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Abstract: Bivariate truncated data arise from the study of age-of-onset anticipa-

tion for diseases with variable age of onset in which children tend to develop clin-

ical disease at younger ages than their affected parents. To test for age-of-onset

anticipation using affected parent-child pair data, it is of interest to estimate the

marginal distributions of the age-of-onset for both parents and children. However,

the observed ages of onset in both parents and children are right-truncated by

their current ages. In this report, we proposed a nonparametric estimator of the

marginal distributions of a bivariate distribution based on right-truncated data.

This estimator is shown to be consistent under appropriate conditions. A nonitera-

tive algorithm is given to compute the proposed estimator. Finite sample behavior

of the estimator is investigated via simulation. An example is given to illustrate

the use of the proposed estimator in testing of age-of-onset anticipation in bipolar

affective disorder.
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1. Introduction

Bivariate truncated data arise from the study of genetic diseases with vari-
able age of onset, when there is a tendency for children to develop clinical disease
at younger ages than their affected parents (age-of-onset anticipation or AOA).
It is now confirmed in several neurologic diseases, including myotonic dystrophy
(Höweler, Busch, Geraedts, Niermeijer and Staall (1989)), Huntington’s disease
(The Hungtinton’s Disease Collaborative Research Group (1993)), and Machado-
Joseph disease (DeStefano, Cupples, Maciel, Gaspar et al. (1996)), that age of
onset is negatively correlated with the length of unstable expanding DNA-triplet
repeats at the disease locus. The possibility of mapping a gene for a complex dis-
order by screening the genome for large repeat polymorphisms (Schalling (1993))
adds incentive for clinical investigators to assess the possibility of AOA in the
disorders they study.
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Reports of AOA now exist in bipolar disorder (McInnis, McMahon, Stine
and Ross (1993)), facioscapulohumeral muscular dystrophy (Zatz et al. (1995)),
schizophrenia (Bassett and Honer (1994)), rheumatoid arthritis (Deighton,
Heslop, McDonagh, Walker and Thomson (1994)), hereditary dentatorubral-
pallidoluysian atrophy (Sano et al. (1994)). Most recently, Paterson, Kennedy
and Petronis (1996) found strong statistical evidence of AOA for breast cancer,
colon cancer, Alzheimer’s disease, and maturity-onset diabetes mellitus. On the
face of it, the high “hit” rate for detecting AOA among these diverse diseases is
grounds for suspicion, and a careful scrutiny of the statistical methods employed
supports this skepticism.

The particular statistical methods used in testing for AOA across these var-
ious reports have varied. A simple and frequently used procedure is simply to
carry out a paired t-test of the hypothesis that the mean age of onset in parents
is higher than the mean age of onset in children, using affected parent-child pairs
(see e.g., Horwitz, Goode and Jarvik (1996), Paterson et al. (1996), Zatz et al.
(1995), Myers et al. (1985)). Heiman, Hodge, Wickramaratne and Hsu (1996)
showed that this test is inappropriate, for the following simple reason. In this set
up, both the parent and the child in each pair are affected, and therefore, what-
ever the current age of each may be, the age of onset must be prior to the current
age. Therefore the age of onset distribution in parents and children, respectively,
is right truncated relative to the population distribution: only individuals with
age of onset prior to current age are eligible for inclusion. Since children are
younger than parents, the truncation effect is more pronounced in the children
than in the parents. Failure to take into account the truncation effect can lead to
a striking deflation of p-values. Heiman et al. (1996) showed, using simulations,
that the propensity of the ordinary paired t-test to reject the hypothesis of no
AOA when in fact it is true (i.e., when there is in fact no AOA) can be extremely
high, depending on the underlying age of onset distribution. For some of the
models they considered, (false) rejection rates could be as high as 100%.

The truncation effect can be described using a bivariate right-truncation
model. Huang and Vieland (1997) proposed a semiparametric model and a con-
ditional likelihood approach to compare the age-of-onset distributions under bi-
variate truncation. In that model, the distribution of the ages at interview need
not be specified since the conditional likelihood (conditioning on the ages at inter-
view) does not involve this distribution. The joint distribution of ages of onset
in parents and children is assumed to be bivariate normal. In this paper, we
propose a nonparametric estimator of the joint distribution based on truncated
bivariate data, without specifying the form of the age-of-onset or the current age
distribution.

