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Abstract: We consider a parallel linear model with correlated dual responses on

a symmetric compact design region and construct locally D-optimal designs for

estimating the unknown parameters in the model, and locally optimal designs for

estimating the location shift parameter. The D-optimal designs for the additive

model are invariant under linear transformation of the design space but locally

optimal designs for estimating the location shift do not share this property. The

latter optimal designs depend on the correlation between the dual responses in an

interesting and sensitive way.
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1. Introduction

Consider a bioassay experiment that measures a response from different doses
of the standard and test preparations. The interest is in estimating the potency of
the test preparation relative to the standard, which by definition is the amount of

the standard equivalent in effect to one unit of the test. Specifically, suppose that
the dose interval of interest is [a, b] and a dose from this interval is administered
to an experimental unit. The response y at this dose level, d, is measured and
its expectation under the standard preparation is E(y1|d) = F1(d),∀d ∈ [a, b],

where F1 is some known functional with unknown parameters. Suppose, as is
often the case in bioassay experiments, the expected response for the test prepa-
ration is E(y2|d) = F2(d) = F1(τ d), ∀d ∈ [a, b], and τ is an unknown constant

representing the relative potency between the standard and test preparations.
It is common practice to assume the regression function F1(d) is linearly

related to x = log(d), see Finney (1978) for example. This implies

E(y1|d) = F1(d) = θ0 + θ1 log(d) = θ0 + θ1x

E(y2|d) = F1(τd) = θ0 + θ1(log(d) + log(τ)) = θ0 + θ1(x − µ),

where µ = − log(τ). Therefore, these two simple linear models are parallel with

common slope θ1. The covariance matrix between the two responses from the
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standard and test preparations is Cov(y1, y2) = Σ = σ2((1 − ρ)I2 + ρJ2), where

I2 is the 2 × 2 identity matrix, J2 is the 2 × 2 matrix of one’s, and without loss

of generality assume that σ2=1. We also assume throughout that all models in

the paper satisfy the parallelism assumption. Some test procedures for testing

the hypothesis of parallelism are given in Smith and Choi (1982).

There is much research in bioassays, see for example Govindrajulu (2001) and

Kshirsagar and Yuan (1992). Design papers for general bioassays are relatively

scarce and they include Buonaccorsi (1986), Finney (1978), Kshirsagar and Yuan

(1992), and Smith and Ridout (2003). Chai, Das and Dey (2001) and Kshirsagar

and Yuan (1992) were among the few who addressed specific design issues for

parallel line bioassays. Their interest, however, was in incomplete block designs,

which is not the focus here.

This paper proposes optimal designs for a parallel line bioassay experiment

when the responses from the standard and test preparations may be correlated.

Such assumptions are realistic if observations come from the same litter, or ob-

servations are made from the same subjects under two experimental conditions.

We provide closed form formulae for optimal designs for estimating model pa-

rameters, and optimal designs for estimating the relative potency.

We follow Kiefer’s approach and focus on continuous designs. A continuous

design ξ is a probability measure with a finite number of support points on

a given compact design space. Throughout we assume that, after appropriate

scaling, the design space is X = X1 × X2 and X1 = X2 = [−1, 1]. If the design

has all its mass at the point x, we denote the design by δx. A generic design on

m points is denoted by ξ = p1δx1
+ p2δx2

+ · · · + pmδxm
, where each xi ∈ X ,

ξ(xi) = pi > 0, and
∑m

i=1 pi = 1. A main advantage of continuous designs is that

it can be readily verified if they are optimum among all designs on the design

space X using equivalence theorems. Details of the continuous design framework

and equivalence theorems are discussed in design monographs, see Pukelsheim

(1993) or Fedorov (1972), for example.

In the next section we discuss optimal experimental design problems for

estimating the unknown parameters in the model. Section 3 discusses optimal

designs for estimating the logarithm of the relative potency. This parameter is

important because it is widely used to measure the location-shift between the

standard and test preparations in parallel line assays. Section 4 provides an

application and a discussion.

