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Supplementary Material

In the supplementary material the proofs of Theorem [I] and Theorem [2

are given.

S1 Proofs

In the proofs of Theorem [1|as well as in the proof of Theorem [2 we will need
two auxiliary lemmas. In order to formulate our first auxiliary result, we
need the notion of covering numbers. Denote by Ni(e, G, x7) the size of the
smallest L; norm e-cover of a set of functions G on 27 = (z1,...,x,) € R%
where a L; norm e-cover is a finite collection of functions ¢y, ..., gn :

R? — R with the property that for every g € G there exists a j = j(g) €
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{1,..., N} such that
1 n
i Z 9(x:) — gj(z:)] <e.
i=1

S1.1 Auxiliary Lemmas

Lemma 1. Letn € N, let Z,,, ..., Z;, be independent random variables with
values inRY, t; = i/n fori=1,...,n and some sequence (&, )nen € Ry\{0}.

Let G, be a set of functions g : [0,1] x RY — [0, B,] such that

n

%Zg(tu%) <vn (g€Gn, (ti,r1),...,(tn, 2,) €[0,1] x R?) (S1.1)

i=1

for some sequences (Bp)nen, (Vn)nen € Ry \{0}. Set
(Ea Z) = ((tla Zh)a (t27 th)a try (tna Ztn)) .

Then n > 8B,v, /€2 implies

1 n 1 n
p {ﬂg €G,: '5Zg<ti,zti> ~E {ﬁ Zg(ti,zti)}
=1 =1

2
n-en

< 8- sup N <%7 Gn, (L, Z)) <€ T2 Bnvn

(£,2)€([0,1]xR4)"™

>6n}

In Lemma (1| there may be some measurability problems because the
supremum is taken over a possible uncountable set. In order to avoid that
the notation becomes too complicated, we will ignore these problems and
refer to van der |Van der Vaart and Wellner| (1996]), where such problems

are handled very elegantly by using the notion of outer probability. In the
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proof we extend the arguments of the proof of Theorem 9.1 in (Gyorfi et al.
(2002).

Proof of Lemma [1L

Step 1: Symmetrization by a ghost sample.

Choose random variables Z; , ..., Z; , such that Z;,, Z] are identically dis-
tributed for i =1,...,nand Z,,,..., 2,2 ,...,Z] are independent. Set

Z'=(Z],....Z] ). Let g* be a function g € G,, such that

> €,

'ii (ti, Z1,) { thz,zt }

if there exists any such function, and let ¢g* be an arbitrary function in G,,

if such a function does not exist. By Chebyshev’s inequality we have

)

(S )L -

ZVar{g (ti Z,.) | 27}

=1

< (s 5]

4Bn Uy,

2
€n

€2n?

n

where we have used the independence of Z; ,...,Z; , the upper bound B,

of the functions g € G,, and assumption (S1.1)). Consequently, we have for
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n > 8B,v, /e

n

1 1 &
P(Elgegn: ‘EZg(ti,Zti)—EZg(ti,Zgi) >

=1

Z ( Zg tz;Zt { Zg th/ ‘ n}‘ > €n,

Zg (tin Z).) — { Zg (tis Zy,;) ‘ } S%)
= E{ﬂ{‘ii *(t; Zt)E{ Zg(tZ }Z{L >en}

( Zg (ti, Z;) { Zg (ti, Z)) Zn}' Z?)}
> % (%Zg (tis Z,) { Zg (ti, Z;) ’ } >en>

- (nggn ‘_ g(cht { th“Zt }’>€n>
i=1

Step 2 (introduction of additional randomness by random signs) and
Step 3 (conditioning and introduction of a covering) are analogously to
Step 2 and Step 3 of the proof of Theorem 9.1 in |Gyorfi et al.| (2002). We
will only state the results of these steps. For independent and uniformly over

{—1, 1} distributed random variables Uy, ..., U,, which are independent of
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> &
2

/ /
ZiyyeoosLtns Ly 4y, We have

n

1 & 1
P(3 <0, ]5 S ot Z) - -3 gt 2)
=1

i=1
(£,2)e([0,1]xR4)"™

€
- max P >,
gEgny%L 8

where G, e is an L; ¢-cover on (%, ) of minimal size.

< 2. sup M <%7gn7 (t, 5))

1 n
- Zl Ui - g(ti, z,)

Step 4: Application of Hoeffding’s inequality.
Since Uy - g(t1, Z4,)y- -+, Uy - g(tn, Z4,) are independent random variables
with

_g(tla Zti) <U- g(tla th‘) < g(ti7zti) for i = ]-7 RN

we obtain by using Hoeffding’s inequality, the upper bound of g € G,, and

1)
1 € 2-n- (%)
P _ZUzg(tmztl) > g S 2'eXp - n :
n
=1 % ; ’g(t’u Zti> - (_g(t’“ zti))|2
2
2.n- (&
< 2exp | — nn (%)
% : Zg(tiazti)
=1

ne?
< 20\~ 1555, )

All four steps considered, the assertion of the lemma is proven. O
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Lemma 2. Let

t—u
g, = {g : [0, 1] xR? — 0,d,] : glu,z) = cu']l{m(u,x)gy}-K( h 1)

((u,z) €[0,1] xRY), t €1[0,1], y € ]R},

where ¢, € [0,d,| for all ue [0,1] and d,, € Ry. Let the kernel K and m
be defined as in Theorem |4 Then for any (u},z}) € R*xR" and 0<¢, <
d,-K(0)/2 it holds
_ A\
NG (1.a1)) < iz (22)

for some constant 0 < c¢13 < 0.