The univariate truncation problem has been studied by many authors, see
for example Woodroofe (1985), and Keiding and Gill (1990). In the univariate
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setting, the nonparametric maximum likelihood estimator has an explicit form
using a product integral similar to the Kaplan-Meier estimator for right censored
data (Kaplan and Meier (1965)). Estimation of a bivariate distribution when
observations are subject to right censoring has received much attention recently.
See, for example, Campbell (1981), Dabrowska (1988), Prentice and Cai (1993),
Lin and Ying (1993), Gill, Van der Laan and Wellner (1995), Van der Laan
(1996), and the references cited by these authors. There has also been some
recent work on estimating a bivariate distribution when observations are subject
to truncation. For example, Gürler (1996) considered bivariate estimation when
a single component of the bivariate data is subject to truncation. The method of
Gürler (1996) cannot be extended to the case where both components are trun-
cated. Van der Laan (1996) studied the self-consistency estimator of a bivariate
survival function when both components are subject to truncation. However,
he did not consider the finite sample behavior of the self-consistency estimator.
Our simulations show that simple use of the marginal distributions of the bi-
variate self-consistency estimator results in severely upward biased estimators of
the underlying marginal distributions. This large bias makes the marginal distri-
bution estimators directly based on the self-consistency estimator unsuitable for
comparing the distributions in our example of testing age-of-onset anticipation.

In this paper, we propose a nonparametric estimator of the marginal distri-
bution that does not have the large upward bias. In Sections 2 and 3 below, we
first describe the bivariate truncation model and the proposed nonparametric es-
timators of the two marginal distributions. In Section 4, a noniterative algorithm
is given for computing the estimator. We also present some simulation results.
To illustrate an application of the proposed estimator, we propose a test for the
equality of two marginal medians based on the estimated medians obtained from
the the bivariate estimator. This test provides a nonparametric approach to
testing for age-of-onset anticipation. Section 5 contains sufficient conditions for
the consistency of the proposed estimator. The proofs are put together in the
appendices. Discussions and further problems are included in Section 6.

2. The Bivariate Right Truncation Model

Let T1 and T2 be the parent’s and child’s age of onset, respectively. Let C1

and C2 be the parent’s and child’s age at interview (current age), respectively. Let
the joint distribution functions of (T1, T2) and (C1, C2) be F and G, respectively.
We assume that the pairs (T1, T2) and (C1, C2) are independent of each other in
the population.

For an affected parent-child pair to be included in the sample, their disorders
have to be manifested before the time they are examined. Therefore T1 ≤ C1
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and T2 ≤ C2 and the joint distribution of the observed age of onset and the age
at interview is given by

P (T1 ≤ t1, T2 ≤ t2, C1 ≤ c1, C2 ≤ c2|T1 ≤ C1, T2 ≤ C2). (2.1)

3. A Nonparametric Estimator

In this section, we propose a nonparametric estimator of F based on trun-
cated bivariate data. First we construct an initial estimator. This estimator is
shown to be consistent under appropriate conditions, see Section 5. However, the
finite sample behavior of its corresponding marginal distribution estimators is not
satisfactory. We update this initial estimator based on an equation derived from
the truncation model. The resulting estimator has much better finite sample
performance according to our simulations. It is also shown to be consistent.

3.1. The self-consistency estimator of the bivariate distribution

Let t1 ≥ 0 and t2 ≥ 0 be fixed. Let K∗(t1, t2) = P (T1 ≤ t1 < C1, T2 ≤ t2 <

C2|T1 ≤ C1, T2 ≤ C2). This function plays an important role in the construction
of our estimator, the motivation for using it is given in Appendix A. Let α =
P (T1 ≤ C1, T2 ≤ C2). By the independence assumption between (T1, T2) and
(C1, C2) in the population, we have

K∗(t1, t2) = α−1P (T1 ≤ t1 < C1, T2 ≤ t2 < C2) (3.2)

= α−1F (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG(c1, c2).

Let G∗ be the distribution function of the observable ages at interview, given by

G∗(t1, t2) = P (C1 ≤ t1, C2 ≤ t2|T1 ≤ C1, T2 ≤ C2) (3.3)

= α−1
∫
[0,t1]

∫
[0,t2]

F (c1, c2)dG(c1, c2).

