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Abstract: We describe a new sequential sampling method for constrained multi-way

tables, with foundations in linear programming and sequential normal sampling.

The method builds on techniques from other sequential algorithms in a way that

scales well and can handle more challenging data sets. We apply the new algorithm

to data to demonstrate its efficiency.
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1. Introduction

The problem we address is sampling multi-way tables of counts with linear
margin constraints, which relates to multidimensional versions of Fisher’s exact
test of independence in two-way tables. Current application areas of genetics,
medicine, social sciences, and census data are motivating continued interest in
sampling large tables. Random sampling from a prescribed distribution π on a
space S of constrained tables is often used for conditional inference, where the
constraints come from sufficient statistics. By conditioning on sufficient statistics,
one can compute measures of goodness-of-fit that do not require asymptotic
approximations; this is valuable for large sparse tables. For conditional inference,
often the original table comes from multinomial or Poisson sampling, resulting in
random margin values and a conditional hypergeometric distribution. Sampling
from tables with fixed margins can also be useful in situations where the original
sampling was done in other ways, or where the data is a complete classification
of a population (Lehmann (1986, Chap. 4.7)). Other uses of sampling are volume
tests (Diaconis and Efron (1985); Chen, Lin and Sabatti (2006)) and approximate
enumeration (Chen et al. (2005)).

Methods for sampling constrained tables have evolved steadily with applica-
tions. Perfect methods for rectangular tables under the hypergeometric distribu-
tion (Fisher-Yates distribution) are old and well-known. Importance sampling is
described in Booth and Butler (1999) and is available for use within R (R Devel-
opment Core Team (2006)) with the package exactLoglinTest (Caffo (2006)).
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The network method and its extensions are used in StatXact (2004). Markov
chain Monte Carlo (MCMC) methods are used in Besag and Clifford (1989),
Guo and Thompson (1992), and the fundamental work of Diaconis and Sturm-
fels (1998). However, all these methods have limitations. For example, none
of these methods can do large no-3-way interaction problems. MCMC on con-
strained tables generally requires computing the Markov basis, a set of moves
that guarantee irreducibility of the Markov chain. This algebraic computation
can be too time-consuming with certain types of constraints, and even three-
way tables can be impossibly difficult (DeLoera and Onn (2006)) despite rapid
progress on algorithms and software for computing the Markov basis (see notably
4ti2 (4ti2 team (2006)). Indeed for three examples in Section 7, we were not able
to obtain the Markov basis.

The problem of sampling multi-way tables with constraints has received at-
tention in recent years as tables have become more challenging, and algebraic
and sequential methods have been developed (Chen, Dinwoodie and Sullivant
(2006)). Despite significant advances in methodology, problems of growing size
and difficulty continue to challenge existing methods. For example, random graph
models for social networks like the p1 model (Holland and Leinhardt (1981)) can
involve hundreds of variables and give rise to very challenging sampling problems
for conditional inference. In this paper, we describe the most promising method
for problems of increasing size. The new method combines the sequential im-
portance sampling (SIS) method of Chen, Dinwoodie and Sullivant (2006) with
a sequentially updated normal proposal distribution similar in flavor, but differ-
ent in details, from the one in Booth and Butler (1999). After describing the
algorithm in Section 3, we show in Section 6 how the details of the algorithm
can be unified by the notion of approximating a maximum entropy distribution
sequentially.

The importance sampling methods of Booth and Butler (1999) and Chen,
Dinwoodie and Sullivant (2006) for constrained tables have complementary
strengths. The method of Booth and Butler (1999) uses a sequentially-updated
normal proposal distribution, but in some cases it has difficulty producing
valid tables. The method of Chen, Dinwoodie and Sullivant (2006) uses SIS
with linear programming to generate valid tables quite reliably, but the method as
originally described did not include a well-designed proposal distribution. Certain
examples, such as the binary 8-way table in Example 4 of Section 7 (Table 9.3.1
of Whittaker (1990, p.280)), were not possible with either method – Booth and
Butler produced no valid tables, and Chen, Dinwoodie and Sullivant generated
tables that were not at all typical under the target distribution, so estimated
expectations were unreliable. The new method can handle this. In terms of
speed, the method of Booth and Butler is fast when it works, so the method in
this paper is intended for tables where simpler methods fail.
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Here are some reasons why the normal distribution is a good proposal for
sampling the multivariate hypergeometric distribution on large sparse tables with
some high cell counts and some low counts. First, a central limit theorem applies
to the multinomial distribution on unconstrained tables. Then conditioning on
the margins makes the multinomial distribution into the hypergeometric distri-
bution, and makes the normal approximation from the central limit theorem into
another normal multivariate approximation on constrained tables. Those cells
with large counts have a distribution that is well-approximated by the normal
law, and the moments of the normal proposal can be updated conditionally with
simple operations of linear algebra. Now some cell counts have distributions that
are poorly approximated by the normal density. But these are the cells with
lower counts and hence less room for error. On tables where a central limit the-
orem applies, on balance the normal approximation with updated moments is a
significant improvement over proposals that do not use updated moments.

