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Abstract: This paper is concerned with a semiparametric partially linear regression

model with unknown regression coefficients, an unknown nonparametric function

for the non-linear component, and unobservable serially correlated random errors.

The random errors are modeled by an autoregressive time series. We show that

the distributions of the feasible semiparametric generalized least squares estimator

of the parametric component, and the estimator of the autoregressive coefficients

of the error process, admit bootstrap approximation. Simulation results show that

the bootstrap substantially outperforms the normal approximation not only for

small to medium sample sizes, but also for highly correlated random errors. A data

example is provided to illustrate the method.
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1. Introduction

Over the last two decades, a great deal of effort has been devoted to the

theory and methods of nonparametric regression analysis. When multiple pre-

dictor variables are included in the regression equation, however, nonparametric

regression faces the so called curse of dimensionality. As a result, parametric

regression remains popular due to simplicity in computation and interpretation,

but a wrong model for the regression function can lead to excessive modeling

biases and misleading conclusions. Semiparametric regression models become

natural alternatives in such situations, as they can reduce the risk of misspeci-

fying a parametric model while avoiding some drawbacks of fully nonparametric

methods. An important semiparametric model is the partially linear regression

model introduced by Engle, Granger, Rice and Weiss (1986) to study the effect

of weather on electricity demand. It can be written as

yi = x′iβ + g(ti) + εi, i = 1, . . . , n, (1.1)

where yi’s are responses, xi = (xi1, . . . , xip)
′ are design points for linear regression,

β = (β1, . . . , βp)
′ is a vector of unknown parameters to be estimated, ti ∈ [0, 1]
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are additional design points, g(·) is an unknown bounded real-valued function

defined on [0, 1], and the εi’s are unobservable random errors.

The model in (1.1) has been extensively studied. When the errors εi’s are

i.i.d. random variables, various estimation methods have been developed by Heck-

man (1986), Rice (1986), Chen (1988), Speckman (1988), Robinson (1988), Chen

and Shiau (1991, 1994), Donald (1994), Eubank and Speckman (1990) and Hamil-

ton and Truong (1997), among others. These works have used the kernel method,

the spline method, series estimation, local linear estimation, two-stage estima-

tion, and so on. They also discussed the asymptotic properties of the estimators.

The independence assumption for the errors, however, is not always appropriate

in applications, especially for sequentially collected economic data. For exam-

ple, in the process of fitting the relationship between temperature and electricity

usage, Engle et al. (1986) took the data to be autoregressive with order one.

Schick (1994) presented an estimator of the autocorrelation coefficient for (1.1)

with AR(1) errors. Schick (1996, 1998) went further to construct efficient esti-

mators of β and the autocorrelation coefficient. Gao (1995a) studied the esti-

mation problem for (1.1) with serially correlated errors. A semiparametric least

squares estimator (SLSE) for the parametric component β was proposed and

its asymptotic properties were discussed. You and Chen (2002a) constructed a

semiparametric generalized least squares estimator (SGLSE) for the parametric

component of (1.1) with autoregressive errors. However, due to the nonparamet-

ric component g(·), the SGLSE is biased even if the error structure is known.

The bias prevents this estimator from attaining the optimal Berry-Essen rate

n−1/2. Actually, the best normal approximation rate is only n−1/5 (cf. Hong

(2002)) under Assumptions 2.1 and 2.2 of Section 2 below. In this situation, the

bootstrap becomes an attractive alternative. As a matter of fact, the application

of the bootstrap to (1.1) has recently attracted attention in the literature. For

example, Hong and Cheng (1993) considered bootstrap approximation of the es-

timators for the parameters in model (1.1). In their case {x′
i, ti, εi, i = 1, . . . , n}

are i.i.d. random variables and g(·) is estimated by a kernel smoother. Liang,

Härdle and Sommerfeld (2000) explained the advantage of the bootstrap method

and constructed bootstrap statistics for parameters β and σ2 = Var(ε1), and

studied their asymptotic normality when the (x′i, ti) are known design points,

εi are i.i.d. random variables and g(·) is estimated by a general nonparamet-

ric fitting. You and Chen (2002b) investigated a wild bootstrap approximation

and showed it robust against heteroscedasticity. However, the bootstrap schemes

mentioned above did not consider possible serial correlation in the errors.

In this paper, by fitting the error structure and generating time series repli-

cates we devise an alternative bootstrap method that accounts for autoregressive
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errors, and apply it to (1.1). We show that the distributions of the feasible SGLSE

of β and the estimator of the autoregressive coefficient of the error process admit

this bootstrap approximation. The same problem was studied by Stute (1995)

and Vilar-Fernández and Vilar-Fernández (2002) in the context of traditional

linear regression models, but they did not consider the bootstrap approximation

for the autoregressive coefficients. We do this here.

To evaluate the performance of our method, a small simulation is conducted.

The results show that the bootstrap outperforms the normal approximation, sub-

stantially, when the random errors are heavily correlated. Furthermore, applica-

tion to a data set is provided to illustrate the method.