Combining equations (3.2) and (3.3) gives

K∗(t1, t2) = F (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG∗(c1, c2)
F (c1, c2)

. (3.4)

It is shown in the appendix that, if the support of F is contained in the sup-
port of G (this is more precisely defined in Section 5) plus mild extra conditions,
a distribution function F∗ satisfies (3.4) if and only if F∗ ≡ F . This implies that
F can be identified through equation (3.4). Note that even in the univariate case,
a similar condition for the identifiability of F is needed, see Woodroofe (1985).
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Let (T1i, T2i, C1i, C2i), 1 ≤ i ≤ n, be the observed data subject to the condi-
tion that T1i ≤ C1i and T2i ≤ C2i. The bivariate function K∗ can be estimated
directly by its corresponding empirical function

K∗
n(t1, t2) = n−1

n∑
i=1

1[T1i≤t1<C1i,T2i≤t2<C2i]. (3.5)

In addition, the empirical version of G∗ is simply the empirical distribution func-
tion of the observed ages at interview: G∗

n(t1, t2) = n−1 ∑n
i=1 1[C1i≤t1,C2i≤t2].

It is natural to define a nonparametric estimator F
(0)
n which simply solves

the empirical version of (3.4):

K∗
n(t1, t2) = F (0)

n (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG∗
n(c1, c2)

F
(0)
n (c1, c2)

. (3.6)

This is exactly the equation that defines the self-consistency estimator of F and
can also be derived as the score equation based on the nonparametric likelihood
of the data, see Van der Laan (1996).

However, (3.6) does not have a unique solution, since if F
(0)
n satisfies (3.6),

so does kF
(0)
n for a constant k. At the population level, the identifiability of F

through (3.4) is partly because F equals 1 at a point in the support of G (with
the assumption that the support of F is contained in the support of G), so that
k must be 1. See the proofs in Appendix B. Therefore we specify F

(0)
n to be 1 at

the point (C1,n+1, C2,n+1) ≡ (max1≤i≤n{C1i} + (1/n),max1≤i≤n{C2i} + (1/n)):

F (0)
n (C1,n+1, C2,n+1) = 1. (3.7)

We also include this point in a slightly different version of the empirical distri-
bution function corresponding to G∗, given by

G#
n (t1, t2) = (n + 1)−1

n+1∑
i=1

1[C1i≤t1, C2i≤t2].

For any t1 < C1,n+1 and t2 < C2,n+1, we define an initial estimator F
(0)
n (t1, t2)

to be the solution to

K∗
n(t1, t2) = F (0)

n (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG#
n (c1, c2)

F
(0)
n (c1, c2)

(3.8)

=
n

n + 1
F (0)

n (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG∗
n(c1, c2)

F
(0)
n (c1, c2)

+
1

n + 1
F (0)

n (t1, t2),

where the second equality in (3.8) follows from (3.7).
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The choice of (C1,n+1, C2,n+1) is based on the following considerations: (a)
for the identifiability of F , it is necessary to assume that the support of F is
contained in the support of G (so this choice will not cause asymptotic bias in
F

(0)
n ); (b) the choice of (C1,n+1, C2,n+1) is not sensitive in the sense that any

other choice of (C1,n+1, C2,n+1) such that C1,n+1 > max1≤i≤n{C1i} and C2,n+1 >

max1≤i≤n{C2i} will result in the same estimation of F
(0)
n at points (t1, t2) such

that t1 ≤ max1≤i≤n{C1i} and t2 ≤ max1≤i≤n{C2i}, with at least one strict
inequality. This can be seen from the second equality of (3.8).