In the proof of Lemma [2| we need the notion of VC-dimension. Denote by

V4 the VC-dimension of a class of subsets A # () of R?, which is defined by
Vi=sup{n e N: S(A,n)=2"},
where S(A,n) is the n-th shatter coefficient of A, i.e.
S(A,n)=max |[{AN{z,...,z,}: A€ A}

Proof of Lemma [2] The proof is based on parts of the proof of Lemma 3.2

in Kohler, Krzyzak and Walk (2003). First, we observe that

Naten, G 0 21)) < N (.G (ua?)) (52
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where G, is a set of functions defined as

G, - {g 04X B 0KO) - al0) = Ui K ()
(u,z) €[0,1] xRY), t €10,1], y € R}.

Let g1,...,g95 : R x RY — R be an minimal e,-cover of G,, i.e. for every

g € G, thereis a j = j(g) € {1,..., N} such that
1 n
o Z |9(ui, i) = gj(ui, 2:)| < €n.
i=1
Then g1,...,9y : R x R? — R, where
gi(u,z) = c, - gj(u,z) forall (u,z) ERx R j=1,...,N,
is an d,-cover of G, for 8, = d,, - €,, since

_Zlg uzaxz - uuxz)| = _Z|Cu1' gl\u;, T _Culg](uzwrz”

IA

Z |g qu:z —9j uzaxz”
< d,-€,.
Hence, we have proven (52). Next, we bound N; (2—2, Gn, (uf, :ﬂf)) Since

the functions are bounded, the proof of Lemma 16.5 in (Gyorfi et al.| (2002])

implies that

M <2: gm(uhxl)) <M (;d gnl’u1> M (m7gu2’(wf’x?)>
(53)
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for

t—u

Gn1 = {glzR%[O,K(O)]: gl(u):K( W ) (u € R), te[(),l]},

Gnao = {g2 . [0, 1] x R? —[0,1] : go(u,z) = (1(_Oo7y]om)(u, x)
(1.0)€ 0, xR, yer}

where 1(_, o m is the composition of the indicator function and the

function m. Next, we show
N (= ) <3 (8 8 (54)
— u : .
1 9. dn, n,l, 41 = €
By Lemma 9.2 und Theorem 9.4 (Gyorfi et al. (2002) we obtain

€n " 4e-d,, 6e-d, maX{Q’VQL}
(g o) < o (e (52
S Cﬁ . (d_n) 2-max{2,Vg:{71}

2 €n

for some constant c;3 > 0, where Vg+1 is the VC-dimension of the class of

all subgraphs of G, 1, i.e., of
g’r—;l = {{(u’ S) €R X IR7 gl(u) > S} S 01 € gn,l} .

Thus, it suffices to bound the VC-dimension of Q:; ;. For this purpose
we use the fact that K is left-continuous as well as monotonically decreasing

on R, and has a compact support, and get for s > 0

K(t;u) > 5 = 't_u

; < @(s) = *—2ut+u®—¢*(s)-h2 <0
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for ¢(s) =sup{z € R: K(z) > s}. Consider the set of functions

g~n,1 = {ga,ﬁmg RxR— R, ga757%5(u, v) = au® + Bu + 71)2 + 0,

(u,v) E Rx R, «a, 5,7, € R}.

If for a given collection of points {(u;, $;)}i=1...n, Where s; > 0 for i =

-----

1,...,n, the set {(u,s) : g1(u) > s} for gy € G, chooses the points

{(wiys8iy)y ooy (w84}, e
{(u> 5) : gl(u) > 3} N {(u% Si)}i=1 ,,,,, n = {(uip 51'1)’ ) (uiﬂ Sil)}’

then there exist «, 3, v, 6 € R such that for g, 5.5 € G, the equality
{(u,8) + Gapays(u,s) 2 0F O {(ur,6(51)); - - s (n, G(sn)) }
= {(uiy, d(si1)), - (wiy, d(s3,))}
holds. Therefore,
Vg:{,l <

V{{(“ﬂv): ga,B,w,S(u’v)ZO}i gegn} S 4’

where we have used Theorem 9.5 from Gyorfi et al.| (2002)) in the last in-

equality. The proof of (54) is complete.

Next, we observe that for

Grs={gs: R—=1[0,1]: g3(w) =1(ay(w) (weR), yeR}
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it holds
N €n g ( n n) N €n g n
a7 TN n,2, (U1, T - T A A Yn,3, U )
"\ 2d, - K(0) 7m0 "\ 2d, - 2K(0) 7
where v; € v} is defined as v; = m(u;,z;) fori=1,... n.

