt11, Xg041) = (59,57, 59/ 5 ) (X g0, Xgrt) = (89,55 895)] = j-

J
Under this re-parametrization, it is sufficient to estimate all the distinct param-
eters of marginal probabilities qgj, and pairwise probabilities p??,.

For an HMM the expected composite likelihood can be expressed through
the parameter vector 8 that includes all the distinct marginal and pairwise prob-
abilities. Given the current update 9(7"), the CL-E step computes the expected
composite likelihood of the form

Q007 = S E {1ogf (Yy, Yy, X, X1 60) \B(T),Yg.,Yg/.} .
all (g.9)

Since all the expectations are restricted within a pair of Markov chains, the calcu-
lation is easily carried out using the well-known forward and backward algorithm
(Baum et al.l (1970)).

In the CL-M step, maximizing Q.(0]0") is subject to the set of constraints
that the marginal transition probabilities should be compatible with all the bi-
variate probabilities. The maximization under constraints is dealt with using the
method of Lagrange multipliers. Iterating between the CL-E step and the CL-M
step to convergence gives the maximum CL estimates of all the marginal and
pairwise probabilities. The CL-E procedure benefits from the idea of conducting
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local expectation, this considerably simplifies the computational complexity. The
essence of the CL-M step allows the sharing of information across different sub-
sets while conducting the global maximization. Finally, we obtain the standard
errors of the CL estimates by the nonparametric bootstrap method.

Simulation studies were conducted to evaluate the performance of the CLEM
algorithm to estimate the transition probabilities. In the first simulation, we
considered a three-gene network with all pairwise dependencies. The three genes
are denoted as a,b and ¢, and the corresponding bivariate transition matrices
are A% AP and A%. The true joint transition matrix was set by first generating
the null matrix under independence and then perturbing it by +0.5 in the odd-
number columns and —0.5 in the even-number columns. The marginal transition
matrices for a single gene were specified by randomly generating cell probabilities
randomly from a uniform distribution. In addition, the conditional densities
were set as fo ~ N(0,1) and f1 ~ N(4,1) to generate the observed time series.
One thousand simulations were performed. The number of replicates was set at
M = 30, and the number of time points was set at T = 40. Table 1 presents the
summary of the CLEM estimates of the pairwise transition probabilities. This
suggests that the CLEM method produced consistent estimates of the transition
probabilities, as all the estimates are close to the true parameter values.

In the second simulation, we considered a more complicated situation. We
constructed a tree structure containing 21 nodes. The first hub node was at
the top of the tree structure. We simulated its hidden states according to its
marginal transition distribution. Conditional on the first node’s hidden state, we
independently simulated four offspring nodes according to a bivariate transition
matrix A'2. Further, conditional on each of the four offspring’s hidden states, we
independently simulated four offsprings for each of them according to another
bivariate transition matrix A?3. Overall it is a tree structure of three layers, with
one node at the top, four nodes in the second layer, and 16 nodes at the bottom.
All the edges between the first and second layer share the same transition ma-
trix, A2, and all the edges between the second and third layer share the other
transition matrix, A?3. In total, we have 21 nodes and 20 edges in the tree struc-
ture. Based on each node’s hidden states as 0 or 1, we simulated the observed
state according to a normal distribution N(0,1) or N(4,1). Overall we have a
21-variate hidden Markov model. Such structures may be found in the analysis
of genetic regulation pathways, where the top node regulates the four genes down
the path through the same mechanism, resulting to a same bivariate transition
matrix. Further down the pathway, each node of the second layer regulates its
own targets through similar mechanisms, leading to another bivariate transition
matrix. In order to understand the mechanism, we need to estimate two tran-
sition matrices. The full likelihood method brings in an infeasible calculation
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Table 1. 3-variate HMM: Average CLEM estimates and empirical stan-
dard deviations (in parentheses) for the bivariate transition probabilities
over 1,000 simulation runs. The true values of probabilities are listed for
reference.