2. Parameter Estimation

Throughout we focus on the parallel model with dose as the control variable,

the dose level x1 for the standard preparation and the dose level x2 for the test
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preparation may be different. Specifically, for each design point x = (x1, x2) ∈

X = [−1, 1] × [−1, 1] = [−1, 1]2, we have

{

E(y1|x1) = θ01 + θ1x1

E(y2|x2) = θ02 + θ1x2.
(1)

The model has three parameters and its mean function is given by F (x)T =

(I2 X), where X = (x1 x2)
T . Following convention, we measure the worth of a

design ξ by its information matrix:

M(ξ) =

∫

X

F (x)Σ−1F (x)T dξ(x), (2)

where Σ is the covariance matrix for the dual responses.

Popular optimal designs used in practice are D-optimal designs and c-optimal

designs. D-optimal designs are useful for parameter estimation because they

minimize the generalized variance and therefore have the smallest volume in the

confidence ellipsoid for the model parameters. Mathematically, a design ξ∗ is

called a D-optimal design if |M(ξ∗)| ≥ |M(ξ)| for all ξ defined on the design

space X .

If interest is centered on estimating a given function of the model parameters,

say c(θ), c-optimal designs are used because they provide the smallest asymptotic

variance of the estimate. The variance of the estimated function has the form

ċ(θ)T M(ξ)−1 ċ(θ), where ċ(θ) is the derivative function of c with respect to θ.

Because the optimality criterion contains parameters that need to be estimated,

our optimal designs are locally optimal. This means that for all our problems

the parameter ρ is assumed to be fixed and known. This assumption is plausible

when there are previous studies or expert opinions about the possible value of

the parameter ρ. The following notation will be used repeatedly when we have

two factors: x1 and x2 are defined on the design space X ; for a given design ξ

on X , ci =
∫

X
xi

1dξ, di =
∫

X
xi

2dξ, i = 1, 2, and γ =
∫

X
x1x2dξ.

Theorem 2.1. Suppose (1) holds. The D-optimal design on X for estimat-

ing parameters is (i) ξ∗ = (1/2)δ(−1,1) + (1/2)δ(1,−1) if ρ > 0, and (ii) ξ∗ =

(1/2)δ(−1,−1) + (1/2)δ(1,1) if ρ < 0.

Proof. It is straightforward to verify that

M(ξ) =
1

1 − ρ2





1 −ρ c1 − ρd1

−ρ 1 d1 − ρc1

c1 − ρd1 d1 − ρc1 c2 + d2 − 2ργ



 . (3)
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Using the formula for the determinant of a partitioned matrix, we have

|M(ξ)| = (
c2 + d2 − 2ργ

1 − ρ2
− (c1 d1)Σ

−1(c1 d1)
T )/(1 − ρ2)

≤
c2 + d2 − 2ργ

(1 − ρ2)2
≤

2 − 2ργ

(1 − ρ2)2
.

The above inequality shows that we may restrict attention to designs with c2 =

d2 = 1. Accordingly, we may consider designs with supports on the four corner

points (1, 1), (1,−1), (−1, 1) and (−1,−1) with weight α1, α2, α3 and α4, re-

spectively, and each αi ≥ 0 and
∑4

i=1 αi = 1. If we let γ = α1 + α4 − α2 − α3,

we observe that maximizing the determinant over all such designs is the same as

minimizing ργ. Therefore, when ρ ≥ 0, the optimal design has to satisfy γ = −1

and this means the design is equally supported on (−1, 1), (1,−1). When ρ < 0,

the optimal design has to satisfy γ = 1 and this implies the design is equally

supported on (−1,−1), (1, 1).

The parallel model may be generalized to include p control variables, p ≥

2, and the dose levels for the two preparations may be different. Let xi,p =

(xi1, . . . , xip)
T ∈ X p

i = [−1, 1]p, i = 1, 2, and let xT = (xT
1,p,x

T
2,p) be a design

point defined on X p = X p
1 ×X p

2 . The model is

E(yi|xi,p) = θ0i +

p
∑

k=1

θkxik, i = 1, 2, (4)

with covariance matrix Σ for the dual responses. In the following theorem, we

let ξ∗k be a D-optimal design for the model E(yik|xik) = θ0i + θkxik, i = 1, 2, and

k = 1, . . . , p.