Finally, we bound N; ( OL Gns3, v?) using the n-th shatter coefficient

€n
2d, K
S(A,n) of the set A. Since G, 3 is a set of indicator functions 1,4 with

Ae A={(—o0,y]: y € R}, we have

€n
Nl (an'K<O)7gn,37'U1> _S(A,n)_n+1_2n

for n € N, where the last two inequalities follow from Theorem 9.3 and
Example 9.1 in (Gyorfi et al.| (2002)). The assertion is implied by (53), (54)

and the last result. O

S1.2 Proof of Theorem 1

To prove Theorem [I], we need three auxiliary lemmas.

Lemma 3. Assume that Gy,(qy, o) = « and that the kernel K is defined
as in Theorem[d. Furthermore, assume that (@ holds and that tq,...,t,

are equidistant in [0,1]. Then we have on the event that Yl(tl),. LY e
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pairwise disjoint that for any t€|0,1] it holds

C14

n-h,

Gy, (qvi,0) = Gyi(Gvia)| <
for some constant cy4 > 0 and n € N sufficiently large.

Proof of Lemma On the event that Yl(tl), ceey Y, are pairwise disjoint

GAyt is a cdf. with n jumps, and the jumps sizes are bounded from above by
K(0)
n ti—t;
S K ()

By assumption (2.4), Lemma 5 from Bott et al.| (2017) and assumption

(2.6)), we have

_ t—t;
ZK( . J)zcm-n-hn (t € [0,1]),
j=1

n

for some constant c¢;5 > 0 and sufficiently large n € N. This implies

Ci4
n-hy,

a < Gy(dvia) < o+

for some constant ¢;4 > 0 and n large enough. Using Gy, (gy;.») = o we get

the assertion.

Lemma 4. Assume that the kernel K is nonnegative and satisfies assump-

tion (2.4) of Theorem [l Assume further that the function t — Gy, (y)
for y € R is Héolder continuous with Hoélder constant C > 0 and Hélder

exponent p € (0,1], i.e.

|Gy, (y) — Gy, (y)| < Cls —t|P for all s,t €10,1] and all y € R,
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and assume that

n-h, =00 for n— oo. (S1.2)

Then for any t € [0,1] and equidistant ty, ..., t, € [0,1] we have

sup |Gy, (y) — E{Gy,(y)}| < c16 - 1%,

yEeR

for some constant c16 > 0 and sufficiently large n € N.

Proof of Lemma [4. We have

sup |G () — B{Gy, (1)}
yeR
oy Z B} a ()
yeR > i <thij>

Sy G, (9) K (54)
= zlelﬂlg Gy, (y) — 12?1 P (t;j > h
S Griy) — Gy, (v)] - K (55)

N

= i t—t;
yeR Zj:l K < hnj)
_ SOk ()
- n t—t;
Yk ()
< ci6 - hY

for some constant c¢;4 > 0 and n € N sufficiently large. Here the case 0/0
does not occur for n sufficiently large, since we get with assumption (51.2))

M < a.

0 <limsup sup min < limsup
n—00 te[o,l]J:L‘“m n n—oo T+ Ny
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Lemma 5. Assume that the kernel function K is defined as in Theorem [
Let ty, ... t, be equidistant in [0,1]. Assume further that and (2.9)

hold. Then there exist constants ci7, c1g, 19 > 0 such that

Gyi(y) — E{Gy, (y)}‘ N 10 (n)

P sup .
n n

te[0,1], yeR

< cig - n - exp(—cys - log(n)).

Proof of Lemma [5. By the definition of Gy,(y) and the fact that K is

nonnegative, we get

. R log (n
p sup |Gy, (y) — E{Gy, (y)}‘ > cr7 - & (n)
t€[0,1], yeR nhn
5 (1w () =Bl oy (] 1 (52)
i=1 ’ ’ n log (n)
=P| sup — > c17 .
t t—t; nny
e k()
Jj=1
(t:) (t:) t—1
<SPl osup =) Loy (Vi) =B Loon (V) ) K
tef0,1], yer | T Iy,

. [log (n) 1 <& t—t;
f . - — K|—2 1.
> telf(lJ,l] 17 whm JZ:; ( 0 )) (S1.3)

for some constant ¢;; > 0. Using that K is bounded from below by an

uniform kernel and Lemma 5 from |Bott et al. (2017)), we obtain

- t—t = t—t;
inf K . > inf T na .
B () 2 et ()

> ¢y (anh, —2)

Z C18 * nhn (814)
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for some constant c;g > 0 and n € N sufficiently large, where the last
inequality follows from assumption (2.6). Hence, the probability on the

right-hand side of (S1.3]) can be bounded from above by

1 0 (t:) t—ti
P sup |- (1 —oo, v —E{l,w Y })K
(tE[O 1], yeR n; 1) el fin
1
© e M.hn)
nh,
:P(nggn: Zg R, E{g(t<>a<z>)}|

|
> C7 - C18 °8 (n) . hn)

(S1.5)
for sufficiently large n € N,
@) = (0 ), (12 Y5), o (1, V)
and

6.~ {omxr = 0KO): gtna) =5 () 1emao)

((u,z) eRxR),t € [0, 1], yER}.