The paper is organized as follows. In Section 2 we set up the problem. In
Section 3 we describe the proposed algorithm, and further implementation de-
tails and the computation of standard errors are discussed in Sections 4 and 5.
In Section 6, we explain the connection between the normal proposal and the
approximation of a maximum entropy distribution. In Section 7, we apply the
proposed SIS methods to several data sets that have not been previously ana-
lyzed. One of the examples is beyond the capabilities of other existing methods.
Section 8 provides concluding remarks.

2. Problem Setting

Let n0 be the observed data in an ordered vector and A be a nonnegative
integer constraint matrix that fixes sufficient statistics and other design con-
straints. Let b = An0 be the constraint vector. Then the set to be sampled for
Monte Carlo computations of expectations is the space of constrained tables

S := {n : An = b, n ≥ 0}.

The ith column of A will be denoted ai. In all our examples the sum over all
entries of n will be fixed at the same total count as n0, denoted s0. The simplest
example of A would be the matrix that fixes row and column sums in a 2 × 2
table, so

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


with the four cells numbered left to right across the first row, then left to right
across the second row, and each row in the matrix computes one constraint. This
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is the independence model on two factors, say factors S and C (for Sex at level
female and male and Color Blind at levels no or yes, for concreteness), and is
commonly specified as [S], [C]. This notation is a list of sets of margins that are
the sufficient statistics for the model.

Denote the configurations of the cells in a table n as integer vectors n =
(n1, . . . , nc), where c is the number of cells or entries in the table, and is also the
number of columns in the constraint matrix A. The target distribution π in our
examples is the hypergeometric distribution on the constrained tables S, defined
by

π(n = (n1, n2, . . . , nc)) =
κ∏c

j=1 nj !
,

where κ is the normalizing constant. This is the conditional distribution on tables
n ∈ S, given An = b, of the loglinear multinomial distribution Pθ (on the space
of tables of cell counts with total sum s0) given by

Pθ(n) =
(

s0

n1, n2, . . . , nc

)
eθ′An

zs0
θ

,

where zθ =
∑c

i=1 exp(θ′ai) is the normalizing constant on cell probabilities, and
the parameter θ is a real column vector with the same number of coordinates as
rows of A. The distribution π also arises in other contexts, such as conditional
Poisson regression. The number of free parameters in this exponential family is
typically less than the length of θ. Let pi be the probability of drawing cell i

(i = 1, . . . , c) in the multinomial probability Pθ, so pi = exp(θ′ai)/zθ, and let p
be the vector (p1, . . . , pc) ∈ Rc. The probability vector p̂ in the algorithm below
is an estimate of p.

The importance sampling approach to estimate µ := Eπ[f(n)] =
∑

n∈S f(n)
π(n) is to simulate tables from a different distribution q(·), where q(n) > 0 for
all n ∈ S, and estimate µ by

µ̂ =
∑N

i=1 f(ni)[π(ni)/q(ni)]∑N
i=1[π(ni)/q(ni)]

, (2.1)

where n1, . . . ,nN are independent and identically distributed (i.i.d.) samples
from q(n), and π(ni)/q(ni) is the importance weight. In goodness-of-fit tests
that we discuss below, the function f(n) takes the form f(n) = I{π(n)≤π(n0)} for
p-value computations. Efficient estimation usually requires that q(n) be close to
π(n) and this problem is addressed in the proposed algorithm.



SAMPLING LARGE TABLES WITH CONSTRAINTS 1595

3. Sequential Sampling with Linear Programming and Normal Pro-
posal

To generate valid tables, the sequential sampling method samples a table cell
by cell, in a way that guarantees that every table in S can be produced. More
precisely, we start by sampling the first cell n1 of the vector n conditional on
the constraints imposed on the table. Conditional on the realization of the first
cell, we sample the second cell n2 in a similar manner and then move forward
conditionally until all the cells are sampled. We can write q(·) as

q(n) = q(n1)q(n2|n1)q(n3|n2, n1) · · · q(nc|nc−1, . . . , n1).

In the SIS algorithm of Chen, Dinwoodie and Sullivant (2006), the lower and
upper bounds for the support of each cell are computed by linear programming,
and a simple hypergeometric distribution on the interval formed by the lower and
upper bounds is used as the proposal distribution to sample each cell. Here we
describe a refinement that starts with a normal approximation conditioned on
the margin values as an initial proposal distribution. The method then updates
the proposal distribution sequentially as cells are filled in and as intervals are
computed with linear programming. The detailed procedure is given below.