Theorem 2.2. Consider (4) on X p with p ≥ 2. The product design ξ∗ =

ξ∗1 ⊗ · · · ⊗ ξ∗p is D-optimal for estimating θ = (θ01, θ02, θ1, . . . , θp)
T .

Proof. Under (4), we have F (x)T = (I2 X) where X = (x1,p x2,p)
T . Let

U =

(

I2 −
∫

χp Xdξ

0 Ip

)

and let M̃ (ξ) = UT M(ξ)U . It can be shown that

max
ξ

|M(ξ)| = max
ξ

|M̃(ξ)| = max
ξ

|

∫

χp

XT Σ−1Xdξ − (

∫

χp

XT dξ)Σ−1(

∫

χp

Xdξ)|.

Let X̃ = X −
∫

χp Xdξ, and let x̃·j = (x̃1j , x̃2j)
T , j = 1, . . . , p. It follows that

∫

χp

XT Σ−1Xdξ − (

∫

χp

XT dξ)Σ−1(

∫

χp

Xdξ) =

∫

χp

X̃T Σ−1X̃dξ.
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Because the determinant of a positive-semidefinite matrix is less than or equal
to the absolute value of the product of the diagonal elements, it follows that

|

∫

χp

X̃T Σ−1X̃dξ| ≤ (

∫

χp

x̃T
·1Σ

−1x̃·1dξ) · · · (

∫

χp

x̃T
·pΣ

−1x̃·pdξ),

with equality if
∫

χp x̃T
·iΣ

−1x̃·jdξ = 0,∀i 6= j. Hence the product design ξ∗ =
ξ∗1 ⊗ · · · ⊗ ξ∗p is a D-optimal design for model (1).

Example 1. Suppose (4) holds with p = 2 on X 2, and that ρ ≥ 0. The
D-optimal design on each factor space is ξ∗1 and ξ∗2 where both are equally
supported at points (−1, 1) and (1,−1). Theorem 2.2 implies that the design
ξ∗1 ⊗ ξ∗2 = (1/4)δ(−1,−1,1,1) + (1/4)δ(−1,1,1,−1) + (1/4)δ(1,−1,−1,1) + (1/4)δ(1,1,−1,−1)

is D-optimal for estimating θ = (θ01, θ02, θ1, θ2)
T .

3. Location-Shift Parameter

In this section, we consider optimal designs for estimating the location-shift
parameter µ in model (1), that is,

{

E(y1|x1) = θ01 + θ1x1

E(y2|x2) = θ01 + θ1(x2 − µ).
(5)

The location-shift parameter µ can be expressed as

µ =
θ01 − θ02

θ1
=

lT1 θ

lT2 θ
=

β1

β2
,

where θ = (θ01, θ02, θ1)
T , l1 = (1,−1, 0)T , l2 = (0, 0, 1)T , β1 = lT1 θ, and β2 = lT2 θ.

We have

Cov(β̂) ∝

(

lT1 M(ξ)−1l1 lT1 M(ξ)−1l2
lT2 M(ξ)−1l1 lT2 M(ξ)−1l2

)

