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Foreword: Our friend and colleague Peter Hall died in Melbourne, Australia on

January 9, 2016, before this manuscript was completed. Peter worked hard on this

paper before he fell ill, deriving all the theoretical results of the manuscript, whence

our decision to submit this manuscript for the special issue in his honour. His theory

is particularly striking since it reveals that the properties of the prediction interval

depend on whether or not the contaminated covariate takes the value zero. Peter

was very interested by this phenomenon but could not find an intuitive explanation

to it. We checked his proofs thoroughly but could not find an intuitive explanation

either, except that a similar behaviour is sometimes encountered in other problems.

Abstract: In recent years, demand for reliable small area statistics has considerably

increased, but the size of samples obtained in small areas is too often small to

produce accurate predictors of quantities of interest. To overcome this difficulty,

a common approach is to use auxiliary data from other areas or other sources,

and produce estimators that combine them with direct data. A popular model for

combining direct and indirect data sources is the Fay-Herriot model, which assumes

that the auxiliary variables are observed accurately. However, these variables are

often subject to measurement errors, and not taking this into account can lead to

estimators that are even worse than those based exclusively on the direct data.

We consider structural measurement error models and a semi-parametric approach

based on the Fay-Herriot model to produce reliable prediction intervals for small

area characteristics of interest. Our theoretical study reveals the surprising fact

that the properties of the prediction interval are not the same for all values of the

noisy covariate. Indeed, the convergence rates are slower when the contaminated

covariate takes the value zero than in other cases. Our procedure is illustrated with

an application and simulation studies.

Key words and phrases: Deconvolution, density estimation, Fay-Herriot model,

Fourier transform, Laplace distribution.

1. Introduction

Small area estimation methods are indispensable statistical tools to the ad-

ministrators and policy makers in National Statistical Offices and many world
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organizations. Economic planning and welfare activities of the governments and

non-government organizations rely heavily on accurate data measuring income,

employment, living and health conditions for various geographic and demographic

segments. While nationwide surveys such as the American Community Survey,

the National Health and Nutrition Examination Survey (NHANES), and the Na-

tional Health Interview Survey (NHIS), collect large samples at the national level,

the subset of the data collected in local geographic and demographic domains,

also known as small areas, is usually of too small size to compute accurate small

area statistics.

To produce more reliable estimators at the small area level, a common ap-

proach is to use model-based methods which combine data from multiple sources,

surveys, administrative records, registers, and social media; see for example Rao

(2003), Pfeffermann (2013), Ybarra and Lohr (2008), Rao and Molina (2015).

Suppose we are interested in predicting a random quantity Tj in small area j,

where j = 1, . . . , n, and that we have at our disposal a sample of independent

pairs (A1, Y1), . . . , (An, Yn), where the component Aj is a vector of auxiliary vari-

ables and Yj is a direct estimator of Tj . The estimator Yj is computed based on

a sample only from area j, and it is referred to in small area estimation litera-

ture as a direct estimator (see Rao and Molina (2015)). A popular small area

estimation model assumes the decomposition Yj = Tj + εj , where εj ∼ N(0, τj)

and the Tj ’s and the εj ’s are completely independent. We shall follow the small

area literature and assume that the τj ’s known; see González-Manteiga et al.

(2010) for how these can be estimated in practice. See also Otto and Bell (1995).

The widely used Fay-Herriot model (Fay and Herriot (1979)) decomposes Tj as

Tj = β0 + β1Aj + Vj , where Vj ∼ N(0, σ2V ), with various independence mod-

els in use. Here we assume that the Aj ’s, the Vj ’s and the εj ’s are completely

independent.

A difficulty in applications is that it is not always possible to measure all the

components of the auxiliary vectors Aj accurately, and the techniques developed

for covariates without measurement error may perform rather poorly in this

case; see for example, Ghosh, Sinha and Kim (2006), Ybarra and Lohr (2008),

and Torabi, Datta and Rao (2009). In particular, if the measurement error is

not taken into account, using the auxiliary Aj ’s may result in estimators that

are even less accurate than those based on the direct data from the small areas;

see Ybarra and Lohr (2008), who propose a corrected small area predictor based

on the empirical best linear unbiased prediction approach. While Ghosh and

Sinha (2007), Ybarra and Lohr (2008), and Datta, Rao and Torabi (2010) used
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the frequentist approach to the problem, Ghosh, Sinha and Kim (2006), Torabi,

Datta and Rao (2009), Arima, Datta and Liseo (2012), Arima, Datta and Liseo

(2015), and Datta, Rao and Torabi (2010), proposed a Bayesian approach.

While the aforementioned methods are useful, their focus is on point pre-

dictors, whereas in the small area estimation literature where the covariates are

measured without error, there is substantial interest in the construction of pre-

diction intervals for the Tj ’s; see for example Datta et al. (2002), Hall and Maiti

(2006), Chatterjee, Lahiri and Li (2008), and Diao et al. (2014). In this work,

our goal is to construct prediction intervals for the small area population means

T1, . . . , Tn by taking the measurement errors of covariates into account and by re-

laxing some of the distributional assumptions for the random effects and sampling

errors often employed in the literature. Although we focus on the construction of

those intervals, we note that since our method is based on estimating the condi-

tional distribution of Tj given the observed data, it can also be used to construct

predictors under these relaxed assumptions.

In Section 2.1, we introduce a Fay-Herriot model with a covariate subject to

measurement error. To construct prediction intervals, we derive the conditional

distribution of the small area characteristic Tj given the values of its direct es-

timator Yj and other observed data, and suggest estimators of this conditional

distribution in Section 2.2. Section 3 gives the asymptotic properties of the esti-

mators of the model parameters and the prediction intervals. Simulation studies

and an illustrative example are presented in Section 4. In Section 5, we extend

our approach to the case where one of the error distributions is unknown. Esti-

mation of the parameters is relatively standard and is deferred to Appendix S2.

Proofs of the theoretical results are given in Section 6 and in Appendices S5 and

S8.

2. Model and Estimators

2.1. Model and data

We are interested in predicting Tj , for j = 1, . . . , n. We have at our disposal

a sample of independent (p + 2)-vectors (Wj , Q
T
j , Yj), for 1 ≤ j ≤ n, where the

connection between (Wj , Q
T
j ) and Aj is described in the next paragraph. We

assume a measurement error version of the Fay-Herriot model:

Yj = Tj + εj , Tj = β0 + β1Xj + βT2 Qj + Vj , Wj = Xj + Uj , (2.1)

where β0, β1, Uj , Vj , Wj , Xj , and Yj are scalars, β2 and Qj are p-vectors, β0,
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β1, and β2 are unknown, the variables Qj , Uj , Vj , Xj , and εj , for j ≥ 1, are

completely independent, the Uj ’s have a common, known distribution symmetric

around zero, the Xj ’s have a common, unknown distribution, the Vj ’s have zero

mean and unknown variance σ2V , the εj ’s have a known distribution symmetric

around zero and known variance τj , and the τj ’s are uniformly bounded. We

consider two cases: the distribution of the Vj ’s is known except for the variance

σ2V , and the distribution of V is totally unknown.

The data come from two sources: direct data Y1, . . . , Yn, and indirect aux-

iliary observations or covariates (Wj , Q
T
j ), which are a partially noisy version

of Aj = (Xj , Q
T
j ); Wj is a noisy version of Xj , and the measurement error Uj

reflects the inaccuracy in the measurement process, for example due to sam-

pling variability. The model at (2.1) resembles a classical measurement error

linear model, and estimating the unknown parameters can be done using stan-

dard methods (Appendix S2). However, our prediction problem differs from that

one because, since we are in a small area context, we have at our disposal two

measurements, Yj and (Wj , Q
T
j ), of the variable Tj to be predicted. In a standard

linear prediction problem with errors, we would observed only (Wj , Q
T
j ).