Matrix Estimate True Estimate True Estimate True Estimate True

Ab 0.1560 0.1558 0.1132 0.1131 0.3804 0.3797 0.3504 0.3514
(0.0225) (0.0201) (0.0288) (0.0288)

0.1519 0.1521 0.1485 0.1502 0.3285 0.3273 0.3711 0.3704
(0.0229) (0.0233) (0.0289) (0.0304)

0.3949 0.3953 0.3537 0.3528 0.1331 0.1344 0.1183 0.1174
(0.0304) (0.0306) (0.0222) (0.0207)

0.3270 0.3273 0.3628 0.3629 0.1682 0.1675 0.1421 0.1423
(0.0301) (0.0301) (0.0234) (0.0221)

INE 0.2946 0.2962 0.2283 0.2282 0.3054 0.3036 0.1716 0.1719
(0.0285) (0.0267) (0.0296) (0.0248)

0.2082 0.2076 0.3322 0.3327 0.1977 0.1970 0.2620 0.2627
(0.0256) (0.0295) (0.0245) (0.0266)

0.2743 0.2734 0.2285 0.2285 0.3161 0.3166 0.1810 0.1815
(0.0281) (0.0266) (0.0291) (0.0250)

0.2068 0.2063 0.2656 0.2652 0.1896 0.1902 0.3380 0.3384
(0.0265) (0.0279) (0.0250) (0.0305)

Ao 0.1582 0.1586 0.0934 0.0935 0.4864 0.4846 0.2620 0.2633
(0.0232) (0.0198) (0.0329) (0.0290)

0.1199 0.1204 0.1949 0.1954 0.2836 0.2833 0.4017 0.4010
(0.0205) (0.0251) (0.0275) (0.0299)

0.4253 0.4256 0.3226 0.3217 0.1236 0.1238 0.1285 0.1174
(0.0306) (0.0288) (0.0207) (0.0208)

0.2586  0.2579 0.4310 0.4323 0.1401 0.1397 0.1703 0.1702
(0.0282) (0.0305) (0.0217) (0.0246)

due to the complicated dependency relationship among the 21 hidden Markov
chains. We applied the composite EM method, where the composite sets are all
the pairs of genes linked by direct edges in the tree structure. The number of
replicates was set at M = 40, and the number of time points was set at T = 10.
We generated 100 data sets according to the same parameters. In Table 2, the
means of the estimates of all the transition probabilities are given. The true
values are also provided for comparison purposes. The standard deviation of the
estimates across the 100 data sets are in the parentheses. Based on one of the
simulated data sets, we also performed a nonparametric bootstrap to obtain the
estimated standard deviation of the CLEM estimates. It can be noted that the
CLEM method produced “consistent” estimates of the transition probabilities.
The nonparametric bootstrap procedure yielded standard error estimates of the
CLEM estimates, that were close to the empirical standard deviation across the
100 simulations. From Table 2, we can see that the estimators for A*® were more
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Table 2. 21-variate HMM: Average CLEM estimates for the bivariate transi-
tion probabilities over 100 simulation runs. The true values of probabilities
are listed for reference. The empirical standard deviations from 100 data sets
are in parentheses and the estimated standard deviation from the bootstrap
on one data set are in brackets.

Matrix Estimate True Estimate True Estimate True Estimate True
AT 0.2799 0.2800 0.1233 0.1200 0.1175 0.1200 0.4793  0.4800
(0.0288) (0.0202) (0.0166) (0.0354)
[0.0314] [0.0180] [0.0185] [0.0353]

0.3664 0.3600 0.0420 0.0400 0.2440 0.2400 0.3476 0.3600

(0.0492) (0.0187) (0.0356) (0.0371)
[0.0561] [0.0231] [0.0291] [0.0430]
0.3907 0.3200 0.2116 0.1800 0.0664 0.0800 0.3313 0.4200
(0.0453) (0.0351) (0.0186) (0.0519)
[0.0396] [0.0348] [0.0190] [0.0468]
0.5017 0.4200 0.0971 0.0800 0.1445 0.1800 0.2567 0.3200
(0.0361) (0.0138) (0.0190) (0.0336)
[0.0393] [0.0133] [0.0186] [0.0390]