= LM(ξ)−1LT ,

where β = (β1, β2)
T and LT = (l1, l2). By McDonald and Studden (1990), the

approximate variance of the ratio of the two estimated parameters is

Var(β̂1/β̂2) ∝ (h1, h2)LM(ξ)−1LT (h1, h2)
T ,

where h(β1, β2) = β1/β2, and hi = ∂h/∂βi, i = 1, 2. In our case, we have

Var(β̂1/β̂2) ∝ (1,−β1/β2)LM(ξ)−1LT (1,−β1/β2)
T = cT M(ξ)−1c,

with c = (1,−1,−µ)T . This means the best design for estimating µ is a locally
c-optimal design. Here and throughout the rest of the paper, we construct lo-
cally c-optimal designs on the design space X , and note that the design set-up
requires the dosage levels for both preparations be on the logarithmic scale and
appropriately standardized. Optimal designs for estimating µ on other design
spaces will have to be reconstructed because, unlike D-optimal designs, these
designs are not invariant under linear transformation on the design space.
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When ρ = 0, the two responses are uncorrelated and they do not have
to be observed in pairs. We may thus relax our designs to include different
numbers of observations, say n1, n2 for the two responses, respectively. In this
case, designs ξ for such a set-up can be expressed as ξ = p1ξ1 + p2ξ2, where
p1 = n1/n, p2 = n2/n, n = n1 + n2, and ξ∗i , i = 1, 2, represents the design for
the ith response on [−1, 1]. Theorems 3.1 and 3.2 below present locally optimal
designs for estimating µ when the two responses are uncorrelated. Many of the
optimal designs are found by first restricting attention to a subclass of designs
and, among these designs, determining the smallest non-trivial lower bound for
the determinant of the inverse of the information matrix, or the variance of the
estimate of interest. The optimal design is then found by constructing a design
that attains the lower bound. Recall that ci =

∫

X1
xidξ1 and di =

∫

X2
xidξ2.

Theorem 3.1. Suppose (5) holds, ρ = 0, |µ| ≤ 2, and ξ1 and ξ2 are two designs

supported on [−1, 1]. The design ξ∗ = (1/2)ξ1+(1/2)ξ2 is a locally optimal design

for estimating µ provided d1 − c1 = µ.

Proof. When ρ = 0, a direct calculation shows

M(ξ) =





p1 0 p1c1

0 p2 p2d1

p1c1 p2d1 p1c2 + p2d2



 .

Recalling that c = (1,−1,−µ)T , we have

cT M(ξ)−1c =
1

p1
+

1

p2
+

(µ − (d1 − c1))
2

p1c2 + p2d2 − p1c2
1 − p2d2

1

. (6)

For any two designs ξ1 and ξ2 on [−1, 1], we have |d1−c1| ≤ 2 and 1/p1+1/p2 ≥ 4.
This means that, from (6), we can find a design ξ∗ such that p1 = p2 = 1/2 and
µ = d1 − c1.

Theorem 3.2. Suppose (5) holds, ρ = 0, and |µ| > 2. If designs ξ∗1 and ξ∗2 are

supported on {−1, 1} and if ξ∗ = p1ξ
∗

1 + p2ξ
∗

2 satisfies (i) 1/|µ| < p1 < 1 − 1/|µ|,
and (ii) −µc1p1 = µd1p2 = 1, where p2 = 1 − p1, then ξ∗ is a locally optimal

design for estimating µ. Moreover, c
T

M(ξ∗)−1c = µ2.

Proof. It is straightforward to verify from (6) that

cT M(ξ)−1c ≥
1

p1
+

1

p2
+

(µ − (d1 − c1))
2

1 − p1c2
1 − p2d2

1

,

with equality if the design ξ is supported on {−1, 1}. In particular, equality is
attained for the optimal designs ξ∗1 and ξ∗2 . For 1/|µ| < p1 < 1 − 1/|µ|, define

h(p1, c1, d1) =
1

p1
+

1

p2
+

(µ − (d1 − c1))
2

1 − p1c2
1 − p2d2

1

.
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If we take partial derivatives of the function h with respect to c1 and d1 and set
them equal to 0, we have

µ =
[d1(p1c1 + p2d1) − 1]

(p1c1)
=

[1 − c1(p1c1 + p2d1)]

(p2d1)
.

It follows that p1c1+p2d1 = (p1c1+p2d1)(p1c
2
1+p2d

2
1) and, because p1c

2
1+p2d

2
1 6=

1, we must have p1c1 + p2d1 = 0. By assumption, it follows that −µp1c1 = 1 =
µp2d1, and the optimal design ξ∗ satisfies cT M(ξ∗)−1c = h(p1,−1/(µp1), 1/(µp2))
= µ2.