Throughout we use (QT, T,W, Y, ε, τ) to denote a generic (QT
j , Tj ,Wj , Yj , εj ,

τj), where τ = var(ε) is known. (Here, τ denotes the variance of a generic ε

and so we have dropped the index j in τj .) Our aim is to develop methodology

for constructing a prediction interval for T , given the value of (QT,W, Y ) using

the data (QT
j ,Wj , Yj), 1 ≤ j ≤ n. To summarise, we observe n + 1 triplets:

(QT,W, Y ), which corresponds to the individual whose value of T we wish to

predict, and (QT
j ,Wj , Yj), for j = 1, . . . , n, which we use to construct estimators

of all the unknowns in this prediction problem. Of course the procedure can be

applied for all individuals in the study, using in each case the other n observations

to estimate the unknown quantities.

To do this we need to construct an estimator of the density of T conditional

on (QT,W, Y ). In Appendix S1, we prove that it is given by

fT |Q,W,Y (t | q, w, y) =
fε(t− y)

∫
fV (t− β0 − β1x− βT2 q) fX(x) fU (w − x) dx∫

fV+ε(y − β0 − β1x− βT2 q) fU (w − x) fX(x) dx
,

(2.2)

where β0, β1, β2, the variance σ2V of V , and the density fX are unknown. Es-

timating the unknown parameters is relatively standard; see Appendix S2. In

Section 2.1, we show how to estimate the other unknown quantities, and deduce

our prediction intervals. In practice it is commonly assumed that fV and fε are

known (usually normal), and for the main part of this work we shall focus on that
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setting. However, we shall also see that it is possible to relax this assumption;

see Section 5.

2.2. Prediction intervals

To construct a prediction interval for T , we need to estimate the conditional

distribution FT |Q,W,Y corresponding to the density fT |Q,W,Y at (2.2). The latter

depends on fX , fV and fε. In the small area literature, it is often assumed that

fε is known and fV is known up to its variance σ2V , which is the setting we use

in this section to derive an estimator of FT |Q,W,Y . In particular, if we let g

denote the density of V/σV , then fV (·) = σ−1V g(·/σV ), where g is assumed to be

known. In this case, we can use relatively standard deconvolution methods, and

the most interesting aspect of this problem is the theory, which reveals unusual

and intriguing properties; see Section 3. Our simulation results in Section 4.2

suggest that our procedure seems relatively robust against misspecification. In

Section 5 we derive an estimation procedure in the case where one of those two

densities is unknown and estimated from the data.

When fε and g are known, the only unknowns in (2.2) are β0, β1, β2, and

σ2V , which can be replaced by standard estimators from the measurement error

literature, using techniques discussed in Fuller (2009), Buonaccorsi (2010), and

Delaigle and Hall (2011) (see Appendix S2), and fX(x), which can be estimated

by the kernel deconvolution estimator of Carroll and Hall (1988) and Stefanski

and Carroll (1990):

f̂X(x)=
1

nh

n∑
j=1

KU

(
x−Wj

h
;h

)
, KU (x;h)=

1

2π

∫
exp(−itx)

φK(t)

φU (t/h)
dt, (2.3)

where φK is the Fourier transform of a kernel function K, h > 0 is a smoothing

parameter called bandwidth, and, for any random variable R, φR(t) = E(eitR)

denotes the characteristic function of R.

Moreover, fV+ε(s) =
∫
fε(v) fV (s − v) dv = σ−1V

∫
fε(v) g{(s − v)/σV } dv,

which can be estimated by f̂V+ε(s) = σ̂−1V
∫
fε(v) g{(s− v)/σ̂V } dv. Using (2.2),

we can estimate FT |Q,W,Y (t | q, w, y) =
∫ t
−∞ fT |Q,W,Y (s | q, w, y) ds by

F̂T |Q,W,Y (t | q, w, y)

=

∫ t
−∞ fε(s− y)

∫
fV (s− β̂0 − β̂1x− β̂T2 q) f̂X(x) fU (w − x) dx ds∫

f̂V+ε(y − β̂0 − β̂1x− β̂T2 q) fU (w − x) f̂X(x) dx
. (2.4)

Next, let α ∈ (0, 1) and define t̂α = t̂α(q, w, y) to be the solution, in t, of

F̂T |Q,W,Y (t | q, w, y) = α. Approximate one-sided prediction intervals of nominal
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coverage 1 − α for T given (QT,W, Y ) can be defined by ÎLα = (−∞, t̂1−α] or

ÎRα = [t̂α,∞). Approximate two-sided intervals of nominal coverage 1 − α can

be defined by Îα = [t̂α1
, t̂1−α2

], where α1 + α2 = α; a typical choice is to take

α1 = α2 = α/2.

In the small area literature it is often assumed that V and ε are normally

distributed, with zero means and respective variances σ2V and τ . In this case we

have

FT |Q,W,Y (t | q, w, y) =
Ψ1(t, y, q, w)

Ψ2(t, y, q, w)
, (2.5)

where, for k = 1, 2, Ψk(t, y, q, w) =
∫
ψk(t, y, q, w, x) fX(x) dx, and

ψk(t, y, q, w, x) =

[
Φ

{
t−

σ2V y + τ
(
β0 + β1x+ βT2 q

)
σ2V + τ

;
τσ2V
σ2V + τ

}]2−k
×φ
(
y − β0 − β1x− βT2 q ; σ2V + τ

)
fU (w − x), (2.6)

with φ(x;σ2) and Φ(x;σ2) corresponding to the univariate normal density and

distribution functions when the distribution has zero mean and variance σ2.

In that case, the estimator at (2.4) can be simplified in

F̂T |Q,W,Y (t | q, w, y) =
Ψ̂1(t, y, q, w)

Ψ̂2(t, y, q, w)
, (2.7)

where Ψ̂k(t, y, q, w) =
∫
ψ̂k(t, y, q, w, x) f̂X(x) dx and

ψ̂k(t, y, q, w, x) =

Φ

t− σ̂2V y + τ
(
β̂0 + β̂1x+ β̂T2 q

)
σ̂2V + τ

;
τ σ̂2V
σ̂2V + τ


2−k

× φ
(
y − β̂0 − β̂1x− β̂T2 q; σ̂2V + τ

)
fU (w − x). (2.8)

3. Theoretical Properties

The procedure we have derived for the case where g, the density of V/σV ,

and fε are known, uses relatively standard arguments from the deconvolution

literature. However, establishing theoretical properties of the prediction inter-

vals derived in Section 2.2 is rather difficult and requires a number of steps. An

interesting aspect of this problem is that the theory reveals some intriguing prop-

erties. Indeed, the accuracy of the prediction interval depends on the value taken

by W . Specifically, prediction is more difficult when W = 0, where parametric

rates are not possible, than for other values where we can reach the parametric

rate.
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In Appendix S2 we establish consistency of the parameter estimators derived

there. In Section 3.2, we derive theoretical properties of the estimator of the

conditional distribution FT |Q,W,Y from Section 2.2. In Section 3.3 we investigate

theoretical properties of the quantile estimators t̂α defined in Section 2.2. Finally,

we deduce the theoretical properties of our prediction intervals in Section 3.4.

Throughout this section we assume that the characteristic function φU is real-

valued and does not vanish on the real line. Moreover, we establish our results

under the assumption that V and ε are normally distributed. In particular, we

consider prediction intervals based on the version of the estimator F̂T |Q,W,Y of

FT |Q,W,Y defined at (2.7). It would be possible to extend our results to the

prediction intervals under other distributional assumptions, as well as for the

fully nonparametric version we shall suggest in Section 5, but the arguments

would be even more tedious than those for the estimator from Section 2.2, which

are already quite long and technical.