Next, we will apply Lemmato the last probability in (S1.5)). The assump-

log (n)hn
n

tions of Lemma [I] are satisfied for v, = ci9 - hy, €, = c17- C13 - and

B, = K(0):
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Since K satisfies 1) and lim nh, = oo follows from assumption ([2.6[), we
n—oo

have according to Lemma 5 from Bott et al|(2017)) for all g € G,

n - - n t—tz
> gl o) < s eo >t ()
=1 i n

cs - (2Bnh, +1)

IN

IN

cig - n - hy

for some constant c;9 > 0 and sufficiently large n € N. Furthermore, we

have

no 8B, vy,

og(n) €

n > co -

for some constant co; > 0 and n € N sufficiently large. By Lemma [I| we
obtain

n 62

€ _
8- sup N <—n,gm t,y ) - exp (—_. n > ’ S1.6
&9)€([0,1] xR)™ "8 (t.9) B, 128y, ( )

as an upper bound for the last probability in (S1.5). Using Lemma[2] (with

¢, = 1 =d,) we can bound the covering number in (S1.6)) by

8 4
€n _ 1 n
sup N <—7 Gn, (t, Z/)) <cz-n- (—) =Cp N <—>
(E)E(0,1]xR)" 8 €n log(n) - hn
for some constant cos > 0 and sufficiently large n € N. Since assumption

(2.6) implies h,, > 1/n for sufficiently large n € N, this can be bounded



16 FELIX HEIMRICH, MICHAEL KOHLER AND LISA KRISTL

further by

n 4< n? 4< 0

for some constant ce3 > 0 and sufficiently large n € N. Therefore, the term

on the right-hand side of (S1.6) can be bounded further from above by

2 2 .2
9 n €n 9 C17 " €18
co3-n’-exp | —— - =cCo3-n’ -exp | —— -log(n) |,
23 p( Bn 1287/71) 23 p( Ci9 g( )>

for some constant co3 > 0. If we choose in the beginning constant ¢;5 such
that ¢}, - cig/c19 > 10, the right-hand side converges to zero as n goes to

infinity. ([l

Proof of Theorem [1l.

In the first step of the proof we show for some constant ¢, > 0 that

. c log(n
P ((sup (G lane) ~ ol > 5 ({2 ) ) 20 0 o)

te[0,1] 2 nh,,
(S1.7)
implies
1
P<SUP |4vi0 — @il > ca- M—l—hﬁ) —0 (n—o00). (SL.8)
t€[0,1] nhy

Set €, = ca- ((log(n)/(nhy))/?+ht) for n € N and assume that for
t* € [0, 1] it holds

Gy o = Qv ol > €n (S1.9)
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Because of assumption (2.5)) and ([2.6) we have

1
%@+hﬁ—>0 (n — 00).

W.l.o.g. assume that

QYt*,a - QYt*,oz > €n.

The case qy o — Qv > €, can be shown analogly. Since Y; has a density
with respect to the Lebesgue-Borel measure, the cdf. Gy, is differentiable

on R for any ¢t € [0,1]. Inequality (S1.9), the Mean-Value Theorem and

assumption (2.1) ensue

Sl[lpl Gy, (Gvie) = Gyi(avia)l = Gy (Gvra) — Gy (qve.a)l
t€[0,1

= Gy (dvpa) = Gvp(@vp.a)

> Gy (QYt*,oz +€n) — Gy (QYt*,a)

= g(t*7£)‘€n
> %-en (S1.10)

for some & € (qv#.a, @vra + €n). Thus, we have shown that (S1.9) implies

(151.10)), which yields the assertion of the first step.
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In the second step of the proof we show (S1.7). Since we have

sup |Gy, (¢vi.a) — Gy (Gvia)l

t€[0,1]
< s Gri(va) = Grilne)l + sup [Gyilivia) = E{Grilan.a) }|
tel0,1] t€[0,1]
+ sup |E {éYt<‘th,a)} - GYt(dYt,a)
te(0,1]

= T'n+ 1o, +T5,,

it suffices to show

P(Tm >4 < 1‘;35:) + hg)) S0 (n— o0) (S1.11)

for ¢ = 1,2,3. For ¢ = 1 this follows directly from Lemma [3] Here
Gy,(qv, o) = « is guaranteed, since Y; has a density with respect to the
Lebesgue-Borel measure. Furthermore, Y;,,...,Y; are pairwise disjoint,

since they are independent and the corresponding cdf. are continuous. For
1 = 2 the assertion (S1.11)) follows from Lemma |5 and for ¢ = 3 this follows

from Lemma [l 0

S1.3 Proof of Theorem [2

Let C,, be the event that

SUp |Gvi.e — @vial < mn and  sup |my(t,x) —m(t,z)| < B,.
t€[0,1] t€[0,1]
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In the first step of the proof we show for arbitrary t € [0, 1] that if y € R

satisfies

Y = @vial <26, + 20, (S1.12)

then we have on the event C),

X 1
Ef {Limt.z0<uy } = o (Grily) o),

where in E} the expectation is computed with respect to P,.