Example 2. Suppose (5) holds, ρ = 0, and µ = 3. If we take an equal number
of observations from the test and standard preparations, i.e., p1 = p2 = 1/2,
and use designs ξ∗1 = (5/6)δ−1 + (1/6)δ1 for the standard preparation, ξ∗2 =
(1/6)δ−1 + (5/6)δ1 for the test preparation, we have 1/3 < p1 < 2/3, c1 = −2/3,
d1 = 2/3, and condition (ii) of the theorem holds. It follows that the average
of these two designs, the design equally supported at ±1, is locally optimal for
estimating µ.

Table 1 and Table 2 display selected optimal designs constructed from The-
orems 3.1 and 3.2. For example, in Table 1, the third row shows that when µ =
−0.5, the designs for the two preparations are ξ∗1 = δ1 and ξ∗2 = 0.25δ−1 +0.75δ1.
In addition, they have the property that d1 − c1 = 0.5 − 1 = −0.5 = µ,
and consequently, the design ξ∗ = (1/2)ξ∗1 + (1/2)ξ∗2 is locally optimal for es-
timating µ. Alternatively, if we take ξ∗1 = 0.75δ−1 + 0.25δ1 and ξ∗2 = δ−1

as shown in the fourth row, the design ξ∗ = (1/2)ξ∗1 + (1/2)ξ∗2 also satisfies
d1 − c1 = −1− (−0.5) = −0.5 = µ, and hence is also locally optimal for estimat-
ing µ.

Table 1. Designs for constructing optimal designs for model (5) with Σ = I2

and a given µ, |µ| ≤ 2, using Theorem 3.1.

Design points of ξ∗
1

Design points of ξ∗
2

µ −1 1 −1 1

−0.5 0.000 0.500 0.125 0.375

0.375 0.125 0.500 0.000

0.0 0.500 0.000 0.500 0.000

0.000 0.500 0.000 0.500

0.5 0.500 0.000 0.375 0.125

0.125 0.375 0.000 0.500

1.0 0.500 0.000 0.250 0.250

0.250 0.250 0.000 0.500

1.5 0.500 0.000 0.125 0.375

0.375 0.125 0.000 0.500

2.0 0.500 0.000 0.000 0.500

0.500 0.000 0.000 0.500



128 MONG-NA LO HUANG, RAY-BING CHEN AND CHUN-SUI LIN

Table 2. Designs for constructing optimal designs for model (5) with Σ = I2

and a given µ, |µ| > 2, using Theorem 3.2.

Design points of ξ∗
1

Design points of ξ∗
2

µ −1 1 −1 1

2.5 0.500 0.100 0.000 0.400
0.400 0.000 0.100 0.500

3.0 0.500 0.167 0.000 0.333

0.333 0.000 0.167 0.500

4.0 0.500 0.250 0.000 0.250

0.250 0.000 0.250 0.500

5.0 0.500 0.300 0.000 0.200

0.200 0.000 0.300 0.500

The next three results concern correlated responses from the test and stan-

dard preparations with ρ 6= 0 and |ρ| < 1.

Theorem 3.3. Suppose (5) holds, 0 < |ρ| < 1, and |µ| ≤ 2. If a design ξ∗

satisfies d1 − c1 = µ, ξ∗ is a locally optimal design for estimating µ.

Proof. From (3), it is straightforward to calculate that

cT M(ξ)−1c = 2(1 − ρ) +
(1 − ρ2)(µ − (d1 − c1))

2

c2 + d2 − 2ργ − c2
1 − d2

1 + 2c1d1ρ
. (7)

If |µ| ≤ 2, we observe that

(c2 + d2 − 2γρ) − (c2
1 + d2

1 − 2c1d1ρ)

=

∫

(x1 x2)Σ
−1(x1 x2)

T dξ − (c1 d1)Σ
−1(c1 d1)

T

=

∫

(x̃1 x̃2)Σ
−1(x̃1 x̃2)

T dξ > 0,

where x̃i = xi −
∫

xidξ, i = 1, 2. It follows that cT M(ξ)−1c ≥ 2(1 − ρ), and

equality holds if d1 − c1 = µ. The desired result follows.

Theorem 3.4. Suppose (5) holds, 0 < ρ < 1, and |µ| > 2. The design ξ∗ =

(1/2 + 1/µ)δ(1,−1) + (1/2 − 1/µ)δ(−1,1) is a locally optimal design for estimating

µ.