The rest of this paper is organized as follows. Section 2 presents the feasible

SGLSE of the regression coefficients β. The bootstrap methodology, along with

its asymptotic properties, are discussed in Section 3. Section 4 reports the results

of a small simulation and an application. Proofs of the main results are given in

Section 5, followed by conclusions in Section 6.

2. Feasible SGLSE of the Parametric Component

Throughout this paper we assume that the design points xi and ti are fixed,

i = 1, . . . , n. In addition, suppose that the vector (1, . . . , 1)′ is not in the space

spanned by the column vectors of X = (x1, . . . , xn)′, which ensures the identifia-

bility of the model in (1.1) according to Chen (1988). For convenience we assume

that the errors arise from a stationary autoregressive sequence with order one,

namely,

εi = ρεi−1 + ei, i = 1, . . . , n, (2.1)

where ρ is unknown (with |ρ| < 1) and the ei’s are i.i.d. following distribution

F (·) with zero mean and finite variance σ2
e . Extension of our results to a more

general autoregressive model is conceptually straightforward.

There are several methods to construct a feasible SGLSE for β, including

the partial spline method, the partial kernel method, the series approximation

and so on. Here we adopt the partial kernel method proposed by Speckman

(1988) because, in comparison with the partial spline method, it does not need to

underestimate the nonparametric component in order to obtain a
√
n-consistent

estimator of the parametric component. Details of the partial kernel method are

summarized below.

Assume (1.1). If β is known to be the true parameter then, as E(εi) = 0,

we have g(ti) = E(yi − x′iβ) for i = 1, . . . , n. Hence, a natural nonparametric

estimator of g(·) given β is g̃(t, β) =
∑n

i=1Wni(t)(yi −x′iβ), where Wni(·) are the
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weight functions satisfying Assumption 2.1 below. Substituting g̃(t, β) into (1.1)

gives yi = x′iβ + g̃(t, β) + εi, which can be written as

ŷi = x̂′iβ + ε̃i, i = 1, . . . , n, (2.2)

where ŷi = yi −
∑n

j=1Wnj(ti)yj, x̂i = xi −
∑n

j=1Wnj(ti)xj and ε̃i = g(ti) −
∑n

j=1Wnj(ti)g(tj) + εi −
∑n

j=1Wnj(ti)εj . Write (2.2) in matrix form as

Ŷ = X̂β + ε̃, (2.3)

where Ŷ = (ŷ1, . . . , ŷn)′, X̂ = (x̂1, . . . , x̂n)′ and ε̃ = (ε̃1, . . . , ε̃n)′. Regard ε̃i

as new random errors. Then by (2.3) a semiparametric least square estimator

(SLSE) of β is given by β̂n = (X̂ ′X̂)−1X̂ ′Ŷ . Since the errors are serially correlated

in (1.1), the SLSE β̂n is not asymptotically efficient. To overcome this problem,

we consider weighted estimation. First we fit the error structure. Based on β̂n,

the estimated residuals can be obtained as

ε̂i = ŷi − x̂′iβ̂n, i = 1, . . . , n. (2.4)

Thus we estimate the autoregressive coefficient ρ by ρ̂n =
(
∑n

i=1 ε̂
2
i

)−1 ∑n−1
i=1 ε̂i+1ε̂i.

By (2.1) we have

E(εε′) = σ2
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−1

=̂ σ2Ω, (2.5)

where σ2 = E(ε21). According to Lemmas 5.1 and 5.2 in Section 5, ε̃i = εi + o(1)

a.s. Therefore, a feasible SGLSE is given by β̂w
n = (X̂ ′Ω̂−1X̂)−1X̂ ′Ω̂−1Ŷ , where

Ω̂ is similar to Ω in (2.5) with ρ̂n in place of ρ.

We now state some assumptions required to obtain the asymptotic property

of β̂w
n . These assumptions, while a bit lengthy, are actually quite mild and

can be easily satisfied. First suppose, as is common in the setting of partially

linear regression model, that {xi} and {ti} are related via xis = hs(ti) + uis,

i = 1, . . . , n; s = 1, . . . , p. Justification for this can be found in Speckman (1988).

Consider the following assumptions.

Assumption 2.1. The probability weight functions Wni(·) satisfy

(i) max1≤i≤n
∑n

j=1Wni(tj) = O(1),
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(ii) max1≤i,j≤nWni(tj) = O(bn),

(iii)max1≤j≤n
∑n

i=1Wni(tj)I(|tj − ti| > cn) = O(dn), where bn = O(n−2/3),

lim supn→∞ nc3n <∞, lim supn→∞ nd3
n <∞, and I(A) is the indicator func-

tion of a set A.

Assumption 2.2. max1≤i≤n ‖
∑n

j=1Wnj(ti)uj‖ = o(n−1/6), ‖uj‖ ≤ c and

limn→∞
1
n

∑n
i=1 uiΩ

−1u′i = Σ > 0, where ‖ · ‖ denotes the Euclidean norm,

and c is a constant.