Algorithm:

1. Number the c cells of the table to determine the order of sampling.

2. Specify the r × c constraint matrix A for the desired loglinear model.

3. Obtain the normal approximation to the distribution π:

(a) estimate the c×1 vector p of multinomial cell probabilities using data n0,
typically with maximum likelihood estimation, and call it p̂;

(b) use the multinomial mean µ∗ = s0 p̂ and multinomial covariance Σ∗ =
s0(diag(p̂) − p̂p̂′) (here diag(p̂) is the diagonal matrix with diago-
nal values p̂) to specify the joint normal distribution N(µ∗, Σ∗) on
the table entries n in Rc, and obtain the joint normal distribution

N

((
Aµ∗

µ∗

)
,

(
AΣ∗AT AΣ∗

Σ∗AT Σ∗

))
on margin values and table entries

(
An
n

)
in Rc × Rr;

(c) based on the joint normal distribution of
(

An
n

)
, obtain the conditional

normal distribution N(µ, Σ) on table n in Rc, given the margin values
An = b.
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4. Sample the first cell (and subsequent cells by returning):

(a) use linear programming to get a lower limit l and upper limit u on the
value n1 of the first cell, subject to the constraints on tables;

(b) let µ1 be the first component in the conditional mean vector µ, and let σ2
1

be the first diagonal entry in the conditional covariance matrix Σ;

(c) sample from the discrete distribution on the integers in [l, u] proportional
to exp{−(j − µ1)2/(2σ2

1)} (i.e., proportional to the density of N(µ1, σ
2
1)),

j = l, l + 1, . . . , u, to get n1, the count for the current cell, and record the
sampling probability

q(n1) =
e−(n1−µ1)2/(2σ2

1)∑u
j=l e

−(j−µ1)2/(2σ2
1)

;

(d) if any cells are left, redefine the constraint matrix and constraint vector
A = A[,−1], b = b − n1 · a1, where the notation A[,−1] denotes the
matrix A with the first column removed, so it is the constraint matrix on
the remaining cells when the initial value is fixed;

(e) if any cells are left, update the conditional mean vector µ and the condi-
tional covariance matrix Σ for the remaining cells given n1;

(f) if any cells are left, set the next cell to be the first cell and repeat Step
4; otherwise we continue to Step 5 with a table n = (n1, . . . , nc) as an
integer vector.

5. Store the complete unnormalized weight 1/[q(n)
∏c

j=1 nj !] for the sampled
table, where q(n) is a product of the sampling probabilities from Step 4(c).

6. Repeat the above steps N times to generate N tables n1, . . . ,nN .

7. Normalize the weights over all N tables to have sample mean 1.0.

8. Estimate the p-value with µ̂ at (2.1), and compute the standard error (se) of
the estimate and the coefficient of variation (cv) of the importance weights
(see (5.1) for definition of cv).

4. Further Discussion of Proposed Algorithm

Here are some comments and clarifications on the outline of the algorithm
above. Step 1 can often be done in any natural way on small problems. By
natural, we mean proceed through each dimension (or factor) in sequence with-
out jumping across dimensions. The ordering affects the performance of the
algorithm in two ways. First, it affects the property of “sequential intervals”



SAMPLING LARGE TABLES WITH CONSTRAINTS 1597

formulated in Chen, Dinwoodie and Sullivant (2006) that plays a major role in
generating valid tables. The property of sequential intervals holds when each
integer in [l, u] can lead to a valid table, a useful property for efficiency. For
most models and most data, any natural order works pretty well in this respect.
Second, within the natural orders, some may be much better than others from
the point of view of approximating π sequentially with a normal proposal. This
is illustrated in Example 4 of Section 7.

A useful rule of thumb is to reorder the cells in such a way that the constraint
matrix does not change and the ordering remains natural, but at the same time
try to make the cells with larger counts come first, or at least early. This can be
done by permuting labels on factors and labels on levels within factors for models
with lots of symmetry. The goal is to maintain sequential intervals, but at the
same time to put cells first that have large counts so the normal proposal will be
good while it matters the most. Then, as cells are filled in and the conditional
proposal distribution gets worse as an approximation to the target conditional,
the impact on sampling performance is less.

To illustrate more clearly the natural reorderings, consider the simple 2 × 2
example for testing independence of binary factors at the beginning of Section 2.
Suppose the data are

(Male Female
Yes 0 1
No 10 100

)
or, equivalently,

(Female Male
No 100 10
Yes 1 0

)
.