In the case of no truncation, (C1, C2) puts total mass at (∞,∞), then K∗
n sim-

plifies to the usual empirical distribution function of the (T1i, T2i), i = 1, . . . , n,
and the integral on the right side of (3.8) reduces to 1. Therefore, F

(0)
n simplifies

to the empirical distribution function of the complete data.
As shown in Section 5, F

(0)
n enjoys the desired asymptotic properties, i.e.,

consistency and asymptotic normality under appropriate conditions. Our sim-
ulations suggest that it performs reasonably well in the interior of the data set
for moderate sample sizes (n = 50, 100). Here the interior refers to the in-
terior of the smallest polygon containing all the observed pairs (T1i, T2i) and
(C1i, C2i), i = 1, . . . , n, plotted in the (two-dimensional) first quadrant. How-
ever, simulation shows that the performance of F

(0)
n on the boundary points, or

at the points close to the boundary, is rather poor. In particular, F
(0)
n (t1,∞) and

F
(0)
n (∞, t2) are severely biased upwards, and estimators of the marginal distri-

butions of F based on F
(0)
n will be severely biased. Therefore, we derive another

expression for F given in (3.12) below. Based on this expression, we use F
(0)
n

as an initial estimator and obtain an improved estimator, particularly on the
boundary points.

3.2. The proposed estimator

Let

K+(t1, t2) = P (T1 ≤ t1 ≤ C1, T2 ≤ t2 ≤ C2|T1 ≤ C1, T2 ≤ C2)

= α−1P (C1 ≥ t1, C2 ≥ t2)F (t1, t2). (3.9)

Note that K+ is close to K∗. In fact, if the distribution function of (T1, T2, C1, C2)
is continuous, then K+ is the same as K∗. Let S∗(t1, t2) = P (T1 > t1, T2 >
t2|T1 ≤ C1, T2 ≤ C2) = α−1

∫
(t1,∞)

∫
(t2,∞) P (C1 ≥ c1, C2 ≥ c2)dF (c1, c2). Then

dS∗(t1, t2) = α−1P (C1 ≥ t1, C2 ≥ t2)dF (t1, t2). (3.10)

Dividing (3.10) by (3.9) gives

dS∗(t1, t2)
K+(t1, t2)

=
dF (t1, t2)
F (t1, t2)

. (3.11)
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It follows that

F (t1, t2) =
∫
[0,t1]

∫
[0,t2]

F (s1, s2)
K+(s1, s2)

dS∗(s1, s2). (3.12)

Let the empirical versions of K+ and S∗ be

K+
n (t1, t2) =

1
n

n∑
i=1

1[Ti1≤t1≤C1i, Ti2≤t2≤C2i], and S∗
n(t1, t2) =

1
n

n∑
i=1

1[T1i>t1, T2i>t2].

Our proposed estimator of F is

Fn(t1, t2) =
∫
[0,t1]

∫
[0,t2]

F
(0)
n (s1, s2)

K+
n (s1, s2)

dS∗
n(s1, s2). (3.13)

If F1 and F2 are the marginal distribution functions of F , their estimators are

F1n(t1) =
∫
[0,t1]

∫
[0,∞)

F
(0)
n (s1, s2)

K+
n (s1, s2)

dS∗
n(s1, s2) (3.14)

and

F2n(t2) =
∫
[0,∞)

∫
[0,t2]

F
(0)
n (s1, s2)

K+
n (s1, s2)

dS∗
n(s1, s2). (3.15)

From (3.14) and (3.15), the influence of the points on or close to the boundary
of the smallest polygon that contains all the data points on the marginals F1n

and F2n is considerably smaller than that on the marginals based on F
(0)
n .

4. Computation and Examples

We describe an approach for computing the initial estimator F
(0)
n , the main

task in computing the final estimator Fn and its marginals.
Since K∗

n(t1, t2) is determined at the 2n points consisting of (T1i, T2i), i =
1, . . . , n and (C1i, C2i), i = 1, . . . , n, the initial nonparametric estimator F

(0)
n is

determined by its values at these 2n points.
In view of (3.8), it is natural to use the following steps to solve (3.8) for F

(0)
n

inductively, since if the values of F
(0)
n are known on points {(C1i, C2i) : C1i >

t1, C2i > t2}, the value of F
(0)
n at (t1, t2) can be solved via (3.8).

1. Define a new observation by

(T1,n+1, T2,n+1, C1,n+1, C2,n+1)=(0, 0, max
1≤i≤n

{C1i}+(1/n), max
1≤i≤n

{C2i})+(1/n)).