Assumption 2.3. The functions g(·) and h1(·), . . . , hp(·) satisfy a Lipschitz

condition of order 1 on [0, 1].

Remark 2.1. Partition the interval [0, 1] by 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1 = 1

such that max1≤i≤n+1 |ti − ti−1| = O(n−1). Take Wnj(·) to be the kn-nearest

neighbor type weight functions, namely Wnj(t) = k−1
n if tj belongs to the kn-

nearest neighbor of t and Wnj(t) = 0 otherwise, where kn = n2/3. Then Wnj(·)
satisfies Assumption 2.1.

Remark 2.2. Note that
∑n

j=1Wnj(ti)uj is a weighted average of the locally

centered quantities {uj}n
j=1. Hence max1≤i≤n ‖

∑n
j=1Wnj(ti)uj‖ = o(n−1/6) is a

mild condition.

Remark 2.3. Assumption 2.3 is mild and holds for most commonly used func-

tions, polynomial and trigonometric functions, for example.

Under Assumptions 2.1–2.3 and E(e4
1) < ∞, You and Chen (2002a) proved

that

√
n(β̂w

n − β) →D N(0, σ2Σ−1) and
√
n(ρ̂n − ρ) →D N(0, 1 − ρ2), (2.6)

where “→D” denotes convergence in distribution. In addition, they also showed

that β̂w
n is asymptotically efficient. In the following sections we show that the

distributions of β̂w
n and ρ̂n can be approximated by a bootstrap procedure.

3. Bootstrap Methodology

We begin with describing our bootstrap.

Step 1. Given the initial sample (x′i, ti, yi), i = 1, . . . , n, we construct a SGLSE

β̂w
n by the method described in Section 2.

Step 2. The estimated residuals ε̂w
i = ŷi − x̂′iβ̂

w
n are evaluated and the noise of

the AR(1) model is obtained as êw
i = ε̂wi − ρ̂nε̂

w
i−1 for i = 2, . . . , n.

Step 3. Depending on the assumptions imposed on the error distribution F ,

and for a sufficiently large number N , a random sample of e?
i for −N ≤
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i ≤ n is drawn from an estimator of F . For instance, if F is assumed

to belong to a finite dimensional parametric family of distributions,

i.e., F ∈ {F (·;α)} with parameter α, then {e?
i } can be obtained as

an i.i.d. sequence from F (·; α̂), where α̂ is a consistent estimator of

α. Alternatively, in the absence of any a priori assumptions on the

distribution of the true errors, the series e?
i can be obtained as a random

sample from the empirical distribution function F̂n of F which puts mass

(n− p)−1 on each of the centered residual vectors êi.

Step 4. Using this noise series, bootstrap replicates {ε?
i , i = 1, . . . , n} are ob-

tained as ε?
i =

∑∞
j=0 ρ̂

j
ne

?
i−j . In practice, an initial value ε?

i =
∑∞

j=0 ρ̂
j
ne

?
i−j

is computed and then the equation ε?
i = ρ̂nε

?
i−1 + e?i is iteratively ap-

plied to obtain the values ε?
i for i = 1, . . . , n. In calculations, we can

approximate ε?
i by

∑N
j=0 ρ̂

j
ne

?
i−j for some large N .

Step 5. The bootstrap sample y?
i is obtained by means of y?

i = x′iβ̂
w
n +ĝw

n (ti)+ε
?
i

for i = 1, . . . , n, where ĝw
n (ti) =

∑n
j=1Wnj(ti)(yj − x′j β̂

w
n ).

Step 6. The SGLSE is computed with the bootstrap sample. Thus β̂?w
n =

(X̂ ′Ω̂?−1X̂)−1 X̂ ′Ω̂?−1Ŷ ?, where Ŷ ? and Ω̂?−1 are analogous to Ŷ and

Ω̂, with Ŷ ? from the bootstrap sample {y?
i , i = 1, . . . , n} and Ω̂?−1

using ρ?
n =

∑n−1
i=1 ε

?
i ε

?
i+1 /

∑n
i=1 ε

?2
i as the estimator of ρ.

Step 7. For a large value of M , Step 3-6 are repeated M times to obtain the

bootstrap replications of the estimators {ρ?
n,1, . . . , ρ

?
n,M} and {β̂?w

n,1, . . .,

β̂?w
n,M}.

Remark 3.1. The same bootstrap method was used in Stute (1995) and Vilar-

Fernández and Vilar-Fernández (2002). However, they deal only with traditional

linear regression models.

For β̂?w
n and ρ̂?

n we have the following asymptotic results.

Theorem 3.1. Suppose that Assumptions 2.1 to 2.3 hold and E(e4
1) <∞. Then√

n(β̂?w
n −β̂w

n ) →D? N(0, σ2Σ−1) as n→ ∞, where →D? denotes the convergence

in distribution underlying the bootstrap samples.

Theorem 3.2. Under the assumptions of Theorem 3.1,
√
n(ρ̂?

n − ρ̂n) →D?