3.1. Conditions

We start by describing conditions that will be needed to prove our re-

sults. Recall the notation ψk from Section 2.2. Define χ(t) = χ(t | s, y, q, w) =∫
eitx ψk(s, y, q, w, x) dx for either k = 1 or k = 2, let χ1 = <χ, χ2 = =χ denote

the real and imaginary parts of χ, put ρj = χj/φU , let r ≥ 1 be an integer, and

set β(t) = t2r φU (t),

Ψkr(x) =

(
∂

∂x

)2r−1
ψk(s, q, w, x).

We assume that, for constants C1, C2, . . .,

(i) Ψkr has a jump discontinuity of size sk at w, and (1+ |x|) |Ψ(`)
kr (x)| is

bounded and integrable on (−∞, w)∪(w,∞) for ` = 1, 2, 3, 4; (ii) φU (t)

is real valued and does not vanish for any real t, φK is real val-

ued and compactly supported, |φ′K | is bounded, and |ρ′j | is bounded;

(iii) |φW (t)| ≤ C1 (1 + |t|)−C2 , where C1 > 0, C2 > 2; (iv) β(t) =

b1 +O(|t|−b2) as |t| → ∞, where b1, b2 > 0, and |β′(t)| ≤ C3 (1 + |t|)−C4

for all t, where C3 > 0, C4 > 1;

(3.1)

and that for each w ∈ IR,

max
k

sup
s,y,q

sup
−∞<t<∞

∣∣∣∣χ(t | s, y, q, w)

φU (t)

∣∣∣∣ <∞, (3.2)

where maxk denotes the maximum over k = 1, 2 and the second supremum is

over s, y, and q in compact sets S ⊂ IR, Y ⊂ IR, and Q ⊂ IRp, respectively. See
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Appendix S3 for a discussion of these conditions. We assume too that, for an

integer ` ≥ 1,

the functions λk(u | s, y, q, w) ≡
∫
ψk(s, y, q, w, x+ u) fX(x) dx, for k =

1, 2 have ` partial derivatives with respect to u, for u in a neighbourhood

of the origin, and those derivatives are bounded uniformly in s ∈ S,

y ∈ Y, and q ∈ Q.

(3.3)

Defining the function λ
[`]
k (u | s, y, q, w) = (∂/∂u)` λk(u | s, y, q, w), we assume

that:

for k = 1, 2 λ
[`]
k (u | s, y, q, w) is continuous in a neighbourhood of u = 0. (3.4)

Of the kernel K and bandwidth h we assume additionally that:∫
(1+ |u|)` |K(u)| du <∞, where ` is as in (3.3), κj ≡

∫
ujK(u) du = 0

for 1 ≤ j ≤ ` − 1, and
∫
K = 1; and h = h(n) → 0 and nh → ∞ as

n→∞.

(3.5)

Another assumption will be useful to prove some of our results:

(a) the bandwidth h is chosen such that
∫
E(f̂2X) = O(na), where a ≥ 0,

and n1−η h→∞ for some η > 0; (b) if a is as in part (a), then na+ε h =

O(1) as n → ∞, for some ε > 0; and (c) the random quantities Q, U ,

V and X all have at least ν finite moments, where the value of ν ≥ 4

depends on a and ε in parts (a) and (b).

(3.6)

Part (a) of (3.6) is milder than the condition usually assumed, where h

would be chosen so that
∫
E(f̂X − fX)2 converges to zero as n→∞, and hence∫

E(f̂2X) = O(1).

3.2. Consistency of conditional distribution estimator

The next theorem establishes consistency of the conditional distribution es-

timator F̂T |Q,W,Y (t | q, w, y) defined at (2.7). Its proof is provided in Section 6.1.

Theorem 1. Assume the conditions imposed in Theorem 4, and that (3.1)–(3.3)

and (3.5) hold. Then: (i) For each real t and y, and each q ∈ IRp,

F̂T |Q,W,Y (t | q, w, y)− FT |Q,W,Y (t | q, w, y) =

Op
(

(nh)−1/2 + h`
)

if w = 0,

Op
(
n−1/2 + h`

)
if w 6= 0,

(3.7)

where, if (3.4) holds, when w = 0, the term Op(h
`) can be written more explicitly

as
(
c01/τ02− τ01 c02/τ202

)
h` + oP

(
h`
)
, where τ0k and c0k, k = 1, 2, are defined in
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(6.1). (ii) For each η > 0,

F̂T |Q,W,Y (t | q, w, y)−FT |Q,W,Y (t | q, w, y) =

Op
((
n1−ηh

)−1/2
+ h`

)
if w = 0,

Op
(
n−(1−η)/2 + h`

)
if w 6= 0,

uniformly in t, q and y in any compact subsets of their respective domains, where

in the case w = 0 we ask in addition that n1−ηh→∞.

When w = 0, we deduce from Theorem 1 that, by choosing h � n−1/(2`+1),

F̂T |Q,W,Y (t | q, w, y) converges to FT |Q,W,Y (t | q, w, y) at the rate n−`/(2`+1), in a

pointwise sense. When w 6= 0 we obtain root-n consistency: F̂T |Q,W,Y (t | q, w, y) =

FT |Q,W,Y (t | q, w, y) +Op
(
n−1/2

)
, for any choice of h satisfying h = O(n−1/(2`)).

It follows from the proof of the theorem that the rates at (3.7) for w = 0 cannot

be improved. In particular, the convergence rates for w = 0 are slower than

those for w 6= 0. We do not have an intuitive explanation for this. However, it

is encountered in related problems, also without an intuitive justification; see for

example Hall and Lahiri (2008), where the authors prove that the rates of their

estimator are optimal even in the neighbourhood of the origin.

The methods used to derive Theorem 1 can be employed to show that, under

the same conditions, all partial derivatives of F̂T |Q,W,Y (t | q, w, y) with respect to

t converge at the same rate to the respective derivatives of FT |Q,W,Y (t | q, w, y).

See Theorem 5 in Appendix S4. These results are of independent interest, but

they are also particularly useful for deriving the properties of our prediction

intervals in Section 3.4.

3.3. Theoretical properties of quantiles estimators

Let α ∈ (0, 1), take tα = tα(q, w, y) to be the solutions, in t, of FT |Q,W,Y (t | q,
w, y) = α, and recall the definition of t̂α = t̂α(q, w, y) in Section 2.2. Strictly

speaking, there is a small probability that t̂α is not uniquely defined, but since

the probability converges to 0 at a rate faster than n−1 then the event of non-

uniqueness can be neglected in Theorems 2 and 3. Our proofs are valid under the

assumption that t̂α is the solution nearest to tα, in cases where there is ambiguity.

It can be seen from part (i) of Theorem 2 that asymptotic properties of

t̂α− tα are readily and directly deducible from Theorem 1. In particular, t̂α− tα
converges to zero at the same rate as F̂T |Q,W,Y (tα | q, w, y)−FT |Q,W,Y (tα | q, w, y),

with the same distinction between the cases w = 0 and w 6= 0 as in Theorem 1.

See Appendix S7 for a proof.