Add it to the data set as the (n + 1)th observation. Assign values of F
(0)
n on

this new observation: F
(0)
n (T1,n+1, T2,n+1) = 0, F

(0)
n (C1,n+1, C2,n+1) = 1.
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2. Calculate K∗
n(t1, t2) for (t1, t2) = (C1i, C2i) and (T1i, T2i), i = 1, . . . , n, using

(3.5).
3. Search for a point (t1, t2) in {(C1i, C2i), (T1i, T2i), i = 1, . . . , n} such that all the

values of F
(0)
n are known in {(C1i, C2i) : C1i > t1, C2i > t2, 1 = 1, . . . , n + 1}.

Such point (t1, t2) always exists. This can be done as follows. Choose a point
(t1, t2) in {(C1i, C2i), (T1i, T2i), i = 1, . . . , n}. If (t1, t2) does not satisfy the
condition, there must be a point (s1, s2) ∈ {(C1i, C2i) : C1i > t1, C2i > t2, i =
1, . . . , n + 1} at which the value of F

(0)
n is not known. Then (s1, s2) can be

checked to see if it satisfies the condition. Since F
(0)
n (C1,n+1, C2,n+1) = 1 is

known, and (C1,n+1, C2,n+1) ∈ {(C1i, C2i) : C1i > t1, C2i > t2, i = 1, . . . , n+1}
for any point (t1, t2) in {(C1i, C2i), (T1i, T2i), i = 1, . . . , n}, the above process
produces the required (t1, t2).
The value of F

(0)
n at (t1, t2) is then solved as

F (0)
n (t1, t2) =

(n + 1)K∗
n(t1, t2)

1 +
∑

{(C1i,C2i):C1i>t1,C2i>t2}
n(F (0)

n (C1i, C2i))−1
.

4. Repeat previous steps until the values of F
(0)
n are known for all 2n points

(C1i, C2i) and (T1i, T2i), i = 1, . . . , n.

Finally, Fn, F1n and F2n can be computed using (3.13), (3.14) and (3.15).
These can be written as:

Fn(t1, t2) =
1
n

∑
T1i≤t1, T2i≤t2

F
(0)
n (T1i, T2i)

K+
n (T1i, T2i)

, (4.16)

F1n(t1) =
1
n

∑
T1i≤t1, T2i<∞

F
(0)
n (T1i, T2i)

K+
n (T1i, T2i)

, (4.17)

and

F2n(t2) =
1
n

∑
T1i<∞, T2i≤t2

F
(0)
n (T1i, T2i)

K+
n (T1i, T2i)

. (4.18)

4.2. Simulation examples

We examine the performance of the proposed estimators in three bivariate
survival distributions used by Prentice and Cai (1992). The three distributions
for (T1, T2) are: (i) T1 and T2 are independent unit exponentials; (ii) (T1, T2)
follows Gumbel’s distribution: F (t1, t2) = 1 − {e−t1 + e−t2 − e−(t1+t2)[1 + (1 −
e−t1)(1 − e−t2)]}; (iii) (T1, T2) follows Clayton-Oakes distribution: F (t1, t2) =
1 − [e−t1 + e−t2 − (e4t1 + e4t2 − 1]−1/4. In all three situations, C1 and C2 have
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independent exponential distributions with mean 2. According to Prentice and
Cai (1992), the Gumbel model demonstrates a fairly weak positive dependence
while the Clayton model demonstrates a fairly strong positive dependence.

In each situation, we carry out 1000 replications with sample sizes n = 50
and 100. Because our emphasis is on estimation of the marginal distribution
functions, we only include the results of the estimated marginal distribution
functions F1n and F2n at the 10th, 30th, 50th, 70th, and 90th percentiles
of the marginal distribution of T1 (T2). The results are given in Tables 1-6 as
q.1, q.3, q.5, q.7 and q.9.

Table 1. Estimated marginal distribution function: T1, T2 are independent
exponential with mean 1; C1, C2 are independent exponential with mean 2;
n = 50.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1118 0.1116 0.1182 0.1191
std 0.0480 0.0535 0.0950 0.1083

q.3 mean 0.3289 0.3280 0.3659 0.3680
std 0.0811 0.0873 0.1954 0.1992

q.5 mean 0.5387 0.5409 0.6310 0.6241
std 0.1054 0.1096 0.2222 0.2245

q.7 mean 0.7468 0.7486 0.8423 0.8473
std 0.1183 0.1170 0.1766 0.1770

q.9 mean 0.9304 0.9319 0.9781 0.9794
std 0.0892 0.0871 0.0700 0.0691

Table 2. Estimated marginal distribution function: T1, T2 are independent
exponential with mean 1; C1, C2 are independent exponential with mean 2;
n = 100.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1063 0.1070 0.1056 0.1096
std 0.0339 0.0338 0.0807 0.0931