N(0, 1 − ρ2) as n→ ∞.

Combining Theorems 3.1 and 3.2 with the asymptotic normality of β̂w
n and

ρ̂n (see (2.6)), leads to the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1,

(i) supx∈Rp

∣

∣

∣P ?(
√
n(β̂?w

n − β̂n) ≤ x) − P (
√
n(β̂w

n − β) ≤ x)
∣

∣

∣ →p 0 as n→ ∞,
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where P ? denotes the probability distribution under the resampling and →p

stands for convergence in probability;

(ii) supx∈R |P ?(
√
n(ρ̂?

n − ρ̂n) ≤ x) − P (
√
n(ρ̂n − ρ) ≤ x)| →p 0 as n→ ∞.

The above results can be used to construct large sample confidence intervals

for β or ρ. For instance, a 100(1 − α)% two-sided confidence interval for a′β is

[

a′β̂w
n − 1√

n
z(1 − α/2), a′β̂w

n − 1√
n
z(α/2)

]

,

where a is a nonzero constant p-vector and P ?(
√
n(a′β̂?w

n − a′β̂w
n ) ≤ z(α)) = α.

It should be noted that although our results are established under the as-

sumption that the nonparametric regressor is one-dimensional, it is not difficult to

extend them to the multi-dimensional nonparametric regressor case using prod-

uct kernels.

4. Simulation Studies and an Application

In this section we carry out some simulation studies to compare the bootstrap

approach with a normal approximation. We also illustrate this method via its

application to a set of spirit consumption data.

4.1. The finite sample performance

We investigated the model yi = xiβ + g(ti) + εi with εi = ρεi−1 + ei,

i = 1, . . . , n, where g(ti) = sin(2πti), β = 5. Two forms of the error distri-

bution F were tested: the standard normal distribution N(0, 1) and the uniform

distribution U [−1, 1]. For the autoregressive coefficient ρ, we considered three

cases: ρ = 0.3, ρ = 0.5 and ρ = 0.8, to reflect different levels of serial correlation

in the errors. The independent variables xi and ti are generated from the U [0, 1]

distribution.

For comparison, we calculated the confidence intervals of β and ρ based on

simulated samples using both normal approximation and the bootstrap. We then

compare the coverage percentages of the confidence intervals, with sample sizes

ranging from 50 to 500.

The confidence intervals are constructed as follows. According to (2.6),

Dn = (β̂w
n − β)σ̂−1

n (X̂ ′Ω̂−1X̂)1/2 →D N(0, 1) as n→ ∞, (4.1)

where σ̂2
n is the sample variance computed from the residuals ε̂i given in (2.4).

Therefore, (4.1) may be utilized to construct confidence intervals for β. Likewise,

Theorem 3.1 and the consistency results in Section 5 imply that the actual dis-

tribution of Dn may be approximated by that of D?
n = (β̂?w

n − β̂w
n )σ̂?−1

n (X̂ ′Ω̂?−1
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X̂)1/2. Thus, the confidence intervals for β based on normal approximation and
the bootstrap are, respectively,

IN
n (β) =

[

β̂w
n − σ̂n(X̂ ′Ω̂−1X̂)−1/2uN , β̂

w
n − σ̂n(X̂ ′Ω̂−1X̂)−1/2lN

]

,

IB
n (β) =

[

β̂w
n − σ̂n(X̂ ′Ω̂−1X̂)−1/2uB(β), β̂w

n − σ̂n(X̂ ′Ω̂−1X̂)−1/2lB(β)
]

,

where uN , lN and uB(β), lB(β) denote the 1 − α/2 and α/2 quantiles computed
from N(0, 1) and the bootstrap distribution, respectively.

Correspondingly, the confidence intervals for ρ based on normal approxima-
tion and bootstrap are, respectively,

IN
n (ρ) =

[

ρ̂n − n−1/2
√

1 − ρ̂2
nuN , ρ̂n − n−1/2

√

1 − ρ̂2
nlN

]

,

IB
n (ρ) =

[

ρ̂n − n−1/2
√

1 − ρ̂2
nuB(ρ), ρ̂n − n−1/2

√

1 − ρ̂2
nlB(ρ)

]

,

where uN , lN and uB(ρ), lB(ρ) have the same definitions as those for β.
Samples of sizes n = 50, 100, 200 and 500 were drawn repeatedly. In each case

the number of simulated realizations was 10, 000, as was the number of bootstrap
replicates (the xi values are generated once for each n). For each simulated
realization, the bootstrap distributions are computed individually. For the weight
function Wni(tj), we use the Priestley and Chao’s weight with a Gaussian kernel:

Wni(tj) =
1

nh
K

(

ti − tj
h

)

=
1

nh

1√
2π
e−

(ti−tj)2

2h2 .

The bandwidth is selected by Cross-Validation (CV ). The coverage percentages
by 90% confidence intervals from simulation are listed in Tables 1 and 2 below.