Then the matrix A on the data vector (0, 1, 10, 100) computes row and column
sums and gives the vector (1, 110, 10, 101) of sufficient statistics; the data could
be naturally reordered as (100, 10, 1, 0) by swapping the labels of the two binary
factors, and the same constraint matrix A would compute a reordered vector
of sufficient statistics (110, 1, 101, 10). The second order would be better for
sequential sampling:

In the model of no-3-way interaction with k factors all with {1, . . . , λ} levels,
the symmetry leads to a simple way to generate natural orders. A (k + 1)-tuple
of permutations in the set Sk × Sλ × · · · × Sλ with k copies of the permutations
Sλ on characters 1, . . . , λ, gives a transformation on k-way tables (nx), x =
(x1, . . . , xk) ∈ {1, . . . , λ}k, by

(τ, σ1, . . . , σk)(n(x1,...,xk)) = (n(σ1(xτ(1)),...,σk(xτ(k))),

and this rearrangement leaves invariant the constraint matrix A for computing
sufficient statistics. Then there are k!λ!k natural reorderings of this type for
consideration, generally a small fraction of all (λk)! vector reorderings many of
which destroy sequential intervals and result in poor sampling performance.
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In the 8-way binary data of Example 4, there are 8! · 28 natural orders some
of which improve sampling performance significantly. For reordering in practice,
the R command aperm applies the transformation τ (R Development Core Team
(2006)). For models with less symmetry, identifying the natural reorderings may
be more difficult.

To obtain the constraint matrix A in Step 2, one can use the genmodel
command in 4ti2 (4ti2 team (2006)) for many standard loglinear models. The
voting model of Example 3 is not possible with this tool however, it must be
coded manually.

For the estimation Step 3(a), one can use many existing tools in order to
avoid coding the procedure for maximum likelihood estimation. For example,
one may normalize the fitted values from regression. This fitting procedure is
easiest in R with the glm command when the data is in the form of a data frame
and the model is standard, and it can be done with loglin on a multi-way array
using iterative proportional fitting for loglinear models specified with a list of
margin sets for sufficient statistics.

In Step 3(c), the mean and variance of the conditional normal distribution

can be computed in the standard way. If we use the notation
(

X1

X2

)
for a pair of

normal random vectors, which have joint mean E

(
X1

X2

)
= µ =

(
µ1

µ2

)
and joint

covariance matrix Σ =
(

Σ11 Σ12

Σ21 Σ22

)
, then the conditional mean and covariance

of X2 given X1 = x1 are E(X2 | X1 = x1) = µ2 + Σ12Σ−1
11 (x1 − µ1) and

Cov(X2 | X1 = x1) = Σ22 − Σ12Σ−1
11 Σ21 (see for example Whittaker (1990,

p.163)). In Step 3(c), the joint normal distribution of
(

An
n

)
has a singular

covariance matrix, so one must be careful about the formula for the conditional
distribution (Marsaglia (1964)).

Step 4 involves the most intensive numerical work. The linear programming
in Step 4(a) finds the maximum u and the minimum l over rational numbers
of the objective function h(x) = x1 subject to Ax = b, x ≥ 0. The software
lpsolve of Berkelaar, Eikland and Notebaert (2004) is used within R (although
there is some evidence at this time that Rsymphony of Harter, Hornik and Theussl
(2008) is faster). The difference between rational and integer programming is a
theoretical issue, but in practice rarely becomes a problem with proper rounding
(Chen, Dinwoodie and Sullivant (2006)).

In Step 4(b) we have the c × 1 mean µ and the c × c covariance matrix Σ
conditional on the margins from Step 3(c), and one simply takes the first entries.
For the cell sampling in Step 4(c), some further care has to be taken when



SAMPLING LARGE TABLES WITH CONSTRAINTS 1599

the conditional mean µ1 is outside the interval [l, u], or when the conditional
variance σ2

1 is extremely small. This is rare but may happen when the normal
approximation is not good for parts of the table, leading to the situation where the
sequentially updated moments of the normal distribution become incompatible
with the sequentially updated state space. A simple way to deal with these
problems is to move the mean µ1 to the center of [l, u] and round up σ1 to 1/2
when necessary. This ad hoc adjustment occurs very rarely and only for cells
where the range of values is small, so it has a very small effect on performance;
the method is “correct” as long as the adjustment is accounted for in the weights.
The updating Step 4(e) is straightforward using the formula for conditional means
and variances in Step 3(c). Since the current cell value is one-dimensional, no
matrix inversion is needed in the computation. Computing the weights in Step 5
should be done with logarithms and careful numerical methods for large tables.

5. Standard Error Computation and Confidence Interval

We now consider the importance weights that are proportional to ratios
of unnormalized target probabilities to proposed probabilities. Step 7 says to
normalize the weights and, although the expression (2.1) for computation does
not require this, normalizing is good because then the estimate of cv2 in (5.1)
can be computed as the sample variance of the normalized weights, and the
normalized weights can be used for diagnostic methods that are awkward when
the weights are extremely small, possibly on the order of 10−10 in some cases.
Define the weight Wi by

Wi :=
1

q(ni)
∏c

j=1 nj !
=

π(ni)
κ q(ni)

, i = 1, . . . , N,

and then W1,W2, . . . ,WN are i.i.d. random variables. To simplify notation in
some formulas, let W have the same distribution as any Wi.