q.3 mean 0.3190 0.3177 0.3643 0.3873
std 0.0623 0.0591 0.1785 0.2032

q.5 mean 0.5271 0.5273 0.6315 0.6494
std 0.0812 0.0764 0.2115 0.2137

q.7 mean 0.7368 0.7375 0.8529 0.8688
std 0.0927 0.0879 0.1619 0.1538

q.9 mean 0.9286 0.9312 0.9824 0.9863
std 0.0788 0.0748 0.0632 0.0519

Note. F1n and F2n are the proposed estimators; F
(v)
1n and F

(v)
2n are estimators

based on the bivariate estimator considered by Van der Laan (1996).
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Table 3. Estimated marginal distribution function: T1, T2 are from the Gum-
bel model; C1, C2 are independent exponential with mean 2; n = 50.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1096 0.1108 0.1182 0.1123
std 0.0429 0.0417 0.1072 0.0890

q.3 mean 0.3294 0.3292 0.3775 0.3666
std 0.0833 0.0800 0.2011 0.1862

q.5 mean 0.5414 0.5404 0.6396 0.6366
std 0.1017 0.1051 0.2193 0.2183

q.7 mean 0.7517 0.7474 0.8545 0.8622
std 0.1145 0.1125 0.1672 0.1653

q.9 mean 0.9329 0.9301 0.9806 0.9827
std 0.0849 0.0868 0.0665 0.0619

Table 4. Estimated marginal distribution function: T1, T2 are from the Gum-
bel model; C1, C2 are independent exponential with mean 2; n = 100.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1096 0.1108 0.1182 0.1123
std 0.0429 0.0417 0.1072 0.0890

q.3 mean 0.3294 0.3292 0.3775 0.3666
std 0.0833 0.0800 0.2011 0.1862

q.5 mean 0.5414 0.5404 0.6396 0.6366
std 0.1017 0.1051 0.2193 0.2183

q.7 mean 0.7517 0.7474 0.8545 0.8622
std 0.1145 0.1125 0.1672 0.1653

q.9 mean 0.9329 0.9301 0.9806 0.9827
std 0.0849 0.0868 0.0665 0.0619

Note. F1n and F2n are the proposed estimators; F
(v)
1n and F

(v)
2n are estimators

based on the bivariate estimator considered by Van der Laan (1996).

Results indicate that the performance of our proposed estimators of the
marginal distribution functions are satisfactory. However, we point out that the
marginal probabilities are slightly over-estimated, though the biases are relatively
small in comparison with the standard error of the estimators. Upward biases
in the estimated marginal probabilities result from the large upward biases of
the initial estimates on the boundary points, because these over-estimates are
parts of the summations that estimate the marginal probabilities (see (4.17) and
(4.18)).
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Table 5. Estimated marginal distribution function: T1, T2 are from the Clay-
ton model; C1, C2 are independent exponential with mean 2; n = 50.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1114 0.1106 0.1092 0.1071
std 0.0417 0.0404 0.0787 0.0753

q.3 mean 0.3301 0.3288 0.3823 0.3819
std 0.0785 0.0776 0.1849 0.1946

q.5 mean 0.5405 0.5369 0.6537 0.6536
std 0.1025 0.1010 0.2054 0.2116

q.7 mean 0.7479 0.7453 0.8706 0.8665
std 0.1194 0.1167 0.1514 0.1546

q.9 mean 0.9336 0.9341 0.9844 0.9869
std 0.0920 0.0926 0.0580 0.0558

Table 6. Estimated marginal distribution function: T1, T2 are from the Clay-
ton model; C1, C2 are independent exponential with mean 2; n = 100.