To do so, we modify arguments of the proofs of Lemma 1 and Lemma 2 in

Kohler et al.| (2018). Set

A, = {ze K, m,(t,z) < qv,a — 300 — 30},

B, = {reK,:m,(t,z) > Gv,a + 30, + 3.}
for n € N. Then h(t, z) is given by
1
h(t,$> = C_ . ]l{m¢AnUBn} . f(t, :B)
t
Using (S1.12)) we obtain for z € A, on the event C,
) Z QYoo — 26n - 277n > qAYt,a - 2671 - 37771 > mn(t,x) + Bn Z m(t, CL’)

which implies

Limta)<yy - Laeany = Lizeany-
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Moreover, (S1.12) and x € B,, imply on the event C,,
Y S qy;,a + 2677, + 27777, < (th,a + 2571 + 37771 < mn(ta J]) - Bn S m(t, CL’),

which implies
Lim(tay<y} - LizeB,y = 0.

Therefore, the assertion of Step 1 follows from

E; {Lmt.z0<) }

- /R]l{m(tw)Sy}PZt (dzt)

= /R Lm(to)<yy - h(t, x)dx
1

= o . /R Lty <y} - (1 —Tieeany — ]1{9663”}) - f(t, x)dx
1

o </ Limay<yy - f(E,2)de — / Tizea,y - f(t,x)da:>
t R R
1

- — - (Gy,(y) = by).
Ct

In the second step of the proof we show that we have on the event C),

inf > (Bn + 1), S1.13
nfe = om (Bn + 1) (S1.13)
sSup ¢ S Co5 - (Bn +77n) (8114)
t€[0,1]

for some constants coy > 0, co5 > 0 and n € N sufficiently large.

First, we show (S1.13)) using the definition of the event C),, assumption
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(2.1) and the fact that (5, and 7, go to zero as n goes to infinity

inf ¢, > inf / , (v, 380300 < (62) Sayy a+38a 300} * f (T, 0)d
’ R

Z telf(l]:,fl] \/Rd (]]'{th,a_zﬁn_angm(tvaj)Sth,a+2Bn+2nn}) ’ f(t7 x>dx

> mf P(m(t, Xt> c (QYt,a - 2ﬁn - 277n7 th,a + 2ﬁn + 277”))

T telo,1]
> inf inf t - (406, + 4n,
> int (Lint alt.0) - (46, + 49,

> coq - (Bn 4 1)

for Eip = (¢via — 260 — 20, Qvi.0+208,+2n,), some constant cyy > 0 and

n € N sufficiently large. Analogously, one can prove inequality (S1.14]) using

assumption (3.8)) instead of (2.1)). Inequality (S1.14)) is implied by

sup [ T fta)ds = sup P(Xi ¢ K,)

t€[0,1]J/ R4 t€[0,1]

< P(Iel0,1:X, ¢K,)

S 034(571_{'7771)

for some constant c3; > 0 and n € N sufficiently large, where the last step
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holds by assumption ({3.5)), and by the fact that on C,, we have

sup / Lae K dv, a—3Bn—310 <mn(t:2)<dv, a+36n+3ma} - (¢, T)dx
te[0,1] JRAd

< sup / ek ay, a8 —tna<m(te) <av, ot 48 +ana} * f (1 0)de
R

t€[0,1]

S S}lp] P(th,a - 4571 - 47771 S m(t, Xt) S th,a + 4571 + 477n)
tel0,1

< sup sup g(t,z) - 86, + 81y
t€[0,1] 2E€Fy,n

S C35 - (ﬁn + TIn);

for F} = [qv;.a—48n—4Mn, @v, oa+48n+4n,] and some constant ¢34 >0, because

of (3.9).

For t € [0, 1] define the sets
Hyn = {yeR: |y—avial <Bnt+mnl
[t,n = {y eR: ’y - th,a’ < 2671 + 27771}

In the third step of the proof we prove that on the event C,, we have

sw B G0} - Gnly)| < Gpn,

te[0,1], y€H¢,n
for large enough n € N, where the expectation Ej , is defined with re-

spect to PZt1 T,

First, we observe that by the Theorem of Fubini and the independence
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of Zy,,...,Z;, we have
E} . {Ct,- Lnits, z0) <y + bti} =, - E} {]l{m(ti,zti)Sy}} + by, (S1.15)