Let W̄ =
∑N

i=1 Wi/N . The ratio Wi/W̄ is the normalized weight, whose
expectation Eq(Wi/W̄ ) converges to 1 as the sample size N increases. It follows
that κ = 1/Eq(W ) and

Eq(W 2)
[Eq(W )]2

= Varq

(
W

Eq(W )

)
+ 1.

Now define the coefficient of variation (cv), a useful quantity for measuring the
variation of weights in importance sampling, by

cv2 :=
Eq(W 2)
[Eq(W )]2

− 1 ≈
∑N

i=1(Wi − W̄ )2

(N − 1)W̄ 2
=

∑N
i=1(Wi/W̄ − 1)2

(N − 1)
. (5.1)
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The quantity cv2 figures into the definition of “effective sample size (ESS)” (Liu
(2001, p.36)) which is used for comparing efficiency of importance sampling with
naive Monte Carlo (i.e., direct independent sampling from the target distribu-
tion):

ESS(N) =
N

1 + cv2
. (5.2)

Roughly speaking, we need ESS(N) i.i.d. samples from the target distribution
in order to obtain the same standard error for µ̂ as N importance samples.

The estimate (2.1) for a conditional p-value has f = IB, the indicator func-
tion for the set B = {n ∈ S : π(n) ≤ π(n0)}, and

µ̂ =
1
N

N∑
i=1

IB(ni) ·
Wi

W̄
. (5.3)

The delta method for approximating variances (Liu (2001, p.35)) leads to an
approximation of the mean-squared error MSE(µ̂) by

1
N · [Eq(Wi)]2

[
µ2Varq(Wi) − 2µCovq(Wi, IB(ni) · Wi) + Varq(IB(ni) · Wi)

]
.

(5.4)
An approximation to the standard error of the estimate µ̂ is

√
MSE(µ̂) with the

mean, variance, and covariance in (5.4) replaced by their sample counterparts.
This empirical approximation of a delta method approximation is reported in the
examples of Section 7. Another method, more direct and reliable but also more
time consuming, is to do repeated runs to produce a random sample of estimates
of µ, and to use their mean and standard error.

While the estimate of the standard error above is traditional and valuable,
consider confidence intervals in more detail for the estimate µ̂ of the probability
µ. The traditional interval µ̂± 2 · se (the Wald interval) is sometimes considered
unreliable as a confidence interval for µ when µ is small (Agresti and Coull (1998);
Brown, Cai and DasGupta (2001)); the score interval is sometimes recommended
instead. The score interval for a binomial proportion µ with n trials and 95%
confidence is

µ̂ + z2
0.025/2n ± z0.025

√
µ̂(1 − µ̂)/n + z2

0.025/4n2

1 + z2
0.025/n

, (5.5)

where z0.025 = 1.96 (Brown, Cai and DasGupta (2001)). We argue below that
one may expect the score interval to be a reasonable confidence interval for
probabilities µ under SIS with sample size N replaced by n = ESS(N) = N/(1+
cv2).
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The score interval is derived by starting with the approximation

P (−z0.025 <
µ̄ − µ√

µ(1 − µ)/n
< z0.025) ≈ 0.95,

where µ̄ is the proportion of successes in n independent Bernoulli trials with
success probability µ. Then one solves a quadratic inequality in µ, treating µ̄ as
fixed, to obtain the interval. Using Varπ[IB(n)] = µ(1−µ) (since µ = π(B)) and
the equation on relative efficiency on p. 36 of Liu (2001), we have

µ(1 − µ)
Varq (IB · W (n)/Eq(W ))

≈ 1
1 + cv2

,

suggesting that Varq(µ̂) ≈ [µ(1−µ)/N ]·(1+cv2). This leads to the approximation

P (−z0.025 <
µ̂ − µ√

µ(1 − µ)/n
< z0.025) ≈ 0.95

with n = N/(1 + cv2). Then the original derivation of the score interval can be
applied with the effective sample size.

6. Connection Between Normal Proposal and Maximum Entropy

Our sampling algorithm uses elements of normal sampling theory and lin-
ear programming imposed on a discrete state space in a way that may seem
contrived; the method can be seen in a more unified way as a sequential way
to approximate a maximum entropy distribution. Recall that the entropy of a
distribution with density p on a set S is given by H(X) = −