From Tables 1 and 2 we can see that the bootstrap has higher coverage
percentage than the normal approximation in almost every scenario considered.
The difference is more significant for smaller n and larger ρ. This shows that the
bootstrap outperforms the normal approximation not only for small to medium
sample sizes, which is usually a main reason to use bootstrap, but also for high
serial correlation and hence is advantageous when the data exhibit serial depen-
dence.

Table 1. The actual coverage percentages obatined for β and ρ by normal
approximation (N) and bootstrap (B) when F is N(0, 1).

ρ = 0.3 ρ = 0.5 ρ = 0.9

β ρ β ρ β ρ

N B N B N B N B N B N B

n = 50 84% 88% 63% 76% 80% 86% 64% 82% 72% 83% 59% 82%

n = 100 83% 92% 75% 80% 82% 89% 79% 87% 74% 86% 70% 86%
n = 200 86% 90% 84% 91% 86% 91% 82% 88% 80% 90% 80% 87%

n = 500 88% 91% 89% 93% 87% 91% 86% 90% 85% 93% 87% 90%
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Table 2. The actual coverage percentages obatined for β and ρ by normal
approximation (N) and bootstrap (B) when F is U [−1, 1].

ρ = 0.3 ρ = 0.5 ρ = 0.9

β ρ β ρ β ρ

N B N B N B N B N B N B

n = 50 86% 89% 76% 85% 85% 86% 73% 85% 82% 88% 69% 84%

n = 100 86% 93% 79% 86% 84% 88% 77% 88% 81% 89% 75% 88%
n = 200 88% 91% 84% 88% 87% 90% 85% 89% 86% 93% 82% 86%

n = 500 91% 90% 89% 92% 89% 93% 90% 91% 91% 90% 88% 91%

4.2. Application to spirit consumption data

We now illustrate the methodology via its application to the spirit consump-

tion data in the United Kingdom from 1870 to 1938. The data set can be found

on page 427 of Fuller (1976). In this data set, the dependent variable yi is the

annual per capita consumption of spirits in the United Kingdom. The explana-

tory variables xi1 and xi2 are per capita income and price of spirits, respectively,

both deflated by a general price index. All data are in logarithms. Fuller (1976)

used the following linear regression model to fit this data set, where 1,869 is the

origin for t and εi is assumed to be a stationary time series:

yi = β0 + β1xi1 + β2xi2 + β3ti + β4(ti − 35)2 + εi. (4.2)

Least squares (LS) regression is ŷi = 2.1373 + 0.6808xi1 − 0.6333xi2 − 0.0095ti −
0.00011(ti − 35)2. The residual mean square is 9.2204 × 10−4. By the Durbin-

Watson d test, Fuller (1976) took the errors to be autocorrelated with order one

with autocoefficient 0.7633. Then, based on this estimated autocoefficient he

applied the weighted least squares (WLS) regression to fit model (4.2) to obtain

ŷi = 2.3579 + 0.7091xi1 − 0.7836xi2 − 0.0081ti − 0.00012(ti − 35)2.

We now relax (4.2) to a semiparametric partially linear regression model

yi = β1xi1 + β2xi2 + g(ti) + εi, (4.3)

where g(·) is an unknown function of t. The semiparametric least squares (SLS)

regression gives ŷi = 0.6463xi1−0.9535xi2−ĝ(ti), where ĝ(ti) is shown in Figure 1.

The residual mean square is 2.1914×10−4, only about one quarter of the residual

mean square from the traditional linear regression model. Moreover, from Figure

2 we can see that at almost every point the fitted residual of the former is less than

that of the latter. This illustrates that (4.3) is a more suitable model here than

is (4.2). The autocoefficient for (4.3) is 0.2074. Figure 3 shows the residual plot

after fitting the AR(1) process to {εi} in (4.3), which is not significantly different
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from white noise, validating the choice of AR(1) for (4.3). The semiparametric

generalized least squares (SGLS) regression gives ŷi = 0.6821xi1 − 0.9394xi2 −
ĝ(ti), and the bootstrap estimation gives ŷi = 0.6402xi1 − 0.9549xi2 − ĝ(ti).

More details of the data analysis can be found in Table 3 below, where the

LSE and WLSE correspond to (4.2), while the SLSE, SGLSE and bootstrap

estimates are from (4.3).
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Figure 1. The estimated nonparametric component g(·) in partially linear

regression model (4.3) with the spirit consumption data.

PSfrag replacements

0

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

10 20 30 40 50 60 70

0.02

0.04

0.06

-0.02

-0.04

-0.06

-0.08

-0.1

Figure 2. The fitted residuals by linear regression model (4.2) (—–) and

partially linear regression model (4.3) (− · − · −) for the spirit consumption

data.
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Figure 3. Residuals after fitting AR(1) to the errors in partially linear re-
gression model (4.3) with the spirit consumption data.

Table 3. The fitting of the spirit consumption data.