Proof. From the general expression of cT M(ξ)−1c in (7), we have

cT M(ξ)−1c ≥ 2(1 − ρ) + (1 − ρ2)
(µ − (d1 − c1))

2

2 − 2ργ − c2
1 − d2

1 + 2c1d1ρ

= 2(1 − ρ) + (1 − ρ2)g(c1, d1, γ),
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with equality if ξ is supported on (−1,−1), (−1, 1), (1,−1), and (1, 1). Now we

want to find designs with c1, d1 that minimize g(c1, d1, γ). For fixed γ and ρ, we

first take partial derivatives of g(c1, d1, γ) with respect to c1, d1, and set them to

0. A straightforward argument shows the optimal design must have c1 = −d1.

Under this constraint, let

h(d1, γ) = g(−d1, d1, γ) =
(µ − 2d1)

2

2 − 2ργ − (2d2
1 + 2ρd2

1)
(8)

verify directly that d∗1 = [2(1 − ργ)]/[µ(1 + ρ)] minimizes the function h(d1, γ)

because ∂2h/∂d2
1 = [(1 + ρ)2µ4]/[(1 − ργ)2(−4 + 4ργ + µ2 + ρµ2)] > 0 when

γ ≥ −1 > [4−µ2(1+ρ)]/(4ρ). Hence, with the additional condition that γ = −1,

h(d∗1, γ) attains its minimum value. Consequently the locally optimal design for

estimating µ is ξ∗ = (1/2 + 1/µ)δ(1,−1) + (1/2 − 1/µ)δ(−1,1), because it has the

property that c1 = −d1 = −2/µ and γ = −1.

The next result allows us to construct locally optimal design when |µ| > 2

and −1 < ρ < 0. The proof is more complicated and is deferred to the Appendix.

Theorem 3.5. Suppose (5) holds, −1 < ρ < 0, and |µ| > 2. Consider a design

of the form ξ = p1δ(−1,−1) + p2δ(−1,1) + p3δ(1,−1) + p4δ(1,1). The design ξ∗ is a

locally optimal design for estimating µ if

(i) p1 = p4 = (µ − 2)/[2(µ + µρ − 2ρ)], p2 = 1 − 2p1 and p3 = 0, provided

2 < µ ≤ 2 − 2/ρ,

(ii) p1 = p4 = (µ + 2)/[2(µ + µρ + 2ρ)], p2 = 0 and p3 = 1 − 2p1, provided

−2 + 2/ρ ≤ µ < −2,

(iii) p1 = p4 = 1/2 and p2 = p3 = 0, provided |µ| > 2 − 2/ρ.

4. An Application and Discussion

Darby (1980) analyzed a data set on the assay of the antibiotic tobramycin

where the same levels of dose were used in both the standard and test prepara-

tions. The range of the variable x (logdose) in the study was between −1.8 and

−3, which is not symmetric about 0. However, the c-optimal design on the inter-

val [−3,−1.8] for estimating µ can still be found by applying results in Section

3. In this assay, there exist constants c1 and d1, both inside the range [−3,−1.8],

such that −1.2 ≤ c1 − d1 ≤ 1.2. Then, if it is known from prior experience that

the location shift parameter µ is approximately zero, we would be interested in

designs such that the design points on the test and standard preparations are the

same, and that c1 − d1 = 0 approximately. Such designs are optimal or nearly

optimal for estimating µ, by Theorem 3.1. Moreover, as long as µ is inside the

interval [−1.2, 1.2], any design that satisfies c1−d1 = µ is c-optimal. If ρ 6= 0 and

µ exceeds the maximum possible values of c1 − d1, the design problem will have
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to be specifically worked out. This is a drawback of designs that lack invariance

under a linear change of the design space. D-optimal designs have the invariance

property and so they can be constructed on any interval once the optimal design

is worked out on the interval [−1, 1].

We note that the information matrices for the optimal designs in Theorem

2.1 are actually non-singular even though they have only two support points.