Theorem 2. Assume the conditions imposed in Theorem 4, and that (3.1)–(3.3)
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and (3.5) hold. Then: (i) for each q, w and y,

t̂α(q, w, y)− tα(q, w, y) = −
F̂T |Q,W,Y (tα | q, w, y)− FT |Q,W,Y (tα | q, w, y)

(∂/∂t)FT |Q,W,Y (t | q, w, y)
∣∣
t=tα

+

{
Op
(
(nh)−1 + h2`

)
if w = 0,

Op
(
n−1 + h2`

)
if w 6= 0 ;

and (ii) for each η > 0,

t̂α(q, w, y)− tα(q, w, y) =

Op
((
n1−ηh

)−1/2
+ h`

)
if w = 0,

Op
(
n−(1−η)/2 + h`

)
if w 6= 0,

uniformly in q and y in any compact subsets of their respective domains, where

in the case w = 0 we ask in addition that n1−ηh→∞.

3.4. Theoretical properties of prediction intervals

In Theorem 3, we explore the coverage accuracy of the prediction interval

(−∞, t̂α]; similar results can be established for two-sided intervals. In stating

the theorem we assume that the vector (T,QT,W, Y ) is independent of the data

(QT
j ,Wj , Yj), for 1 ≤ j ≤ n, from which t̂α is computed. See Appendix S8 for a

proof of the theorem.

Theorem 3. If (3.1)–(3.3), (3.5), and (3.6) hold, then

P
(
T ≤ t̂α

∣∣∣ Q = q,W = w, Y = y
)

= α+

{
Op
(
(nh)−1/2 + h`

)
if w = 0,

Op
(
n−1/2 + h`

)
if w 6= 0,

(3.8)

uniformly in q and y in any compact subsets of their respective domains, and in

α ∈ [α1, α2] for any 0 < α1 < α2 < 1.

If we assume (3.4) in addition to the conditions in Theorem 3, and slightly

strengthen (3.6)(a), and if we use a more intricate argument than that in Section 6

to determine the “remainder” term in (3.8), then the right-hand side of (3.8) can

be refined to α + C1 (nh)−1/2 + C6 h
` + o{(nh)−1/2 + h`} when w = 0, and to

α+ C5 n
−1/2 + C6 h

` + o(n−1/2 + h`) otherwise, where C5 and C6 are constants.

(The more intricate argument is sketched in the last paragraph of the proof of

Theorem 3.) However, the implications of this property are rather complex. For

example, when w = 0 and in cases where C5 and C6 are both nonzero, the

absolute value of the coverage error is minimised, at O(n−`/(`+1)), by taking h to

be of size n−1/(`+1), although it is easy to give examples where choosing h so as

to produce over- or under-coverage might be advantageous. (Under-coverage, in
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the context of (3.8), is relevant if our interest is in a prediction interval [t̂α,∞)

rather than (−∞, t̂α].)

4. Numerical Properties

4.1. Smoothing parameter choice

To compute our prediction interval, we need to choose the bandwidth h used

by f̂X at (2.3), a notoriously difficult task for nonparametric prediction and confi-

dence intervals. In our contaminated data case, we can exploit the error structure

to suggest a selection technique inspired by ideas used in nonparametric errors-

in-variable regression. There, instead of trying to consistently estimate optimal

smoothing parameters, Delaigle and Hall (2008) suggest numerical approxima-

tion procedures based on mimicking the contamination process via resamples of

data contaminated with additional levels of noise. We propose a method of that

type tailored to our problem.

We describe our approach for the interval Îα (it is straightforward to adapt it

to ÎLα and ÎRα ). If we had access to direct data T1, . . . , Tn, we would choose h so as

to minimise an estimator of coverage error, e.g.
{
n−1

∑n
i=1 I

(
Ti ∈ Îα,−i

)
− (1−

α)
}2

, or, to make h less variable,
∫ 3α/2
α/2

{
n−1

∑n
i=1 I

(
Ti ∈ Îα,−i

)
− (1− α)

}2
dα.

Since we do not observe the Ti’s, we cannot compute this error. Instead we mimic

it using contaminated versions of the data. Roughly speaking, our idea is to

create a new sample of observations (Qi,W
◦
i , Y

◦
i ), 1 ≤ i ≤ n, where, compared

to the original (Wi, Yi)’s, the (W ◦i , Y
◦
i )’s are contaminated with an additional

level of error, so that the relationship between Xi and Wi in the original sample

is mimicked by that between Wi and W ◦i . In this new sample, the variable T ◦i that

plays the role of Ti in the original sample is observed, and thus we can compute

the prediction error of a prediction interval for T ◦i . Since the new sample is

created in a way that mimics the model at (2.1), our h can be well approximated

by minimising that version of prediction error.

To implement these ideas, first we draw a conventional bootstrap resample,

X ∗ = {(Q∗i
T,W ∗i , Y

∗
i ) : 1 ≤ i ≤ n}, with replacement from the dataset X =

{(QT
i ,Wi, Yi) : 1 ≤ i ≤ n}. Each triple (Q∗i

T,W ∗i , Y
∗
i ) is identical to one of the

data triples in X ; let that triple be (QT
j∗i
,Wj∗i , Yj∗i ), where, conditional on X ,

the j∗i ’s, for 1 ≤ i ≤ n, are independent and identically distributed on 1, . . . , n.

Write τj∗i for the associated value of the variance of εj∗i , conditional on j∗i , and

let (ε†i , U
†
i ) denote a pair of random variables that, conditional on both X and

X ∗, have respectively the distribution with density τ
−1/2
j∗i

f1( · /τ1/2j∗i
), with f1
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the density of εi/τ
1/2
i , and the distribution of U . (We use the notation ε†i and

U †i , rather than ε∗i and U∗i , to recall that ε†i and U †i are drawn by sampling

from known distributions rather than by resampling from a sample.) We take

the pairs (ε†i , U
†
i ), for 1 ≤ i ≤ n, to be independent, conditional on the data.

If Y ◦i = Y ∗i + β̂1W
∗
i + ε†i and W ◦i = W ∗i + U †i , then Y ◦i = T ◦i + ε†i , where

T ◦i = Y ∗i + β̂1W
∗
i = β0 + β̂1Wj∗i + βT2 Qj∗i + V ◦i and V ◦i = β1Xj∗i + Vj∗i + εj∗i .

In essence, the dataset X ◦ = {(Q∗i
T,W ◦i , Y

◦
i ) : 1 ≤ i ≤ n} is generated

by the model at (2.1), the difference being that Vi in (2.1) is replaced here by

V ◦i , which is generally more variable than Vi. This motivates us to choose h by

minimising the prediction error of a prediction interval for T ◦i constructed from

X ◦. Specifically, we omit the ith data triple from X ◦, obtaining X ◦−i, say, and

we use the methodology from Section 2.3 to construct, from X ◦−i, a prediction

interval Î◦α,−i, say, for T ◦i , having nominal coverage 1− α. To reduce variability,

we repeat this procedure B times, generating in this way B datasets X ◦b =

{(Q∗i,b
T,W ◦i,b, Y

◦
i,b) : 1 ≤ i ≤ n}, b = 1, . . . , B, and obtaining their corresponding

T ◦i,b and Î◦α,−i,b. Then, recalling that for these data, the T ◦i,b’s are known, we

choose h by minimising the objective function

J(h) =
1

B

B∑
b=1

∫ 3α/2

α/2

{
1

n

n∑
i=1

I
(
T ◦i,b ∈ Î◦α,−i,b

)
− (1− α)

}2
dα. (4.1)

Based on our experience, taking B = 10 or 20 often suffices to find appro-

priate smoothing parameters. In our numerical work, we took B = 10. All our

codes were written in MATLAB, and to reduce computational burden, h was

chosen from the grid hPI × (0.25, 0.5, 1, 1.5, 2), where hPI is the plug-in band-

width of Delaigle and Gijbels (2002, 2004), computed using the MATLAB code

PI_deconvUknownth4, available at http://researchers.ms.unimelb.edu.au/

~aurored/links.html#Code.