Next, we observe that y € Hy,, yields y € I, ,, for every i € {1,...,n}
that satisfies K (%) # 0 (which implies [t; — t| < [ - h,1 because of

assumption (2.4)) for n € N sufficiently large, since
ly—avi. ol < Y= aviol +lavia — avi, .|
< Batnmn+Crft =t
< Botna+Cr By
< 206, + 20,
for n € N sufficiently large, where we have used that the function ¢t — gy,

is Holder continuous and that assumption (3.13]) holds. Thus, (S1.15)) and

Step 1 yield for y € I, and for n € N sufficiently large

(o Bf {Tpmn 2z } + ) - K (52)

* ~N(IS i=1
Etl,...,tn {G% )(y)} =

Here the case 0/0 does not occur for n € N sufficiently large, since

|t — ;]

. . ) 1
0 <limsup sup min < lim sup < a,
n—oo  te0,1]J=Lm N1 n—oo T N1
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where the last step holds because of (3.12)), and thus > K (ifti) > 0 for
=1 "

equidistant ty,...,¢, € [0,1] and n € N large enough. Using this, the fact
that K is nonnegative and satisfies (2.4 and that the function t — Gy, ()
is Holder continuous, we get

sw B G0} - o)

te[0,1], yEHi

= sup -
t€[0,1], y€H: =t
Z K hn,l

i=1
< sup ~
t—t;
tG[O,I], yEHt,n Z K (hnyi>
7=1
Gt~ K (£2)
< sup i=1 _
t—t;
t6[071]7 yEHt,n Z K <hni>
J=1 ’
Z Cy - 3P - hfz,l K (2;1:11)
S sup =1 .
tc[0,1], yEH¢ n t—t;
S (i)
J=1 '
= Co-BP-hY,

for n € N sufficiently large, which yields the assertion of the third step.

In the fourth step of the proof we observe that because of the assump-

tions (3.3) and (3.4) as well as the independence of the data sets D,,; and
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D,,» we have

P(C,) —1 for n— oo.

In the fifth step of the proof we show for some constant cyg > 1 the

convergence

P sup
yER, t€[0,1]

I
> Cog + (B + 1) - og(n)} N Cn) -0 for n — oo.

Using (S1.15)), assumption (2.4 as well as the nonnegativeness of the

kernel K and Lemma 5 of Bott et al. (2017)), we get for

log(n)
nhn,l

571 = Co6 * (Bn +77n) :
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the inequality

P ({ sw |G w) B, {60} > @} n on)
y€eR, t€[0,1]

S et (525 ) (Wm0 — B { L it 20 )
= P|{ sup | &2 >0, 0N Cy

2 >k ()
P ({ sup ( ) ]l{m (ti,Ze;)<y} — E; {]l{m(tz Zy, )<y}}}
yeR, te(o, 1}
> inf K } )
tel0,1] 4
Jj=1

” t—t; .
P({ sup ( ) ]l{mt Zi )<y} T Eti {]l{m(tinti)<y}H‘
yER, t€(0, 1}
>cg-(a-n-hn71—2)~(5n}ﬂ0n>

P sup c (
({yER te(0,1] Z i

1
>§~02-a~n~hn,1~5n}ﬂCn> (S1.16)

IA

IN

IN

) Ltz <yy — Er, {]l{m(ti,zti)Sy}H|

for sufficiently large n € N, where we have used assumption (3.12)), which
implies that n-h,, ; goes to infinity as n goes to infinity, for the last inequal-

ity. In order to apply Lemma [I] we define a set

G = {g : [O, 1] x R? — [07625‘(6n+77n)'K(0)] :

t—u
9(t, ) = cu - Lje,1<eas(Butna)} - Lm(uar<yy - K ( Pt )

(u,z) € [0,1] xRY), t€10,1], y € R},
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where on the event C,, the inequality |c,| < co5 - (B, + 1) is satisfied for all

€ [0,1] and n € N sufficiently large according to Step 2, set

(t_v Z) = ((tlv Zt1)7 (t27 Zt2)7 ce (tm Ztn))

and rewrite the probability on the right-hand side of (S1.16) as

gegn

I~ — - PP 1
P (SUP ﬁZg(t(i),Z(,-)) —E; {9(tw), Z0)}| > §'Cz'a'hn,1-5n>

=P (su_p —Zg v Zwy) — Er {9y, Zw) | > en> : (S1.17)

gEgn

for €, = 1 ¢y o+ (Bn+nn) - (log(n) - hy1/n)1/? and n € N sufficiently
large. Next, we show that for this €,, v, = cor - (B + M) - by and B, =

95 + (B + M) - K(0) with some constants co7, co5 > 0, the assumptions of
Lemma [T hold:

Since (2.4 holds, we obtain by Lemma 5 of Bott et al.| (2017))

1 < —t
E;g(ti;xi) < sup e (B + 1) - Z]l[ ﬁﬁ]( )

te(0,1]

S Cor * (Bn + nn) . hn,l =Vn

for arbitrary xq,...,x, € R, some constants co5,cor > 0 and n € N suffi-
ciently large, where we have used assumption (3.12)) in the last inequality.