A3 0.2185 0.2100 0.1955 0.1900 0.1851 0.1900 0.4008 0.4100
(0.0150) (0.0120) (0.0110) (0.0203)
[0.0138] [0.0154] [0.0133] [0.0196]
0.3008 0.2900 0.1140 0.1100 0.3042 0.3100 0.2810 0.2900
(0.0195) (0.0098) (0.0171) (0.0167)
[0.0178] [0.0113] [0.0122] [0.0145]
0.3106  0.2900 0.3260 0.3100 0.0988 0.1100 0.2646  0.2900
(0.0197) (0.0175) (0.0109) (0.0213)
[0.0221] [0.0235] [0.0147] [0.0247]
0.4332 0.4100 0.2020 0.1900 0.1722 0.1900 0.1925 0.2100
(0.0172) (0.0127) (0.0131) (0.0144)
[0.0229] [0.0111] [0.0164] [0.0128]

accurate than those of A2, because the estimation of A2 relied on the likelihood
compounded from four edges, whereas the the estimation of A?? relied on the
likelihood compounded from 16 edges.

4. Data Analysis

We re-analyzed the T-cell data (Rangel et al| (2004))) to study the genetic
dependency network in the activation process of T-cells. To generate an im-
mune response, the T-cells become activated and then proliferate and produce
cytokines involved in the regulation of B cells and macrophages, which are the
most important mediators for the immune response. It is known that T-cell ac-
tivation is initiated by the interaction between the T-cell receptor complex and
the antigens. This stimulates a network of signaling molecules, including kinases,
phosphatases, and adaptor proteins that parallel the stimulatory signals received
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by the nucleus to control the gene transcription events. In the lab experiment,
the calcium ionophore ionomycin and the PKC activator phorbol ester PMA
were used to activate signaling transduction pathways leading to T-cell activa-
tion. Microarray measurements of 58 genes relevant to the immune response were
taken at 10 consecutive time points. In our analysis, to satisfy the assumption
of homogeneous Markov process, we used only the first five equally spaced time
points after the treatment: 0, 2, 4, 6, and 8 hours. At each time point, there were
44 replicated measurements for each gene. This data set is a one-sample scenario
with only one experimental condition. We used a mixture of two Gaussian dis-
tributions, corresponding respectively to the down-regulated and up-regulated
states to model the emission distribution of the expression level for each gene.
Three genes showed little variation across the time points, and were considered
as not involved with the response process, and thus were excluded from the anal-
ysis. We employed the CLEM method detailed in Section 3 to simultaneously
estimate the marginal transition matrices, A9, for all 55 genes, and the bivariate
transition matrices, A%, from all 1,485 pairs of genes. To assess the significance
of the dependency for each pair of genes, we did a Pearson’s chi-square test for
independence based on the estimated expected numbers of transitions between all
the bivariate states. We then generated bootstrap samples of the whole 55-gene
network by first simulating the hidden paths according to the marginal transi-
tion matrices under the null hypothesis of independency, and then simulating the
expression values using the estimated Gaussian mixture distributions. In total
we sampled 100 bootstrap data sets that gave 148,500 null statistics. Pooling all
the null statistics together enabled us to form the empirical null distribution of
the chi-square statistic. By comparing the observed statistics with the empirical
null distribution, among the 1,485 pairs, there were 17 edges having p-values less
than the chosen significant level of 1074

Figure 1 demonstrates a core dependency network of 16 genes found by
the CLEM method. Among the 17 edges, nine could be verified by existing
literature; these are marked by pathway names. The edges that appear in certain
known pathways, such as the FAS pathway, Androgen-receptor NetPath 2, T cell
receptor Netpath 11, IL-5 Netpath 17, are labelled by the pathway names. For
more information regarding the labelled edges, readers are referred to http:
//www.wikipathways.org and http://www.netpath.org. For the other edges,
the supporting literature includes [Gudi et al. (2006), [Salon et _al.l (2006)), [Zheng
et al.l (2003), and [Shin et al. (2006). By examining the network architecture, one
sees that CASP8 and JUND emerge as two major hubs that play important roles
in the early period (0-8 hr) of the T cell activation.