4.2. Simulations

We applied our methodology for constructing two-sided prediction intervals

Îα = [t̂α/2, t̂1−α/2] on simulated examples. We generated data (Wj , Q
T
j , Yj),

1 ≤ j ≤ n, for n = 30 and 50 small areas, from the model:

Yj = Tj + εj , Tj = 5 + 3Xj + 2Qj + Vj , Wj = Xj + Uj ,

where Xj ∼ N(5, 9), Qj ∼ Uniform(0, 5), Vj ∼ t(5) and εj ∼ N(0, τj). Rather

than choosing the τj ’s, for j = 1, . . . , n, arbitrarily by hand, we generated them

from a gamma distribution with mean 8 and standard deviation 4. Finally,

http://researchers.ms.unimelb.edu.au/~aurored/links.html#Code
http://researchers.ms.unimelb.edu.au/~aurored/links.html#Code
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Table 1. Empirical coverage probabilities of the prediction interval (average length of the
prediction intervals) computed from simulated data, using the correctly specified FV/σV
(True), erroneously pretending it is a normal distribution (Wrong), or using the naive
prediction interval (Naive) which ignores the errors Ui.

U n FV/σV
1− α

0.99 0.95 0.90

Normal

30
True 0.987 (10.14) 0.943 (7.69) 0.889 (6.44)
Wrong 0.985 (10.25) 0.944 (7.79) 0.890 (6.54)
Naive 0.866 (8.67) 0.805 (6.60) 0.753 (5.54)

50
True 0.991 (9.92) 0.949 (7.52) 0.903 (6.31)
Wrong 0.990 (10.05) 0.953 (7.65) 0.905 (6.42)
Naive 0.846 (7.98) 0.788 (6.07) 0.732 (5.10)

Laplace

30
True 0.988 (10.27) 0.943 (7.60) 0.888 (6.29)
Wrong 0.987 (10.42) 0.945 (7.74) 0.893 (6.42)
Naive 0.826 (8.03) 0.766 (6.11) 0.719 (5.12)

50
True 0.990 (10.01) 0.947 (7.41) 0.900 (6.14)
Wrong 0.990 (10.14) 0.949 (7.54) 0.901 (6.26)
Naive 0.832 (7.74) 0.776 (5.89) 0.727 (4.94)

we considered two types of measurement errors: Uj ∼ N(0, 3/4) and Uj ∼
Laplace(

√
3/8).

Our procedure relies on knowing FV/σV and Fε. To examine robustness

against misspecified distributions, in each case we compared our prediction inter-

val F̂T |Q,W,Y at (2.4) constructed using the correct FV/σV or pretending that it

was equal to the standard normal distribution, where we used F̂T |Q,W,Y at (2.7).

To demonstrate the importance of taking the noise into account, we also com-

puted the naive prediction intervals obtained when ignoring the measurement

errors Uj .

We generated 100 datasets for each combination of n and FU and, in each

case, we constructed the intervals Îα for three nominal levels, α = 0.99, 0.95

and 0.90. For each generated sample, and for i = 1, . . . , n, we constructed each

prediction interval for Ti using the data X−i = {(QT
j ,Wj , Yj) : 1 ≤ j ≤ n, j 6= i}.

Let Îiα denote a prediction interval for Ti obtained in this way, using either ap-

proach described above. For each approach we calculated the coverage rate of Îα,

n−1
∑n

i=1 I
(
Ti ∈ Îiα

)
, and we averaged this number over the 100 generated sam-

ples to obtain an empirical measure of the coverage probability of the prediction

intervals, which we denote below by ECP.

We report the ECP in Table 1 for each configuration. The closer ECP is

to 1 − α, the more accurate the prediction interval is. These results suggest
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Figure 1. Each line represents a 95% prediction interval of the population mean BMI for
one of 50 demographic subgroups from Example 1, assuming that fV/σV is a standard
normal density (—◦—: naive method; —4—: our method) or estimating it nonpara-
metrically as in Section 5 (—∗—).

that our method is relatively robust against error misspecification, the main

effect of misspecification being to increase the interval length. In Section 5 we

also report simulation results for the case where FV is estimated from the data.

The latter approach is much more complex to implement, and while it improves

slightly the level of the interval for small sample sizes, this comes at the cost of

a significant increase in interval length. Those simulation results suggest that

the rough parametric approximations of FV/σV are preferable to a complex full

nonparametric procedure. We also see that ignoring the errors completely leads

to shorter intervals, but with very poor coverage.

4.3. Data examples

Example 1. We considered an application to two survey datasets: one from

the 2003–2004 US NHANES, and the other from the 2004 US NHIS. The small

areas in this study are 50 demographic subgroups classified by race and ethnicity

(Ybarra and Lohr (2008)). Our goal was to construct prediction intervals for the

population mean body mass index (BMI) for the demographic subgroups (small

areas), using the NHIS as auxiliary information. The datasets were combined

according to the small areas.
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Table 2. Example 1: average and median length of prediction intervals for 50 areas.

fV/σV Average length Median length
normal-naive 2.69 2.56
normal 2.69 2.52
estimated as in Section 5 2.95 2.69

In the NHANES, the height and weight for each respondent were measured

carefully to calculate the BMI = weight(kg)/height(m)2, but in the NHIS, mea-

surements of height and weight are provided by the interviewers during the in-

terview. Thus, the auxiliary variable (reported BMI) is prone to measurement

error. For the jth demographic subgroup, let Yj be the mean BMI from the

NHANES. Let Xj be the true value of the mean BMI from the NHIS. We con-

sidered the model Yj = Tj + εj , Tj = β0 + β1Xj + Vj . Denoting by Wj the mean

of reported BMI from the NHIS, we assumed that the measurement error was

additive through Wj = Xj + Uj .

We constructed the 95% prediction intervals for the population mean BMI

for all demographic subgroups using F̂T |Q,W,Y at (2.7), with fV/σV the standard

normal density. For comparison, we also computed the prediction intervals based

on the approach introduced in Section 5, where fV/σV is estimated nonparametri-

cally. Finally, we computed the naive prediction intervals which ignore the errors

Ui. For j = 1, . . . , 50, Figure 1 shows the resulting 95% prediction intervals of Tj
conditional on (Wj , Yj). Table 2 reports the average and median length of those

50 prediction intervals. The intervals obtained using both corrected approaches

are relatively similar although, as in our simulations, the interval lengths using

the approach from Section 5 tend to be larger than those obtained under the nor-

mality assumption. Our simulation results suggest that the latter are preferable,

since generally shorter while not much less accurate. In this example, the naive

prediction intervals are close to the corrected ones, but since we do not know the

truth, we do not know which method gives the most accurate prediction intervals.

Example 2. The US Department of Health and Human Services administers

a program of energy assistance to low-income families. An important variable

that determines the eligibility of a family for benefits from the program is an

estimate of the median income of four-person families in the state. Through the

years prior to 2000, the basic data, also known as the direct estimates of the state

median incomes, came from the March Annual Demographic Supplement (ADS),

which collects the income data of the three-, four-, and five-person households

statewide. Due to smallness of sample sizes for all 51 states (50 states and the
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Figure 2. Each line represents a 95% prediction interval of the median income for one of
the 51 states from Example 2, assuming that fV/σV is a standard normal density (—◦—:
naive estimator; —4—: our method) or estimating it nonparametrically as in Section 5
(—∗—). The black flat line (–) shows year 1989 four-person family median incomes from
the 1990 Census records, which can be regarded as the “true values”.

District of Columbia), the direct estimates are subject to considerable sampling

variability, and the US Bureau of the Census (BOC) annually provides estimates

of the state median income for four-person families by using small area estimation

methods (Fay (1987); Datta, Fay and Ghosh (1991)).