This is because, under the given bivariate structure, both responses are observed

at two levels −1 and 1 of the dose variables x1 and x2, and the common slope

parameter for the parallel model can be estimated with information from either

response. The nonsingularity of the other information matrices of the optimal

designs could be similarly explained.

There are other design issues for the parallel line model not yet addressed

here. First, we focused only on symmetric design spaces; occasionally a non-

symmetrical design space is used, see Kent-Jones and Meiklejohn (1994) for

example. Second, we have assumed the variances of the responses from both

preparations are equal. If these variances are unequal, the locally optimal de-

signs found here may not apply. Third, if the researcher is primarily interested

in µ and, at the same time, wishes to examine the parallelism assumption, we

may resort to multiple objective designs, see Cook and Wong (1994) and the

many references in Wong (1999) for more details. In this case, we can construct

a multiple-objective optimal design that incorporates the T-optimal design cri-

terion for discriminating between the two rival multiresponse models discussed

in Ucinski and Bogacka (2005). Under our model, the results for the T-optimal

design criterion are relatively simple and therefore are not discussed here. For

more complicated situations such as when there are more than two responses, we

would have to resort to algorithms to search for the optimal designs for estimating

relative potencies. The algorithms in Mueller and Pazman (1999) or Ucinski and

Atkinson (2004) for finding optimal designs in problems with correlated errors

may be helpful.
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Appendix

Lemmas 1 to 3 are needed for the proof of Theorem 3.5, which deals with

the case when the dual responses are negatively correlated and µ is large in

magnitude. It is helpful to recall from Theorem 3.4 that an optimal design for

estimating µ on X must satisfy c1 = −d1. Accordingly, we focus on designs of

the form ξ = p1δ(−1,−1) + p2δ(−1,1) + p3δ(1,−1) + p1δ(1,1).
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Lemma 1. Suppose (5) holds, −1 < ρ < 0, and µ > 2. If the design ξ =

p1δ(−1,−1) + p2δ(−1,1) + p3δ(1,−1) + p1δ(1,1) satisfies p2 + p3 = α, where α is a

fixed constant, and 0 ≤ α < (2 − 2ρ)/(µ + µρ− 4ρ), the design ξ∗ = p1δ(−1,−1) +

αδ(−1,1) + p1δ(1,1) with p1 = (1 − α)/2 minimizes cT M(ξ)−1c.

Proof. Since α is fixed, we have d1 = α − 2p3 and γ = 1 − 2α. The function

h(d1, γ) in (8) can be rewritten as

h1(p3;α) = h(α − 2p3, 1 − 2α) =
(µ − 2α + 4p3)

2

2 − 2ρ(1 − 2α) − 2(1 + ρ)(α − 2p3)2
. (9)

It is easy to verify that the derivative of h1(p3;α) with respect to p3 is

ḣ1(p3;α) =
2(µ + 4p3 − 2α)(2 − αµ + 2µp3 − 2ρ + 4αρ − αµρ + 2µp3ρ)

(−1 + α2 − 4αp3 + 4p2
3 + ρ − 2αρ + α2ρ − 4αp3ρ + 4p2

3ρ)2

≥
2(µ − 2α)(2 − αµ − 2ρ + 4αρ − αµρ)

(−1 + α2 − 4αp3 + 4p2
3 + ρ − 2αρ + α2ρ − 4αp3ρ + 4p2

3ρ)2
> 0

for 0 ≤ p3 ≤ α and 0 ≤ α < (2 − 2ρ)/(µ + µρ − 4ρ). Thus h1(p3;α) is increasing

in [0, α] and the minimum of h1(p3;α) occurs when p3 = 0.

Lemma 2. Suppose (5) holds, −1 < ρ < 0, and µ > 2. Suppose ξ = p1δ(−1,−1) +

p2δ(−1,1) + p1δ(1,1) satisfies 0 ≤ p2 ≤ (2 − 2ρ)/(µ + µρ − 4ρ) and p1 = (1 −

p2)/2.

(i) If 2 < µ ≤ 2 − 2/ρ, the design ξ∗ with p1 = (µ − 2)/[2(µ + µρ − 2ρ)] and

p2 = (µρ − 2ρ + 2)/(µ + µρ − 2ρ) minimizes cT M(ξ)−1c.