Mean Standard Error 95% Confidence Interval

LSE(β1) 0.6808 0.2387 (0.6245, 0.7371)

LSE(β2) -0.6333 0.1025 (-0.6575, -0.6091)

LSE(ρ) 0.7153 0.0841 (0.6955, 0.7351)

WLSE(β1) 0.7091 0.0742 (0.6916, 0.7266)
WLSE(β2) -0.7836 0.0283 (-0.7769, -0.7903)

SLSE(β1) 0.6463 0.1245 (0.6169, 0.6757)
SLSE(β2) -0.9535 0.0678 (-0.9695, -0.9375)

SLSE(ρ) 0.2074 0.1072 (0.1821, 0.2327)

SGLSE(β1) 0.6821 0.1122 (0.6556, 0.7086)

SGLSE(β2) -0.9394 0.0592 (-0.9534, -0.9254)

Bootstrap(β1) 0.6402 0.1232 (0.4939, 0.7795)

Bootstrap(β2) -0.9549 0.0670 (-1.0841, -0.8105)

Bootstrap(ρ) 0.2072 0.1136 (0.0170, 0.3274)

5. Proofs of Main Results

To prove the main results, we first introduce several lemmas. The first lemma

can be found in Gao (1995).

Lemma 5.1. (i) Suppose that Assumptions 2.1 (iii) and 2.3 hold. Then as

n → ∞, max0≤s≤p max1≤i≤n |Gs(ti) −
∑n

j=1Wnj(ti)Gs(tj)| = O(cn) + O(dn),

where G0(·) = g(·) and Gs(·) = hs(·), s = 1, . . . , p;

(ii) Under Assumptions 2.1 to 2.3, as n→ ∞, max1≤s≤p max1≤i≤n |
∑n

j=1Wnj(ti)

xjs − hs(ti)| = O(cn) +O(dn) + o(n−1/6).
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Lemma 5.2. Suppose that {εi} is a linear process so εi =
∑∞

j=0 ψjei−j with

supn n
∑∞

j=n |ψj | = O(1), where ei’s are i.i.d. with mean 0 and E(e4
1) < ∞, and

suppose that Assumption 2.1 holds. If the spectral density f(ω) of {εi} satisfies

c1 ≤ f(ω) ≤ c2 for all ω ∈ (−π, π], where c1 and c2 are positive constants, then

max1≤i≤n|
∑n

j=1Wnj(ti)εj | = O(n−1/3 log n) a.s.

Proof. By separating the MA(∞) error process into two parts, a procedure
widely applied in time series, similar to the proof of Lemma A.3 in Härdle, et

al. (2000), we can prove Lemma 5.2. The details can be found in You (2002).

Lemma 5.3. Suppose that Assumptions 2.1 to 2.3 hold and E(e4
1) < ∞. Then

as n→ ∞, |β̂w
ni −βi| = O[(log log n/n)1/2] a.s. and |ρ̂n − ρ| = O[(log log n/n)1/2]

a.s., where β̂w
ni and βi denote the i-th components of β̂w

n and β respectively.

The proof of Lemma 5.3 can be found in You and Chen (2002a).
Now we define a d2 metric (also called Mallow’s metric or Wasserstein dis-

tance) for probability measures P and Q with
∫

|x|2dP <∞ and
∫

|x|2dQ <∞,
d2(P,Q) = inf(E|X−Y |2)1/2, where the inf is taken over pairs (X,Y ) of random
variables, with X and Y distributed according to P and Q respectively. The
following lemma shows that the empirical distribution function F̂n, obtained in
Step 3 of Section 3, converges to the distribution F of the noise process {ei} in
terms of the Mallow’s metric.

Lemma 5.4. Under the assumptions of Lemma 5.3, d2(F̂n, F ) → 0 a.s. as

n→ ∞.

Proof. Denote by F ?
n the empirical distribution function based on the error

series {ẽi}n
i=2, which is obtained in the same way as êw

i (Steps 2 and 3 in Section
3), but from the unobservable residuals {εi}n

i=1. Then we have d2(F̂n, F ) ≤
d2(F̂n, F

?
n)+d2(F

?
n , F ). By Theorem 3.1 in Kreiss and Franke (1992), d2(F

?
n , F ) →

0 as n → ∞ a.s. Hence it suffices to show that d2(F̂n, F
?
n) → 0 a.s., as we do

below.

d2
2(F̂n, F

?
n) ≤ 1

n− 1

n
∑

i=2

(êwi − e?i )
2 =

1

n− 1

n
∑

i=2

(

ε̂wi − ρ̂nε̂
w
i−1 − εi + ρεi−1

)2

≤ 2

n− 1

n
∑

i=2

(ε̂wi − εi)
2 +

4

n− 1

n
∑

i=2

(ρ− ρ̂n)2ε2i−1

+
4

n− 1

n
∑

i=2

ρ̂2
n(ε̂wi−1 − εi−1)

2 = I1 + I2 + I3 say.