The 1989 CPS three-person households state median income estimates are

strongly correlated with the corresponding 1989 CPS four-person ones, and we

use them as the Wj ’s in our prediction model (they are subject to measurement

error due to their large sampling variability). For j = 1, . . . , 51, we constructed

95% prediction intervals for the four-person family median incomes for the year

1989, conditional on observed values of (Wj , Yj); see Figure 2. Numbers for

this variable are available from the 1990 Census records, and we can compute

the coverage of our intervals by treating these numbers as the “true values”.

Table 3 reports the coverage of the prediction intervals for 51 states using the

three methods used in Example 1, and the average and median length of those

prediction intervals. The prediction intervals constructed using the naive method

which completely ignores the measurement errors provided the worst coverage
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Table 3. Example 2: average and median length of prediction intervals for 51 areas.

fV/σV Coverage Average length Median length
normal-naive 78.43% 6.55e + 03 6.65e + 03
normal 84.31% 7.48e + 03 7.41e + 03
estimated as in Section 5 86.27% 1.04e + 04 1.01e + 04

rate (78.43%). With our methods that take measurement errors into account, the

coverage rates were 84.31% and 86.27% when assuming that fV/σV is a standard

normal density or estimating it nonparametrically as in Section 5, respectively,

but for the latter the intervals were again much longer.

5. Estimating FT |Q,W,Y When FV is Unknown

The known distributions assumptions used in Section 2.2 can be relaxed,

although since only (QT,W, Y ) is observed, the distributions of V/σV and ε are

confounded in the model at (2.1), so neither of the distributions can be estimated

without knowing at least one of them. In this section, we show how to estimate

FT |Q,W,Y from data (QT
j ,Wj , Yj) when the distribution of V is unknown and

that of ε is known; similar ideas can be used if it is the distribution of ε that

is unknown. We assume that fε is τ−1/2 f1( · /τ1/2), where τ = var(ε) and f1 is

known.

Recall that, by the Fourier inversion theorem, we have

fV (v) = (2π)−1
∫
e−itvφV (t) dt. (5.1)

To estimate fV , we estimate φV , and plug a regularised version of it in (5.1).

We start by expressing φV in terms of quantities that are either known, or which

can be estimated directly from the (QT
j ,Wj , Yj)’s. It follows from (2.1) that

Yj = β0 + β1Xj + βT2 Qj + Vj + εj . Therefore,

φYj (t) = exp(itβ0)φX(β1t)φβT
2 Q

(t)φεj (t)φV (t), (5.2)

so that we can write φV (t) = exp(−itβ0)φYj (t)
/{
φX(β1t)φβT

2 Q
(t)φεj (t)

}
. Here,

φεj is known and we can estimate φβT
2 Q

(t) and φX(β1t) = φW (β1t)/φU (β1t) by

φ̂βT
2 Q

(t) = n−1
n∑
j=1

exp
(
it β̂T2 Qj

)
, ̂φX(β1t) =

̂φW (β1t)

φU (β̂1t)
, (5.3)

respectively, with β̂1 and β̂2 as in Appendix S2 and ̂φW (β1t) = n−1
∑

j exp(it β̂1
Wj). However, the Yj ’s are not identically distributed and we only have one

observation, Yj , to estimate φYj (t). To overcome this difficulty, (5.2) also implies
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that φY ′(t) = exp(it β0)φX(β1t)φβT
2 Q

(t)φε′(t)φV (t), where we used the notation

φY ′(t) = n−1
∑n

j=1 φYj (t) and φε′(t) = n−1
∑n

j=1 φεj (t). Therefore, we can write

φV (t) =
exp(−itβ0)φY ′(t){

φX(β1t)φβT
2 Q

(t)φε′(t)
} , (5.4)

where φY ′(t) can be estimated by φ̂Y ′(t) = n−1
∑n

j=1 e
itYj , and φβT

2 Q
(t) and

φX(β1t) can be estimated as above.

As in standard nonparametric errors-in-variable problems, substituting this

estimator and (5.3) into (5.4), and plugging the resulting estimator φ̂V of φV
directly into (5.1) needs to be done in combination with some regularisation.

Several approaches can be taken, such as one based on kernel regularisation

as in (2.3). However, the denominator of φ̂V can vanish, and a more suitable

approach consists in replacing the denominator, when it gets too small, by a

ridge parameter ρ > 0. For a complex number a, we have 1/a = ā/|a|2, and as

the εj ’s are symmetric around zero, so that φε′ is real, we suggest using

f̂V (v) =
1

2π

∫
e−it (v+β̂0)φ̂Y ′(t)φU (t β̂1)φ̂W ;Q; ρ(t) dt,

where

φ̂W ;Q; ρ(t) =
̂φW (β1t) φ̂βT

2 Q
(t)

max
{
ρ,
∣∣ ̂φW (β1t)

∣∣2}max
{
ρ,
∣∣φ̂βT

2 Q
(t)
∣∣2}φε′(t)

if inft φε′(t) ≥ 0, and

φ̂W ;Q; ρ(t) =
̂φW (β1t) φ̂βT

2 Q
(t)φε′(t)

max
{
ρ,
∣∣ ̂φW (β1t)

∣∣2}max
{
ρ,
∣∣φ̂βT

2 Q
(t)
∣∣2}max

{
ρ, φ2ε′(t)

}
otherwise. Since var(ε) = τ , we can then estimate fV+ε(s) by f̂V+ε(s) =

∫
τ−1/2

f1
(
v
/
τ1/2

)
f̂V (s − v) dv. Finally, using (2.2), we can estimate the distribution

function of T , given that (Q,W, Y ) = (q, w, y), by

F̂T |Q,W,Y (t | q, w, y) (5.5)

=

∫ t
−∞ f1{(s− y)/τ1/2}

∫
f̂V (s− β̂0 − β̂1x− β̂T2 q) f̂X(x) fU (w − x) dx ds∫

fU (w − x) f̂X(x)
∫
f1(v/τ1/2) f̂V (y − β̂0 − β̂1x− β̂T2 q − v) dv dx

,

where unqualified integrals are over the entire real line.

It can be proved that this estimator is consistent under sufficient regular-

ity conditions, but estimating all these unknowns is challenging. Here fV and fε
only appear in an indirect way in the expression for F̂T |Q,W,Y , and our simulation

results in Section 4.2 indicated that our method was somewhat robust to error

misspecification, with the main effect being to increase the length of our predic-
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Table 4. Empirical coverage probabilities of the prediction interval (average length of
the prediction intervals) computed from simulated data when fV is estimated nonpara-
metrically.

U n
1− α

0.99 0.95 0.90

Normal
30 0.985 (13.59) 0.948 (10.49) 0.895 (8.80)
50 0.986 (13.03) 0.950 (9.99) 0.904 (8.41)

Laplace
30 0.987 (14.06) 0.949 (10.90) 0.894 (9.17)
50 0.987 (13.47) 0.946 (10.44) 0.892 (8.80)

tion interval. Therefore, it is not clear that a purely nonparametric approach

is worth the additional complexity it incurs, since its main effect is to increase

the variability of the predictors, which too will have the effect of increasing the

interval length.

To investigate this, we constructed prediction intervals based on (5.5), using

the same simulation settings as in Section 4.2. To compute them, we need to

choose h used in f̂X at (2.3) and the ridge parameter ρ. We used the approach

described in Section 4.1, replacing there the minimisation of J(h) at (4.1) by

a minimisation of J(H), where H = (h, ρ) and J(H) is the version of J(h)

obtained when replacing F̂T |Q,W,Y at (2.4) by F̂T |Q,W,Y at (5.5). We searched

for h in the grid described in Section 4.1, and for ρ on an equispaced grid of ten

values between 0.2/n and 5/n, which was time consuming given the bivariate

grid search.