(ii) If µ > 2−2/ρ, the design ξ∗ with p1 = 1/2 and p2 = 0 minimizes cT M(ξ)−1c.

Proof. Consider the design ξ = p1δ(−1,−1) + p2δ(−1,1) + p1δ(1,1) with d1 = p2 and

γ = 1 − 2p2. The function h(d1, γ) in (8) becomes

h2(p2) = h(p2, 1 − 2p2) =
(µ − 2p2)

2

2 − 2ρ(1 − 2p2) − 2(1 + ρ)p2
2

, (10)

and it is straightforward to verify that p∗

2 = [µρ − 2ρ + 2]/[µ + µρ − 2ρ] is a

critical number of h2(p2) in interval [0, (2 − 2ρ)/(µ + µρ − 4ρ)] such that the

second derivative ḧ2(p
∗

2) = [(µ− 2ρ + µρ)4]/[(µ− 2)(2 +µ− 2ρ + µρ)] is positive.

The first part of the theorem is proved. The second part of the theorem follows

because when µ > 2 − 2/ρ, the derivative of h2(p2) is positive for all p2 ∈

[0, (2 − 2ρ)/(µ + µρ − 4ρ)]. Therefore, p∗2 = 0 minimizes h2(p2).

Lemma 3. Suppose (5) holds, −1 < ρ < 0, and µ > 2. Suppose the design

ξ = p1δ(−1,−1) + p2δ(−1,1) + p3δ(1,−1) + p1δ(1,1) satisfies p2 + p3 = α, α is a fixed

constant and (2− 2ρ)/(µ + µρ− 4ρ) ≤ α ≤ 1. Then the design ξ∗ = p1δ(−1,−1) +
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(α−p∗3)δ(−1,1) +p∗3δ(1,−1) +p1δ(1,1) with p∗3 = [µ(1+ρ)α−4ρα−2+2ρ]/[2µ(1+ρ)]

and p1 = (1 − α)/2 minimizes cT M(ξ)−1c.

Proof. Direct calculus shows that the restriction α > (2−2ρ)/(µ+µρ−4ρ) on the

derivative of h1(p3;α) in (10) implies that p∗3 = [µ(1+ρ)α−4ρα−2+2ρ]/[2µ(1+ρ)]

and satisfies ḣ1(p
∗

3;α) = 0 and ḧ1(p
∗

3;α) = [4µ4(1+ρ)2]/[(1−ρ+2αρ)2(µ2 +4ρ−

8αρ + µ2ρ − 4)] > 0. The lemma is proved.

Proof of Theorem 3.5. Consider µ > 2. By Lemmas 1, 2 and 3, we only need

to show that h1(p
∗

3;α) in (9) and h2(p
∗

2) in (10) satisfy h1(p
∗

3;α) > h2(p
∗

2) for all

α in the range (2 − 2ρ)/(µ + µρ − 4ρ) ≤ α ≤ 1. Additional calculation shows

that if 2 < µ ≤ 2 − 2/ρ,

h1(p
∗

3;α) − h2(p
∗

2) =
−4 + µ2 + 4ρ − 8αρ + µ2ρ

2(1 + ρ)(1 − ρ + 2αρ)
−

1

2
(µ − 2)(2 + µ − 2ρ + µρ)

>
(µ − 2)ρ2(2 + µ − 2ρ + µρ)

2(1 − ρ2)
> 0,

and if µ > 2 − 2/ρ, we have

h1(p
∗

3;α)−h2(p
∗

2) =
−4 + µ2 + 4ρ − 8αρ + µ2ρ

2(1 + ρ)(1 − ρ + 2αρ)
−

µ2

2 − 2ρ
>

2(−µρ + ρ − 1)

(1 − ρ)(1 + ρ)
> 0.

Hence inequality h1(p
∗

3;α) > h2(p
∗

2) holds for µ > 2. Thus parts (i) and (ii)

of the theorem are proved. The remaining parts of the theorem can be proved

analogously by considering the case when µ is less than −2.
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