According to Lemmas 5.1, 5.2 and 5.3, and the fact that
n

∑

i=1

x̂ix̂
′
i =

n
∑

i=1

(

ui −
n

∑

j=1

Wnj(ti)uj + H̃(ti)
)

n
∑

i=1

(

ui −
n

∑

j=1

Wnj(ti)uj + H̃(ti)
)′

= O(n),
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where H̃(ti) = (h̃1(ti), . . . , h̃p(ti)) with h̃s(ti) = hs(ti) −
∑n

j=1Wnj(ti)hs(tj), we

have

I1 ≤
4

n− 1

n
∑

i=2

(β̂w
n − β)′x̂ix̂

′
i(β̂

w
n −β) +

4

n− 1

n
∑

i=2

g̃2(ti) +
4

n− 1

n
∑

i=2

ε̃2i = o(1) a.s.,

where g̃(ti) = g(ti) −
∑n

j=1Wnj(ti)g(tj) and ε̃i =
∑n

j=1Wnj(ti)εj . Moreover, it

is easy to see from Lemma 5.3 that I2 = o(1) a.s. Along the same lines we can

show that

I3 ≤ 4

n− 1

n
∑

i=2

(ρ̂2
n − ρ2)(ε̂wi−1 − εi−1)

2 +
4

n− 1

n
∑

i=2

ρ2(ε̂wi−1 − εi−1)
2 = o(1) a.s..

The proof is thus complete.

Lemma 5.5. Under the assumptions of Lemma 5.3, ρ̂?
n− ρ̂n → 0 a.s. as n→ ∞,

where ρ̂?
n is defined in Section 3.

Proof. The proof is similar to that of Lemma 4.2 in Vilar-Fernández and Vilar-

Fernández (2002).

Lemma 5.6. Under the assumptions of Lemma 5.3, n−1/2X̂ ′ε? = Op(1), n
−1X̂ ′

(Ω̂?−1 − Ω̂−1)X̂ →p 0 and n−1X̂ ′(Ω̂?−1 − Ω̂−1)ε? →p 0.

Proof. The proof of Lemma 5.6 is similar to that of Theorem 3.1 in You and

Chen (2002a), but this time for the bootstrap variables. We omit the details.

Lemma 5.7. Under the assumptions of Lemma 5.3, n−1 ∑n−1
i=1 (ε̂i − εi)εi+1 =

o(n−1/2) and n−1 ∑n−1
i=1 (ε̂i−εi)(ε̂i+1−εi+1) = o(n−1/2) a.s., where ε̂i = ŷi−x̂′iβ̂n,

i = 1, . . . , n.

Proof. The proof is similar to those of Lemmas 5.4 and 5.5 in You and Chen

(2002a).

Lemma 5.8. Under the assumptions of Lemma 5.3, |E?(ε
?2
i )−E(ε21)| →p 0 and

|n−1 ∑n
i=1 ε

?2
i −E(ε21)| →p 0 as n→ ∞, where E? denotes the expectation under

the resampling.

Proof. Combining Lemmas 5.1 to 5.3 we obtain

|E?(e
?2
i ) − σ2

e | =

∣

∣

∣

∣

n−1
n

∑

i=1

êw2
i − σ2

e

∣

∣

∣

∣

≤ n−1
n

∑

i=1

|êw2
i − e2i | +

∣

∣

∣

∣

n−1
n

∑

i=1

e2i − σ2
e

∣

∣

∣

∣

≤ n−1
n

∑

i=1

|êwi − ei||êwi | + n−1
n

∑

i=1

|êwi − ei||ei| +Op

(

n−1/2
)

≤ n−1
n

∑

i=1

|εi − ρ̂nεi−1 − ei + g̃(ti) + x̂′i(β − β̂w
n ) − ρ̂n[g̃(ti−1) + x̂′i−1(β − β̂w

n )]|

·|εi − ρ̂nεi−1 + g̃(ti) + x̂′i(β − β̂w
n ) − ρ̂n[g̃(ti−1) + x̂′i−1(β − β̂w

n )]|
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+n−1
n

∑

i=1

|εi−ρ̂nεi−1−ei+g̃(ti)+x̂′i(β − β̂w
n )−ρ̂n[g̃(ti−1)+x̂

′
i−1(β−β̂w

n )]||ei|

+Op

(

n−1/2
)

= n−1
n

∑

i=1

∣

∣

∣(ρ− ρ̂n)εi−1 +O(n−1/3 log n)
∣

∣

∣

∣

∣

∣εi − ρ̂nεi−1 +O(n−1/3 log n)
∣

∣

∣

+n−1
n

∑

i=1

∣

∣

∣(ρ− ρ̂n)εi−1 +O(n−1/3 log n)
∣

∣

∣|ei| + op

(

n−1/2
)

= op(1).

Therefore, |E?(ε
?2
i )−E(ε21)| ≤

∑∞
j=0[|ρ̂j

n−ρj||ρj |E?(e
?2
i )+ |ρj||ρ̂j

n||E?(e
?2
i )−σ2

e |+
|ρ̂j

n − ρj||ρj |σ2
e ] = op(1). By the same argument we can prove the second limit.