Furthermore, we have

8 Bn-Vn  Cos(Bntmn)’ hny  cosen

{wn ) - L

<n

r - log(n) ~

2
€n
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for some constant cog > 0 and n € N sufficiently large. Thus, assumption

(S1.1) and n > 8- B, - v, /¢? are satisfied. By Lemmall] we get

€n 5 ,r n- e
8 - sup M (—n, Gn, (t, 2)) - exp (——” ) (S1.18)
(£.2)€(0,1] xR 8 128 - B, - vy,

as an upper bound for (S1.17]). The covering number can be bounded by

€ B, + 8
sup M (g”,g‘n, (t, 2)) < oM+ ( L Un) (S1.19)

(£,2)e([0,1] xRd)™ €En

for some constant cy9 > 0, using Lemma . Using (S1.16]) to (S1.19), we

P sup
y€R, t€[0,1]

> Cog - (Bn —+ nn) . Tllog(n) } N Cn>

obtain

O~ B, {65 W)}

: hn,l
ﬁn + T i C%CSG
< ‘n- . _ -1
- oo 1 ( €n P 512 - K(O) + Co5 * Cor Og(n)
< c;n u 8 e Gist log(n)
. . —_—_— . X _ .
= log(n) - hn1 P\ 7h2- K(0) - co5 - o7 8

< " 2% log(n)
Csa-m’-exp [ — -log(n
- 52 P 512 - K(O) + Co5 * Cov &
< cgp-n”-exp(—10-log(n)) (S1.20)

for constants csg, c31, 30 > 0 and n large enough, where we have used that
(3.12)) implies h,; > 1/n for n large enough and where co6 was chosen at
the beginning of Step 5 large enough. Since the right-hand side of ([S1.20))

goes to 0 as n goes to infinity, Step 5 is shown.
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Let J,, be the event that

(I5)

th,a — 4y, ,a : (ﬁn + nn)

N | —

sup <

te(0,1]

In the sizth step of the proof we prove that
P(J,NC,) —1 for n— oo.

Let K,, be the event that

~(IS 1
sup G(yi )<qyt,a — 5 (Bn + m)) <a
tel0,1]

and L,, be the event that

. 1
'fG”S)< ot = (B, n>>.
Il Gy, v, +3 (Bn+1m) ) >«

We observe that on the event K,, N L,, we have for all ¢ € [0, 1]

(IS 1 1
Q§/t703 S [th,a - 5 ' (ﬁn + nn)a 4Y; + 5 ) (ﬁn + nn)} :

Thus, the event K, N L, NC, implies the event J, NC,, for sufficiently large

n € N. In the following we will show that on the event C,, we have

K,NL,

tn{@gs)(y)}‘é%(ﬁﬁm) log(n) (S1.21)

(IS
D sup |GV (y)—Ef, o

te(o,1],
yeR

.....

for n € N sufficiently large, which implies the assertion by Step 4 and Step 5.
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To show (S1.21]), we first observe that on the event C), the inequality

< Gy fPRE (S1.22)

holds by Step 3, since gy, o — 1/2+ (8, +1n) € Hi . Additionally, we obtain

by the Mean-Value Theorem for an arbitrary ¢ € [0, 1]

Gy, (th,a) — Gy, (th,a - % ) (Bn + 7771))
= 9690 (1 — (00— 5 (Bu b))
> % “(Bn + M) (S1.23)

for ¥y € [qv,a — 1/2 - (Bn + Mn), @vi.0), sOme constant ¢; > 0 and n € N
sufficiently large, where we have used assumption (2.1 and that 3, and 7,
converge to zero as n goes to infinity. Using o = Gvy,(gy;.a), which holds

because Y; has a density which is bounded away from zero in a neighborhood

of gy, o, the inequalities (S1.22)) and (S1.23) as well as the assumptions ((3.12))
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and (3.13)), we get on the event C,,
K,
A 1
— { sup Gg& (qm _ 5(& + nn)) < a}
te(0,1]
A(IS) 1 N A 1
2 ¢ sup Gyt v, 0 — §(ﬁn+nn) —-E; G QYt,a - §<5n+77n)
t€(0,1]
+ sup (E; ..... tn {G(Is)(qyf = (Bnt1n )} Gy, (cm (Bﬁ%)))
tel0,1]

+ sup <GYz <qu,a - %(Bn + nn)) - GYt(QYt,a)) < 0}

t€[0,1]

. 1 N . 1
= { Sup (Gg,gs> (qy - 56, +77n)) “ B, {G%ff) (qy ~ 56, +nn>)})
te[0,1]

51(671 + nn> CZ ’ Bp ’ hﬁ@}

. 1 N ) 1
2 { sup (G%S) (q 58 w)) ~ B . {G§£5> (qy ~ 56 +nn>)})
te[0,1]

< CQﬁ(ﬁn + 7]n> M}

nhn,l
R log(n
5 { sup [GU9 ()~ B, {GE9 W) )] < eanBurtm) 22 (51,22
re[olé] nhpa
ye

for n € N large enough. Analogously to (48) one can show for any ¢ € [0, 1]

1 1
GYt (th,a + 5 : (571 + nn)) — = GYt (th,a + 5 : (ﬁn + 7771)) - GYt (th,a)