The results are summarised in Table 4, where, as in Table 1, we report the

EPC of the prediction intervals and the mean interval lengths, both computed

over 100 simulated samples. Comparing with Table 1, the results confirm that

making a rough guess for the unknown densities, as in Section 4.2, seems prefer-

able to using a purely nonparametric approach. The former is also much faster

to compute than the latter.

6. Technical Arguments

6.1. Proof of Theorem 1

We need some notation. Put

τ0k =

∫
ψk(t, y, q, w, x) fX(x) dx, c0k =

1

`!
κ` λ

[`]
k (0 | s, y, q, w), (6.1)

where the subscript 0 on τ0k and c0k indicates that, in this instance, the true

values of the parameters β0, β1, β2, and σ2V are used to construct ψk. In this
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notation,

FT |Q,W,Y (t | q, w, y) =
τ01(t, y, q, w)

τ02(t, y, q, w)
. (6.2)

6.1.1. Proof of part (i) of Theorem 1

Step 1: Approximation of ψ̂k by ψk. Let S, Y, and Q be compact sets in the

respective domains of s, y, and q. Using a Taylor expansion it can be proved

that

ψ̂k(s, y, q, w, x) = ψk(s, y, q, w, x) + ∆(s, y, q, w, x), (6.3)

where ψk and ψ̂k are as at (2.6) and (2.8), respectively, ψk is at (2.6) and, for

positive constants C1, C2 depending on S, Y, and Q, and the true values of the

parameters β0, β1, β2 and σ2V (which we denote as here), but not on n,

|∆(s, y, q, w, x)| ≤ C1 (1 + |x|+ ‖q‖) fU (w − x)
{∣∣β̂0 − β0∣∣

+
∣∣β̂1 − β1∣∣ |x|+ ∥∥β̂2 − β2‖ ‖q‖+

∣∣σ̂2V − σ2V ∣∣} (6.4)

whenever

max
{∣∣β̂0 − β0∣∣, ∣∣β̂1 − β1∣∣,∥∥β̂2 − β2‖, ∣∣σ̂2V − σ2V ∣∣} ≤ C2. (6.5)

The bound at (6.4) holds uniformly in all s ∈ S, all y ∈ Y, all q ∈ Q and all real

x, provided (6.5) holds.

Step 2: Mean and variance of numerator and denominator on right-hand side

of (2.7).

From the definition of ψk at (2.6), let ψ = ψk for either k = 1 or k = 2, and

let

J1 =

∫
ψ(s, y, q, w,W + hu)KU (u;h) du, τj = E

(
J j1), (6.6)

for j = 1, 2, with

J2 ≡
∫
ψ(s, y, q, w, x) f̂X(x) dx (6.7)

=
1

nh

n∑
j=1

∫
ψ(s, y, q, w, x)KU

(
x−Wj

h
;h

)
dx

=
1

n

n∑
j=1

∫
ψ(s, y, q, w,Wj + hu)KU (u;h) du,

n var(J2) = var

{∫
ψ(s, y, q, w,W + hu)KU (u;h) du

}
= τ2 − τ21 , (6.8)
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eitu ψ(s, y, q, w,W + hu) du = h−1 exp

(
−itW
h

)
χ

(
t

h

)
,

where χ(t) = χ(t | s, y, q, w) =
∫
eitu ψ(s, y, q, w, u) du. Therefore, by Parseval’s

identity, ∫
ψ(s, y, q, w,W + hu)KU (u;h) du

=
1

2πh

∫
exp

(
−itW
h

)
χ

(
t

h

)
φK(t)

φU (t/h)
dt

=
1

2π

∫
exp(−itW )χ(t)

φK(ht)

φU (t)
dt

=
1

2π

∫
<
{

exp(−itW )χ(t)
} φK(ht)

φU (t)
dt

=
1

2π

∫ {
cos(tW )χ1(t)− sin(tW )χ2(t)

} φK(ht)

φU (t)
dt,

where χ1 = <χ, χ2 = =χ, and we have used the fact that φK(ht)/φU (t) is a

symmetric function of t. Hence, with ρj = χj/φU ,

(2π)2 τ2 =

∫∫
E
{

cos(t1W ) cos(t2W )χ1(t1)χ1(t2)

+ sin(t1W ) sin(t2W )χ2(t1)χ2(t2)− cos(t1W ) sin(t2W )χ1(t1)χ2(t2)

− sin(t1W ) cos(t2W )χ2(t1)χ1(t2)
}
× φK(ht1)φK(ht2)

φU (t1)φU (t2)
dt1 dt2

=
1

2

∫∫ {
E
[

cos{(t1 + t2)W}+ cos{(t1 − t2)W}
]
χ1(t1)χ1(t2)

+ E
[

cos{(t1 − t2)W} − cos{(t1 + t2)W}
]
χ2(t1)χ2(t2)

− E
[

sin{(t1 + t2)W}+ sin{(t2 − t1)W}
]
χ1(t1)χ2(t2)

− E
[

sin{(t1 + t2)W}+ sin{(t1 − t2)W}
]
χ2(t1)χ1(t2)

}
× φK(ht1)φK(ht2)

φU (t1)φU (t2)
dt1 dt2

=
1

2

∫∫ [
<
{
φW (t1 + t2) + φW (t1 − t2)

}
ρ1(t1) ρ1(t2)

+ <
{
φW (t1 − t2)− φW (t1 + t2)

}
ρ2(t1) ρ2(t2)

−=
{
φW (t1 + t2) + φW (t2 − t1)

}
ρ1(t1) ρ2(t2)

−=
{
φW (t1 + t2) + φW (t1 − t2)

}
ρ2(t1) ρ1(t2)

]
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× φK(ht1)φK(ht2)dt1 dt2. (6.9)

For simplicity, take the support of φK to be [−1, 1]. Then, taking φW0 to be

either <φW or =φW , and, as in (3.1), we have, taking the ± signs respectively

throughout:∫∫
φW0(t1 ± t2)χj1(t1)χj2(t2)

φK(ht1)φK(ht2)

φU (t1)φU (t2)
dt1 dt2

=

∫ 1/h

−1/h

∫ 1/h

−1/h
φW0(t1 ± t2) ρj1(t1) ρj2(t2)φK(ht1)φK(ht2) dt1 dt2

=

∫ 1/h

−1/h
ρj1(t1)φK(ht1) dt1

∫ t1+1/h

t1−1/h
φW0(t) ρj2{±(t− t1)}φK{h (t− t1)} dt

=
1

h

∫ 1

−1
ρj1(t1/h)φK(t1) dt1

∫ (t1+1)/h

(t1−1)/h
φW0(t) ρj2

{
±
(
t− t1

h

)}
× φK(ht− t1) dt ≡ R1(h). (6.10)

We prove in Appendix S6 that, uniformly in s ∈ S, y ∈ Y, and q ∈ Q,

R1(h) =


O(1) if w 6= 0

C1

(
sk
b1

)2

h−1 + o(h−1) if w = 0 and j1 = j2 = 1

o(h−1) if w = 0 and j1 = j2 = 1 fails,

(6.11)

where sk and b1 are as in (3.1), and the positive constant C1 depends only on K

and fW (0).

Combining (6.9)–(6.11) we deduce that, if w 6= 0,

τ2 = O(1). (6.12)

If w = 0 then, noting from (6.11) that R1(h) = o(h−1) if j1 = j2 = 1 fails, we

have:

τ2 =
1

2
(2π)−2

∫∫
<
{
φW (t1 + t2) + φW (t1 − t2)

}
χ1(t1)χ1(t2)

× φK(ht1)φK(ht2)

φU (t1)φU (t2)
dt1 dt2 + o

(
h−1

)
= C2 (sk/b1)

2 h−1 + o
(
h−1

)
, (6.13)

where on this occasion φW0 = <φW and we let C2 = C1/(2π)2.