For comparison, we employed the dynamical correlation method proposed by
Opgen-Rhein and Strimmer| (20006) to analyze the same data set. This method
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IL-5 NetPath 17

Figure 1. A core network of 16 genes in the T cell response identified by the
CLEM method.

treats the observed gene expression time series as realizations of random curves.
Under the assumption of network sparsity, they proposed a shrinkage estimator
of a dynamical pairwise correlation matrix that takes account of the functional
nature of the observed data. The dependency network was then determined ac-
cording to the inverse matrix of the dynamical correlation matrix. Using static
or dynamic correlation, with or without shrinkage, we applied their method and
produced four network structures while controlling local false discovery (FDR)
rate at 0.20 (Benjamini and Hochberg| (1995))). See Figure 2. Each of the four
identified networks found merely two edges. Only one edge is verified by the exist-
ing literature to be involved in the Apoptosis pathway. The edge with biological
evidence is marked with the pathway name.

In comparison to Opgen-Rhein and Strimmer’s approach with the FDR rate
control level at 0.20, the CLEM method used a p-value cutoff of 10~4, which corre-
sponds to a FDR control rate less than 0.1485. Nevertheless, the CLEM method
identified more biologically meaningful edges than the competing method. Such
high sensitivity is due to transition probabilities that can reveal dependency pat-
terns beyond linear correlation, and to the CLEM-based inference that does not
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Static, no shrinkage Dynamic, no shrinkage
Apoptols path Apoptols path
Static, with shrinkage Dynamic, with shrinkage

Figure 2. Networks of gene pairs in the T cell response identified by the
dynamic correlation method.

make a sparse network assumption. This is more appealing for this set of genes,
selected through a pre-screening procedure according to their active involvement
in the T cell response process.

The CLEM algorithm also estimated all the pairwise bivariate transition ma-
trices, A99. For example, the pair of genes CASP8 and CDC2 in the Androgen-
receptor NetPath 2 pathway are connected by a significant edge with a p-value
less than 6.73e-06. The corresponding estimated bivariate transition matrix can
provide interesting biological interpretations:

(5t4158t41)
(0,0) (0,1) (1,0) (1,1)
(0,0)0.5728  0.0691  0.0020 0.3561
ACASPS.CDC2 _ , - (0:1)02064 0.0139  0.00530.7743
’ = (5:51) (1,0) 00308 0.1520  0.0033 0.8039
(1,1)0.2191  0.2056  0.0063 0.5690

where the estimated cell transition probability is
P(CASPgH_l = St+1, CDCQH_l = §t+1|CASP8t = St, CDCQt = §t), (St, §t) € 82.

If both genes are down-regulated, they have a high probability of remaining down-
regulated (0.5728) or both changing to up-regulated (0.3561); if one of the genes
is up-regulated, there is a high probability it stimulates the other to become up-
regulated as well (0.7743 or 0.8039); if both of the genes are up-regulated, there is



COMPOSITE LIKELIHOOD EM ALGORITHM 181

about half a chance to remain in the current state (0.5690), a quarter of a chance
to down regulate CASP8 only (0.2056), and another quarter of a chance to down
regulate both genes (0.2191). One interesting finding is that all the probabilities
in the third column of the matrix appear close to zero. This implies that for
this pair of genes, transition to the states of CASP8’s up-regulation and CDC2’s
down-regulation seldom happens in the early stage of the T-cell activation. For
comparison, the Pearson’s product-moment correlation for this pair of genes was
estimated as —0.3082, with p-value 3.16e — 06. Such a one-number summary
contains much less information to unveil the underlying mechanism of molecular
activities than does the estimated transition matrix.

5. Concluding Remarks

We have presented an extension of the full likelihood EM algorithm to the
setting of the composite likelihood. We established theoretical properties of the
proposed CLEM algorithm and noted that it is advantageous in dealing with high-
dimensional data with complex dependence structures. The dimension reduction
for the high-dimensional likelihood function invoked by the composite likelihood
allows us to gain both computational feasibility and computational efficiency.