∑
S p(x) log(p(x)),

a nonnegative quantity. Here X represents a random element with distribution
p; we are using the notation of Cover and Thomas (1991). The multinomial
distribution Pθ on tables can be approximated by a normal distribution using
the Central Limit Theorem. The conditional distribution N(µ,Σ) on table cells
given margin values An = b (from Step 3(c) of the algorithm), a good approxi-
mation to π, has maximum entropy over all densities on Rc with the same µ and
Σ, being Gaussian (Cover and Thomas (1991, p.270)). Therefore one should
use a proposal distribution q on S that also has maximum entropy, and with the
same first and second moments as the maximum entropy approximation N(µ,Σ).
Here we are being slightly unclear about the reference measure for the entropy

computation on S. If we use the notation
(

X1

X2

)
for the first cell value X1 ∈ R1

and X2 ∈ Rc−1, then the proposal distribution should nearly maximize over q

the joint entropy written sequentially:

H(X1, X2) = −
∑
S

q(x1) log(q(x1)) −
∑
S

q(x1)q(x2 | x1) log(q(x2 | x1)).
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Now the margin q(x1) appears as a weighting factor in the second term, but if we
ignore its presence in the second term we get the approximate maximum entropy
solution

q(x1) = argmaxQ{−
∑
S

Q(x1) log(Q(x1)) : EQ(X1) = µ1,VarQ(X1) = σ2
1}.

Now by the well-known exponential form of the maximum entropy density under
constraints, it follows that the one-dimensional margin q(x1) has the form q(x1) ∝
exp(αx1 + βx2

1) on the support [l, u] of the first coordinate from S (Cover and
Thomas (1991, p.267)) – that is, we get the representation in Step 4(c) of the
algorithm, where α and β are chosen so the mean is approximately µ1 and the
variance is approximately σ2

1 based on heuristics, rather than computation, for
speed. Now once the first margin is found, the computation is repeated again in
the same way, with a new joint mean and joint covariance on the remaining cells
providing moment constraints for maximum entropy:

E(X2 | X1 = x1) = µ2 + Σ12Σ−1
11 (x1 − µ1),

Cov(X2 | X1 = x1) = Σ22 − Σ12Σ−1
11 Σ21.

Therefore the sampling algorithm can be viewed as a sequence of maximum
entropy approximations on the projected first coordinate of a polytope S ∈ Rc,
under sequential moment constraints that come from a normal, maximum entropy
approximation.

7. Examples

In examples we compare different methods of computing p-values for good-
ness-of-fit. The p-value is defined by π{n : π(n) ≤ π(n0)}, where n0 is still
the observed data. All examples were coded in R (R Development Core Team
(2006)) and run on a laptop with a 1.66 GHz Intel Pentium processor and 1 GB
of memory. The computations were done so that the actual running times were
similar for different methods. The estimate of the standard error is based on the
square root of (5.4), except in Example 4.

Example 1. Deresiewicz et al. (1997, Table 2) present data comparing computed
tomographic (CT) scans and magnetic resonance imaging (MRI) scans on 32
patients with equine encephalitis. Our concern is whether the two methods are
equally sensitive for detection. The null hypothesis is that they are equally
sensitive, with a view to supporting the claim that one is more sensitive than
the other under rejection (indeed, it is claimed that MRI is more sensitive). The
data in Table 1 are counts of abnormal findings which make up a 2×2×8 sparse
three-way table.
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Table 1. Deresiewicz et al.’s (1997) data of neuroradiographic studies on 32
patients with equine encephalitis.

Anatomical Site or Abnormality CT Scan (32 patients) MRI Scan (14 patients)
Basal gangli 18 10
Thalamus 8 10
Brain stem 3 6

Cortex 4 5
Periventricular area 0 2

Meninges 2 0
Hydrocephalus 1 0

Any abnormality 21 13

Two Poisson regression models can be fit and evaluated with standard gen-
eralized linear model asymptotics. First, a two-factor model, with factor Scan
type at levels CT and MRI and factor Site at eight levels, has a response which
is the abnormal count at each combination of factors. The significance of the
parameter on Scan type is what we want, and its p-value is reported to be 1.1
×10−5 in R with a reasonable fit judging by residual deviance. Second, if one
fits a smaller model by leaving out the Scan type factor, the model does not fit
well with residual deviance giving p-value of approximately 1.0 × 10−4. Both
methods confirm a very significant difference in sensitivity between the CT and
MRI scans.

For conditional inference, the 2×2×8 table has factors Status (at two levels
normal and abnormal), Scan Type (at two levels CT and MRI) and Site (at eight
levels). A model that leaves out Scan Type in a formula for the probability of
abnormal Status has sufficient statistics [Status, Site], and 16 fixed combinations
of [Scan Type, Site] from the design. Thus the constraint matrix has 32 rows of
constraints and 32 columns for the cells.

Table 2 has the analysis. We compared the proposed SIS with the normal
proposal with the SIS with the hypergeometric proposal in Chen, Dinwoodie and
Sullivant (2006). Both methods were run for about 40 minutes. The p-value is
quite small, so the computation is delicate. SIS delivered 100% valid tables with
both proposals.