T1 (T2) F1n(T1) F2n(T2) F
(v)
1n (T1) F

(v)
2n (T2)

q.1 mean 0.1088 0.1082 0.1078 0.1066
std 0.0294 0.0292 0.0724 0.0786

q.3 mean 0.3227 0.3210 0.3968 0.3843
std 0.0587 0.0589 0.1949 0.1783

q.5 mean 0.5316 0.5303 0.6669 0.6666
std 0.0800 0.0793 0.2018 0.1993

q.7 mean 0.7359 0.7382 0.8771 0.8784
std 0.0911 0.0935 0.1440 0.1426

q.9 mean 0.9304 0.9298 0.9868 0.9885
std 0.0804 0.0814 0.0478 0.0450

Note. F1n and F2n are the proposed estimators; F
(v)
1n and F

(v)
2n are estimators

based on the bivariate estimator considered by Van der Laan (1996).

A referee suggested comparing the performance of the proposed estimator
with an existing one. Therefore, for each simulation model, we also calculated
the marginal distribution based on the bivariate estimator considered by Van
der Laan (1996). The later estimators are denoted by F

(v)
1n and F

(v)
2n in the

tables. Comparing the proposed marginal distribution estimator and the estima-
tors based on the bivariate estimator of Van der Laan (1996), we see that the
proposed estimator has smaller bias and standard error at q.1, q.3, q.5 and q.7. At
q.9, the proposed estimator has smaller bias, but larger standard error, due to
concentration at .98. For the models and sample sizes considered, the proposed



1058 JIAN HUANG, VERONICA J. VIELAND AND KAI WANG

marginal estimator has better performance than the estimator based on the bi-
variate estimator of Van der Laan (1996). Comparing the estimated marginal
probabilities with sample sizes n = 50 and n = 100, we see that, for n = 100, the
finite sample biases are uniformly smaller. This suggests that bias decreases as
sample size increases, as should be the case for any reasonable estimators.

4.3. Testing age-of-onset anticipation based on marginal medians

In testing for age-of-onset anticipation for diseases with variable age of onset,
a frequently used method is the paired t-test for a difference in the means using
the observed ages of onset of affected parent-child pairs. As mentioned earlier,
this test does not take into account the truncation effect. The nonparametric es-
timators proposed in Section 3 can be used for testing age-of-onset anticipation.
Our proposal is to compare the estimated medians of the marginals F1n and F2n.
Besides the usual advantage of using medians in possibly skewed distributions,
there are two reasons for using medians rather than means in the present situa-
tion. First, calculation of means requires integration with respect to F1n or F2n

over the whole support when, for finite sample size, the observed data may be
far from covering the whole support. Second, the performance of F1n and F2n at
the tails is not as good as that in the middle, again due to truncation.

Let m1 and m2 be the medians of F1(t1) and F2(t2) respectively. If m1 > m2,
then it indicates that anticipation exists. To test the null hypothesis H0 : m1 =
m2, let m̂1 and m̂2 be the medians of F1n(t1) and F2n(t2) respectively. By the
functional delta method (Gill (1989)), assuming that the marginal densities are
not zero at m1 or m2, we expect that n1/2(m̂1−m̂2) is approximately distributed
as N(m1 − m2, σ

2), where σ2 is implicitly determined by the joint distribution
F (t1, t2). Without an explicit expression for the asymptotic variance function of
Fn, we use the nonparametric bootstrap (Efron (1979)) to estimate the standard
error of m̂1 − m̂2. Notice that we are not conducting a bootstrap test, in which
bootstrap samples need to be simulated under the null hypothesis, see Efron and
Tibshirani (1993). In the present bivariate truncation problem, it appears diffi-
cult to simulate bootstrap samples under the restriction of the null hypothesis.

Bootstrap estimation of the standard error of m̂1 − m̂2 is done as follows.
Let Xi = (T1i, T2i, C1i, C2i), i = 1, . . . , n.

(i) Randomly generate B samples of size n, with replacement from the ob-
served data X1, . . . ,Xn, where each Xi is treated as a sampling unit.