A major issue that the composite likelihood method encounters is the prob-
lem of identifying and estimating model parameters. This could be due to the
fact that fewer constraints are involved in composite likelihood estimation. In
order to address this problem, in the CL-M step, maximizing Q.(#|6(")) should
be subject to additional constraints arising from full likelihood consideration.
The maximization under constraints can be achieved using the Lagrange mul-
tipliers. In some applications, it may not be numerically easy to perform the
constrained optimization in the CL-M step. In those cases, reparametrization
may help to reduce the number of constraints. For example, rather than esti-
mating a correlation matrix directly, we can invoke the Cholesky decomposition
and estimate elements in the lower-triangular matrix given by the decomposition,
free of constraints.

With regard to the missing data assumption, the composite EM is valid
under the missing completely at random (MCAR) scenario (Rubinl (I976))). The
less stringent assumption of missing at random (MAR) is not sufficient as the
composite likelihood is not a true likelihood approach. If MAR holds for the data,
CLEM needs to be modified, and one possible method is to use the inverse of the
estimated probability of missing pattern (Robins, Rotnitzky and Zhao| (1995),
Fitzmaurice, Molenberghs and Lipsitz| (1995), [Yi and Cook! (2002])) within each
subset as the weights for each log-likelihood obtained from the subsets. But the
models for the weights w, can be more delicate than the setting of a GEE-based
analysis with missing values, due to the partition of the data. For consistency of
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the weighted composite score equations, one may require the extra assumption
that within each subset the missing mechanism only depends on the observed
data in that particular subset. This warrants future research.
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Appendix
Proof of Lemma 1. The result holds by a direct application of Jensen’s In-
equality.

Proof of Theorem 1. By definition, 12(8");y)=Q.(0"|0"~V)~H,.(6)|6"~V).
Since 68 maximizes QC(B\H(T_U), one has QC(O(T)‘O(T_l)) > Qc(g(r—1)|0(r—1)).
Combined with the fact in Lemma 1 that H,(0M]0U~1) < H, (9"~1](r=1)),
we obtain lg(B(T)|y) > 12(0“‘1)!3’).

Proof of Lemma 2. For part (a), note that

V(lO)HC(ela) — ZwaE{alog f(azg‘yaae) |ya; 0}
acA

=0.

For part (b), we have

_ 2
V(ll)Hc(o‘a) — Z w,E { (alog f(azeab’aa 0)) |Ya§ 0}

a€A
1 alYa;
=3 wVar dlog f(zaly 9)|ya;9 _
00
a€A

Proof of Theorem 2. The proof of this theorem is given by a slight modification
of that of Theorem 2 in [Wul (1983). From the given assumptions, 19(87 1) is
bounded from above. Let the solution set

2 = {the set of stationary points in the interior of ©}.

In light of the smoothness assumption on the @ function, the point-to-set map
w determined by 8 = w (8T V) is closed under the complement of 2. Further-
more, for any 1) ¢ Q, we have

VIO H, (0 Der—1)) =0,
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and
v19Q. (001 er—y = v1099=1|g(r=1)) £ 0.

Thus, 12(0M) > 12(6"~Y). According to the Global Convergence Theorem (Wil
(1983), the conclusion of the theorem follows.

Proof of Theorem 3. The proof utilizes similar arguments to those given in
the proof of Theorem 4 of Dempster, Laird, and Rubin| (I977). By Lemma 2,

lim 01.(8M)/80 = lim V19Q.(8e~1) — v (99— = 0.

Thus, 6* is a stationary point. Expanding V19 Q.(65]6;) about 8*, we obtain

V(IO)QC(02‘01) :v(IO)QC(0*|0*) + v(2O)QC(0*‘9*)(02 o 0*)
+VUIQ.(6°(6%) (6, 0°) -

As ) = (0 V), and 0* = w(6*), we obtain

— aw(o*) (20) *| g% (11) * | p%
0= {5557 JV®Qu(6"16%) + VIV Q.(6°16).
Since Qc(62]61) = 1.(82) + Hc(0201), we have VIV Q.(62]61) = VIV H,(62(6,).
Theorem 3 follows.
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