The cv2 value for SIS was 0.11 with the normal proposal, but 12.62 with
the hypergeometric proposal, which indicates that the normal proposal is much
closer to the target distribution than the hypergeometric proposal. Although
both methods took about the same amount of time to generate 25, 000 importance
samples, the effective sample size for the normal proposal is about 12 times larger
than that for the hypergeometric proposal. These results show that the normal
proposal is much more efficient than the hypergeometric proposal in this example.
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Table 2. Comparison of SIS with different proposal distributions on the data
in Table 1.

SIS normal SIS hypergeometic
Estimate 3.4 × 10−5 3.8 × 10−6

Standard error 2.4 × 10−5 1.6 × 10−7

Sample size 25, 000 25, 000
cv2 0.11 12.62

ESS 22, 523 220

Because of the discrepancy between the two estimates, we also implemented
the MCMC algorithm (Diaconis and Sturmfels (1998)) for this problem. The
Markov basis consists of 8 moves. A long simulation of 4,000,000 MCMC samples
gave an estimate of order 10−5 which agreed with SIS with the normal proposal.
The result for the hypergeometric proposal is biased low by a factor of 10, and
the standard error approximation is unrealistically low, possibly because of the
bias towards 0. This type of phenomenon is not unusual in importance sampling
when a not well-designed proposal is used.

Example 2. Data on frequency of livestock breeds (Table 3) is presented in Hall
and Ruane (1993), classified three ways by type of animal, presence (common,
rare, extinct), and region. We removed the common level to focus on rare and
extinct combinations. Our interest is how well the model of no-3-way interaction,
sometimes called all-2-way interaction, fits the data. This is the model with
sufficient statistics that are the sums of counts over the third factor at all fixed
combinations of pairs of levels of two factors.

Using glm with Poisson regression gives a likelihood ratio statistic of 36.1 on
36 degrees of freedom. These numbers make the model fit look decent because
the degrees of freedom includes even the contributions of cells that are in the
domain of vanishing margins, and therefore fixed at 0 in the exact sampling.

Based on 1,000 samples that took about 9 minutes to generate, SIS with
normal proposal estimated a p-value of 0.012 with standard error 0.005. SIS
gave 100% valid tables, with a cv2 value of 0.28. After manually removing the
cells forced to be 0 by vanishing margins, exactLoglinTest can be used and
reports a p-value for the Pearson χ2 statistic of 0.013. This number is based on
the hypergeometric distribution π for the Pearson χ2 distance function, not the
asymptotic χ2(36) distribution, and is computed with parameter maxiter set
equal to 106. For this problem, the Markov basis for MCMC was not found after
24 hours of running time.

Example 3. Voting data on five candidates has been analyzed in Diaconis
(1989) and Eriksson and Diaconis (2005). The table presents counts for each of
the 5! orderings of candidates. The first-order model, whose sufficient statistics
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Table 3. Hall and Ruane’s (1993) data on frequency of livestock breeds.

Ass Water Buffalo Cattle Goat Horse Pig Sheep
Africa Rare 0 0 10 0 2 0 4

Extinct 0 0 22 0 2 0 1

Asia Rare 0 2 8 4 14 2 1
Extinct 0 0 5 1 3 8 2

Europe Rare 10 0 101 29 49 37 109
Extinct 5 0 154 19 58 79 98

North and Central America Rare 0 0 8 4 9 5 7
Extinct 0 0 1 1 4 17 10

South America Rare 1 0 4 0 0 0 1
Extinct 0 0 19 0 0 0 0

Oceania Rare 0 0 1 0 1 1 2
Extinct 0 0 2 0 1 1 5

ex-U.S.S.R. Rare 0 0 9 4 23 2 11
Extinct 0 0 21 6 20 21 32

are counts of frequencies with fixed value at each coordinate, does not fit at all
well. Establishing this result is more than fitting an additive Poisson regression
model on 5-way data, because the permutation data makes structural zeros in a
5-way classification.

Now we are concerned with a large model that may fit better. A model with
more parameters that includes some second-order terms is given by

p(i1,i2,i3,i4,i5) ∝ eθ1,i1
+θ2,i2

+θ3,i3
+θ4,i4

+θ5,i5
+γ1,(i1,i2)+γ2,(i2,i3)+γ3,(i3,i4)+γ4,(i4,i5) ,

which makes the sufficient statistics all the first-order totals fixing each variable
(5 levels) at each coordinate (5 coordinates), together with the second-order sums
of counts at consecutive pairs of coordinate values. This model is supposed to
include some of the candidate grouping effects discovered in Diaconis (1989).
The model leads to 5 × 5 + 4 × (5 × 4) = 105 constraints on 120 = 5! variables.
Each sequence (i1, i2, i3, i4, i5) is a permutation of (1, 2, 3, 4, 5), so no repetition
is allowed. Therefore if one considers the data to be a 5-way table with 5 levels
in each dimension, one must force structural zeros on 55−5! entries which makes
generic loglinear model fitting difficult. For the estimate p̂ in the normal pro-
posal, we used the normalized fitted values from Poisson regression on a model
of no interaction, ignoring structural zeros, which seemed to work as well as any
other choice.