More simply, the definition of κ` below (3.5), and assuming that (3.4) holds,

we can write:

τ1 =

∫∫
ψ(s, y, q, w,w1 + hu) fW (w1)KU (u;h) du dw1

=

∫∫
ψ(s, y, q, w, x+ hu) fX(x)K(u) du dx =

∫
K(u)λk(hu | s, y, q, w) du
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=

∫
ψ(s, y, q, w, x) fX(x) dx+

1

`!
κ` h

` λ
[`]
k (0 | s, y, q, w) + o

(
h`
)
. (6.14)

Combining (6.8), (6.12), and (6.14) we deduce that if w 6= 0,

var

{∫
ψ(s, y, q, w, x) f̂X(x) dx

}
= O

(
n−1

)
, (6.15)

whereas if, using (6.13) and (6.14) we deduce that if w = 0,

n var

{∫
ψ(s, y, q, w, x) f̂X(x) dx

}
= C2

(
sk
b1

)2

h−1 + o
(
h−1

)
. (6.16)

Step 3: Completion. For simplicity we treat only the case w = 0. The quantities

J2 and τ1 each have two forms, depending on whether we take k = 1 or k = 2

in the formula ψ = ψk used in defining J2 at (6.7) and τ1 at (6.6). Write J1, J2,

and τ1 as J1k, J2k and τ1k, respectively, to indicate these possibilities, and put

∆k = J2k − E(J2k) = J2k − E(J1k) = J2k − τ1k.

Let τ0k denote the version of τ1k when we take h = 0. From (6.14), τ1k =

τ0k + c0k h
` + o(h`), while J2, and hence also J2k and τ1k, are functions of s, q,

and w.

Using (6.3), Theorem 4, and the definition of F̂T |Q,W,Y at (2.7), we have:

F̂T |Q,W,Y (t | q, w, y)

=
J21
J22

+Op
(
n−1/2

)
=
τ11 + ∆1

τ12 + ∆2
+Op

(
n−1/2

)
=
τ11
τ12

+
∆1

τ12
− τ11
τ212

∆2 + op
{

(nh)−1/2
}

=
τ01
τ02

+

(
c01
τ02
− τ01
τ202

c02

)
h`+τ−102 ∆1−τ01 τ−202 ∆2+op

{
(nh)−1/2

}
+o
(
h`
)
, (6.17)

where the quantities J2k, ∆k, and τ1k, earlier defined as functions of s, q, and w,

are here computed for (s, y, q, w) = (t, y, q, w).

As well,

var
(
τ−102 ∆1 − τ01 τ−202 ∆2

)
=

1

τ202
var(∆1) +

τ201
τ402

var(∆2)−
2 τ01
τ302

cov(∆1,∆2).

(6.18)

By (6.13), var(∆k) = (nh)−1C2 (sk/b1)
2 + o

{
(nh)−1

}
, and similarly it can be

proved that cov(∆1,∆2) = (nh)−1C2

(
s1 s2

/
b21
)

+ o
{

(nh)−1
}
. Hence, by (6.18),

nh var
(
τ−102 ∆1 − τ01 τ−202 ∆2

)
=
C2

b21

(
s1
τ02
− s2 τ01

τ202

)2
+ o(1). (6.19)
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Thus, part (i) of Theorem 1 follows from (6.2), (6.17) and (6.19).

6.1.2. Proof of part (ii) of Theorem 1

We treat only the case w = 0. With J1 and J2 as at (6.6) and (6.7), let

τj = E(J j1) for each integer j ≥ 1. In step 3 of the proof of part (i) of the

theorem we showed that τ4 = O(h−3), and more generally it can be proved

that τj = O(h1−j). Hence, since nh → ∞, we have for each integer ν ≥ 2,

τ2ν = o(nν−1 h−ν). (These convergence results, and the order of magnitude

bounds below, hold uniformly in s, y, and q in their respective compact sets,

while J1 and J2 are functions of (s, y, q).) Therefore, by Rosenthal’s inequality,

n2ν E(J2 − EJ2)2ν = O
(
(nτ2)

ν + n τ2ν
)

= O

((
n

h

)ν)
,

whence E(J2 − EJ2)2ν = O{(nh)−ν}. Hence, by Markov’s inequality,

P
(∣∣J2(s, y, q)− EJ2(s, y, q)∣∣ > nε3 (nh)−1/2

)
= O

(
n−B5

)
for all B5, ε3 > 0.

This bound applies uniformly in (s, y, q) ∈ S × Y × Q. Therefore, if S ′,
Y ′ and Q′ are subsets of S, Y and Q, respectively, each representing a regular

lattice and containing no more than O(nB6) points for some B6 > 0, then for all

B5, ε3 > 0,

P

(
sup
s∈S′

sup
y∈Y ′

sup
q∈Q′

∣∣J2(s, y, q)− EJ2(s, y, q)∣∣ > nε3 (nh)−1/2
)

= O
(
n−B5

)
, (6.20)

Given (s, y, q) ∈ S×Y×Q, let (s′, y′, q′) ∈ S ′×Y ′×Q′ minimise the distance

from (s′, y′, q′) to (s, y, q). Making use of continuity properties of J2, as a function

of s, y, q, and w, it can be proved that if B6 is sufficiently large then

P

(
sup
s∈S

sup
y∈Y

sup
q∈Q

∣∣J2(s, y, q)− J2(s′, y′, q′)∣∣ > n−1
)

= O
(
n−B5

)
, (6.21)

sup
s∈S

sup
y∈Y

sup
q∈Q

∣∣E{J2(s, y, q)} − E{J2(s′, y′, q′)}∣∣ = O
(
n−1

)
. (6.22)

Combining (6.20)–(6.22) we deduce that for all B5, ε3 > 0,

P

(
sup
s∈S

sup
y∈Y

sup
q∈Q

∣∣J2(s, y, q)− EJ2(s, y, q)∣∣ > nε3 (nh)−1/2
)

= O
(
n−B5

)
. (6.23)

There are two versions of J2, depending on whether we take ψ = ψ1 or

ψ2 at (6.7). Result (6.23) holds for both versions, and we distinguish them by

writing Jk2 for J2 when ψ = ψk. In this notation, (6.14) implies that

E{J21(t, y, q)}
E{J22(t, y, q)}

= FT |Q,W,Y (t | q, w, y) +O
(
h`
)
, (6.24)
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uniformly in (t, y, q) ∈ S × Y ×Q. More simply, (2.7) implies that

F̂T |Q,W,Y (t | q, w, y) =
J21(t, y, q)

J22(t, y, q)
,

and so by (6.23), for each ε3 > 0,

F̂T |Q,W,Y (t | q, w, y) =
E{J21(t, y, q)}
E{J22(t, y, q)}

+Op
(
nε3 (nh)−1/2

)
, (6.25)

uniformly in (t, y, q) ∈ S × Y × Q. Part (ii) of Theorem 1 follows from (6.24)

and (6.25).

Supplementary Materials

Additional results can be found in the online supplementary materials. In

Appendix S1, we calculate the conditional distribution of T ; in Appendix S2 we

provide the details about estimating the unknown parameters in the model, as

well as a theorem (Theorem 4) establishing asymptotic normality of the esti-

mated parameters. In Appendix S3 we discuss the conditions of Section 3.1. In

Appendix S4 we provide a theorem (Theorem 5) which establishes theoretical

properties of the conditional distribution of T and its derivatives. Appendices S5

to S8 contain the proofs of some of our results.
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