Proof of Theorem 3.1. Let β̃?w
n = (X̂ ′Ω̂−1X̂)−1X̂ ′Ω̂−1Ŷ ?. Then n1/2(β̂?w

n −
β̂w

n ) = n1/2(β̂?w
n −β̃w

n )+n1/2(β̃?w
n −β̂w

n ) = I1+I2, say. Combining Lemmas 5.7 and

5.8, similar to the proof of Theorem 3.1 in Vilar-Fernández and Vilar-Fernández

(2002), we can show I1 = op(1). Furthermore, I2 = n1/2(X̂ ′Ω̂−1X̂)−1X̂ ′Ω̂−1ε?.

Put α? = n−1/2X̂ ′Ω̂−1ε? and α = n−1/2X̂ ′Ω̂−1ε. Applying Lemma 5.3 it is not

difficult to show that d2(Φ
?,Φ) converges to zero a.s., where Φ? and Φ are the

distribution functions of α? and α respectively. Therefore, Theorem 3.1 follows

from (2.6).

Proof of Theorem 3.2. It is easy to see that, in order to complete the proof

of this theorem, it suffices to show the following equations:

√
n(ρ̂n − ρ) =

1√
nE(ε21)

n−1
∑

i=1

ei+1εi + op(1), (5.1)

√
n(ρ̂?

n − ρ̂n) =
1√

nE?(ε
?2
1 )

n−1
∑

i=1

e?i+1ε
?
i + op(1), (5.2)

d2(Φ3,Φ4) →p 0 as n→ ∞, (5.3)

where Φ3 and Φ4 are respectively the distribution functions of n−1/2 ∑n−1
i=1 ei+1εi

/E(ε21) and n−1/2 ∑n−1
i=1 e

?
i+1ε

?
i /E?(ε

?2
1 ). Since

1

n

n−1
∑

i=1

ε̂iε̂i+1 =
1

n

n−1
∑

i=1

(ε̂i−εi)(ε̂i+1−εi+1)+
1

n

n−1
∑

i=1

(ε̂i−εi)εi+1+
1

n

n−1
∑

i=1

(ε̂i+1−εi+1)εi,

it follows from Lemma 5.7 that n−1 ∑n−1
i=1 ε̂iε̂i=1 = n−1 ∑n−1

i=1 εiεi−1+o(n
−1/2) a.s.

Similarly, we can get n−1 ∑n
i=1 ε̂

2
i = n−1 ∑n

i=1 ε
2
i +o(n−1/2) a.s. Therefore,

√
n(ρ̂n

−ρ) = n−1/2 ∑n−1
i=1 ei+1εi/

∑n
i=1 ε

2
i + op(1) = n−1/2 ∑n−1

i=1 ei+1εi/E(ε21) + op(1) by

the fact that n−1 ∑n
i=1 ε

2
i → E(ε21) as n → ∞ and

∑n−1
i=1 ei+1εi/

√
n = Op(1).

This implies (5.1).
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Next, as ε?
i =

∑∞
j=0 ρ̂

j
ne

?
i−j we can write

√
n(ρ̂?

n − ρ̂n) = n−1/2∑n−1
i=1 e

?
i+1ε

?
i

/
∑n

i=1 ε
?2
i . On the other hand, according to Lemma 5.3 and the proof of Lemma

5.7, n−1 ∑n
i=1 ê

w2
i = n−1 ∑n

i=1(ε̂
w
i − ρ̂nε̂

w
i−1)

2 ≤ 2n−1(1 + ρ̂2
n)

∑n
i=1 ε̂

w2
i = Op(1).

Therefore,

E?

(

n−1
∑

i=1

e?i+1ε
?
i

)2
=

n−1
∑

i=1

E?(e
?2
i+1)E(ε?2

i ) = O(n) · 1

n

n
∑

i=1

êw2
i · 1

n

n
∑

i=1

ε̂w2
i = Op(n).

Further, by Lemma 5.8,

∣

∣

∣

∣

1

n

n
∑

i=1

(ε?2
i ) −E?(ε

?2
i )

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

n

n
∑

i=1

ε?2
i −E(ε21)

∣

∣

∣

∣

+ |E?(ε
?2
i ) −E(ε21)| →p 0 as n→ ∞.

So, (5.2) holds. The proof of (5.3) is similar to that of Theorem 3.2 in Paparoditis

(1996). We omit details. The proof is thus complete.

6. Concluding Remarks

It should be noted that the results of this paper are limited to the case of fixed

designs. Sometimes in practice, especially in econometrics, it may be necessary

to allow random regressors as well (cf. Robinson (1988)). In such a case different

approaches, such as the paired bootstrap, may be more appropriate. We will

investigate this topic in a separate paper.

Another important issue is to improve our bootstrap performance by Edge-

worth correction. This is a more difficult issue due to the nonparametric compo-

nent in (1.1) (cf., Linton (1995)), and further investigations are called for.

Other interesting topics for future studies include extension of our results to

an ARMA error structure, and possibly to nonlinear time series error structures

such as the ARCH and GARCH models.
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