It looks like there are 105 parameters, but because of redundancy in the
parameterization, the 105 × 120 constraint matrix from sufficient statistics has
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Table 4. Whittaker’s (1990) survey data on women’s economic activity.

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0

8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0

5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0

4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0

17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0

1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0

4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0

5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1

3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0

0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0

2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rank 58, the degrees of freedom is only 62, and the model has dimension 57 (57
free parameters). Whereas it is now possible to obtain the Markov basis for the
first-order model in a few hours with 4ti2, we were not able to get the basis for
the second-order model above. This requires at least several days of computing
time.

Based on 1,000 samples, which took about 15 minutes to generate, SIS with
normal proposal estimated a p-value of 1.78 × 10−5 with standard error 1.30 ×
10−5. The cv2 value is 18.4. The p-value estimate indicates that the second-order
model that includes effects for consecutive pairs of candidates, does not fit well.
Other models have been proposed in Chung and Marden (1993).

Example 4. The vector of counts of 8-way binary data in Table 4 is reported
in Whittaker (1990, p.280). It concerns a survey of 665 households with each
response classified in one of 28 ways based on 8 “no or yes” responses to economic
and employment questions. It is given in lexicographic order, that is the cells
are numbered 00000000, 00000001, 00000010, etc. where 0 codes for “no” on a
particular question.

Fitting the “all two-way interaction” model in Whittaker’s terminology (i.e.,
no-3-way interaction) in R gives a likelihood ratio statistic of 144.6 on 219 residual
degrees of freedom, and p-value over 0.99 on the χ2(219) scale. We will see that
the exact test gives a much smaller value, although one that does not contradict
reasonable model fit. For the exact analysis, the Markov basis is quite difficult
to find, and we were not able to compute it in 4ti2.

The SIS method does not work well using the original cell ordering. More
than one reordering can be used to get the cv2 value down to a quantity generally
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Table 5. Comparison of SIS with normal proposal on Whittaker’s (1990)
survey data with different orders of the cells.

SIS normal, reordered SIS normal, not reordered
Estimate 0.186 0.223

Standard error 0.041 0.091
Sample size 8, 000 8, 000

in the hundreds. The fraction of valid tables was 99.7%. In our analysis, we
chose to do eight SIS runs of size 1,000 each, in order to get a more reliable
estimate of the standard error than the expression (5.4), which can be unstable
and misleading on these data. The p-values in the table for SIS are the averages
of the eight runs, and the standard error is the sample standard deviation divided
by

√
8. The total running time over all eight runs was about 7 hours. Each run

had its own cv2 value, and those for the reordered data with larger counts near the
beginning were better– the cv2 values on the original order were generally twice
as high and with more variability across runs. The comparison of the standard
errors shows that the algorithm on the reordered data is about (0.091/0.041)2 ≈ 5
times more efficient than the algorithm on the data in the original order.

8. Conclusions

High dimensional contingency tables are common structures for data from
research in biology and the social sciences. Despite significant advances, these
tables remain challenging to analyze. Further research into sampling methods
for Monte Carlo computations will enable researchers to analyze larger and more
complex tables.

Certain types of constraints and features like structural zeros overwhelm
existing methods. That is, examples persist where computing the Markov basis
is not possible in reasonable time, and where other existing methods cannot
generate valid tables. Methods like the one implemented in exactLoglinTest

work fine on some standard loglinear models, but cannot handle large problems
of no-3-way interaction.

The method that is most promising is a type of sequential sampling where
cell intervals are computed in sequence using linear programming, and a normal
proposal distribution is updated sequentially. This method generates nearly 100%
valid tables in almost all examples and can deliver good answers on the hardest
problems. In particular, its ability to generate valid tables seems to “scale well”
in the number of cells within difficult model families like no-3-way interaction.
Another good property is that the quality of the Monte Carlo estimates can be
judged using standard tools of importance sampling like cv2. The SIS sampling
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method can also be distributed easily over many processors because random
tables are independent, unlike Markov chains.

Certain difficulties remain in the implementation of the SIS algorithm: clearer
diagnostics on the accuracy of the results are needed; the order of the cell sam-
pling is critically important but hard to systematize; the speed of the algorithm
needs to be improved. The speed of the algorithm depends very much on large
amounts of linear programming, and improvements in this aspect of the imple-
mentation may be key to pushing on to larger and larger tables. Other methods
for obtaining bounds may provide improvements, such as the generalized shuttle
algorithm (Dobra (2002)). Choosing the normal proposal in an optimal way,
and also choosing the cell ordering in an automated and optimal fashion are
interesting technical problems that could improve the algorithm.
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