> 5 - (Bt ) (53)

for some constant ¢; > 0 and n € N large enough. Using (47) and (55) as
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well as the assumptions (23) and (24), we get on the event C,

Ly,

(IS) 1
frd — >
{tel%fl} GYt (th o (Bn + nn)) > a}

2 {té%fl} (GAg/ : (th at3 (/Bn+nn)> - EZ ,,,,, tn {G(IS) (th ats (Bn_’_nn))})

+ inf ( :1 ..... tn{G(Is) (QYt at3 (ﬁn+77n)) — Gy, (th ats (/6n+77n)))

t€0,1]

1
i - —al >
+t€1%f1] (G (qyt,a + 2(5n + nn)) a) > 0}
N A(IS) 1 A (15) 1
= q—sup (E}, GV avia + 5(Butma) o — Gy, | @via + 5 (Bat1n)
t€[0,1] 2 2
1 o (a
— sup (GYt <th,a + _(ﬁn+77n)> - Et1 ,,,,, tn{GgfiS) (‘JYt a (5n+77n)>}>
t€[0,1] 2

+ inf (Gyt (th,a + %(ﬁn‘f‘nn)) - GYz (‘h’t,a)) > 0}

t€[0,1]

) 1
D {—sup (E ..... tn{G( )<qm ats (5n+77n))} - G(y{ts)(qm + —(5n+77n)>)
t€0,1] 2

A A C1
..... tn {Ggfzs) (y)}—G%S) (y)) S (B 1) = CaBPHE

yER
" A(IS) A(IS) log(n)
D q sup (Ef {GYt (?/)}_Gyt (y)‘ < 26(Bn + M) P (S1.25)
ze[o,ﬂy Nhp1
yE

for n € N sufficiently large. Since (S1.24]) and (S1.25)) imply (S1.21)) for n

large enough, we have shown the assertion of Step 6.
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In the seventh step of the proof we show the assertion of the theorem.

First, we observe that on the event J, by the Mean-Value Theorem

and

~(IS
( 03_qY15,a

: ’Gyt (q%i?) —Gvilgvi.0)

Cs3- ‘GYt (CI% ) Gy, @v;.0)

IA

holds, for some ¥: € (¢v,.a — 1/2 (Bp+1Mn), @vi.0 +1/2 - (Bn +1r)) and some
constant c33 > 0. Let 6 > 0 be arbitrary. Using the definition of cjgb;? the

right-hand side of the above inequality can be bounded further from above

by

3 |Gy, (d@f‘?) — Gy, (vi.0)
< calon (1) - 647 (1)) + e 68 (422) |
Oy (#0) - 64 (42| + e (@gg@ (#2) )
< eafon (#02) - G (002) | + o (G (402) - 627 (02 - )
s ) 407 (1) - . (1)

cs3 |Gy, (@g? - G(QZS) (ﬁ?)‘ + C33
+C33 ‘GYt (Q%i?) — Gy, (

Yo ‘Gyt (th 9) A1) (q; ) 9) ) . (S1.26)
Since Gy, (-) is Lipschitz-continuous with Lipschitz constant co for all ¢ €

[0,1] on H,, for n € N sufficiently large, which follows from assumption



34 FELIX HEIMRICH, MICHAEL KOHLER AND LISA KRISTL

(3.8)), we have

sup |Gy, (a41)) = Gy, (al1) ~ 0)| < o -0,

te(0,1]

Using this, inequality (S1.26)) and the fact that on the event J, we have

g}gif € H;, as well as cjgsa) — % - (Bn +mn) € Hyp, we get on the event J,

Qgi? — Q0| < sup 3c33 - GYt (y) _ ég/ItS) (y) .

yEH¢ n, t€[0,1]

sup
t€(0,1]

for n € N sufficiently large. Therefore, we obtain for

log(n
Sp = 3C33 -+ C26 ((ﬁn + 1) - n%f ) +Co - 7 hﬁ&)
n,1

the following inequality

P( SUp |4y — @via| > sn)
tef0,]]
c ~(I5)
< PH{J,NC}Y)+ P({ SUp |Gy, o — Qia| > sn} N{J,N C’n}>
t€[0,1]

< P{J.NCW}9)

+P({ sup 3c33 Gn@_égs)@
yEH¢ n, t€[0,1]

> sn} N{J.N On}).
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By applying Step 3 the right-hand side can be bounded by

P ({, N C,}%)

+P sup ‘E* tn {GgS) (y)} - GgS)(y))

yER, te[0,1]

* - IS Sn
+ osw (B {00} - G| > - o,
yth,n» te[ovl}

< P{J.NGC}Y)

P sup
yeR, t€[0,1]

* A(IS AN(ILS
Etl,...,tn {Gg/t )(y)} - Ggft )(y)‘

> ca6° (Bnt1n)- (S1.27)

for sufficiently large n € N. Since the right-hand side of (S1.27)) converges
to zero as m goes to infinity because of Step 5 and Step 6, the proof is

complete. ([l
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