(ii) Based on the bth bootstrap sample, compute the marginal estimators
F ∗b

1n and F ∗b
2n using the same procedure as in computing F1n and F2n. Compute

the medians m̂∗b
1 and m̂∗b

2 of F ∗b
1n and F ∗b

2n, respectively. Let ∆∗b = m̂∗b
1 − m̂∗b

2 .
(iii) The bootstrap estimator of the standard error of m̂1 − m̂2 is given by

σ̂2 = 1
B−1

∑B
b=1(∆∗b − ∆∗b)2, where ∆∗b = B−1 ∑B

b=1 ∆∗b.
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4.4. Example: bipolar affective disorder data

We use the bipolar affective disorder data analyzed by McInnis et al. (1993)
to illustrate the proposed test. 125 families were ascertained via eighteen hundred
Probands screened for bipolar I or bipolar II found 125 fanilies in Baltimore
and Iowa City. Ascertainment and evaluation criteria are described in detail by
McInnis et al. (1993). Ages of onset and current ages of 34 parent-child pairs
from 34 families among these 125 are available to us. The remaining 91 families
were excluded because they either showed clinical evidence of bilineality or did
not have at least one interviewed, affected individual in each of two successive
generations. Among the 34 parent-child pairs, there were 9 pairs for which either
ages of onset or current ages were not available, leaving 25 pairs with complete
data on age of onset and current age.

•
•

•
•
•
•

•

•
•
•

•
•

•
• •

•
• •• ••

••

•• • • • • •

 

•
•
•

•
•
•

•

• •
•

•
••

•
••

••
•• •• ••••••• • •

20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age of onset in years
Solid line: parents, dashed line: children

Figure 1. Estimated marginal distribution functions for bipolar data.

Figure 1 shows the estimated marginal distribution functions of the ages of
onset of children and parents. Examination of the figure suggests that children
tend to have younger age of onset than parents. In addition to examining the
data in an exploratory fashion, a statistical test based on estimated medians can
be carried out. Estimated median ages of onset in parents and children are 35
and 19, respectively. Using the bootstrap approach with sample size 1000, the
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estimated standard error of the difference in estimated medians is 8 (rounded
from 8.04). Thus the standardized value of the difference in median ages of onset
divided by 8 is z = 2, an approximate p-value of 0.023 for a one-sided test. This
suggests a statistically moderate significant difference between the median ages
of onset in parents and children.

One should be extremely cautious about interpretation of the estimates and
the test result given above. First, the sample size is small. Second, although
the truncation effect is adjusted for in the estimates, other ascertainment biases
may exist that could produce false evidence in favor of anticipation. Specifically,
because these data were originally obtained for the purposes of genetic linkage
analysis, ascertainment was unsystematic and favored families with multiple af-
fected individuals. Elsewhere (Huang and Vieland (1998)) we have shown that
this type of sampling can inflate the Type I error rate of age-of-anticipation tests.

5. Asymptotic Properties

We now present some asymptotic results for the estimators F
(0)
n and Fn.

Proofs are given in the appendix. For any fixed (t1, t2) ∈ R+2 ≡ [0,∞) × [0,∞),
let τF

1 (t1) = inf{s2 : F (t1, s2) = F1(t1)}, τF
2 (t2) = inf{s1 : F (s1, t2) = F2(t2)}

and τG
1 (t1) = inf{s2 : G(t1, s2) = G1(t1)}, τG

2 (t2) = inf{s1 : G(s1, t2) = G2(t2)},
We say that the support of F is upper-contained in the support of G if, for any
(t1, t2), τF

1 (t1) ≤ τG
1 (t1) and τF

2 (t2) ≤ τG
2 (t2). For consistency of the estimator,

we assume the following conditions:
(A1) The support of F is upper-contained in the support of G;
(A2) G is continuous, or
(A2*) G is discrete with finitely many mass points.
Assumption (A1) is crucial for the identifiability of F in the bivariate trunca-

tion model, similar to the assumption needed for identifiability in the univariate
truncation model. The assumption that G is either continuous or discrete with
finitely many mass points simplifies consistency proofs. (A2) or (A2*) should be
satisfied in most practical situations.

Here we concentrate on the case when G is continuous. For the discrete
case, it can be shown that under (A1) and (A2*), both F

(0)
n and Fn are strongly

consistent. Furthermore, let n1/2(F (0)
n − F ) or n1/2(Fn − F ) denote the vector

of the values of n1/2(F (0)
n − F ), or n1/2(Fn − F ) evaluated at the finitely-many

mass points of F . Then both n1/2(F (0)
n − F ) and n1/2(Fn − F ) converge in

distribution to multivariate normal distributions. These limit distributions have
mean zero, but their covariance matrices are in general different. Asymptotic
covariance matrices do not appear to have simple and explicit form. If it is
desirable to treat the data as discrete in a specific situation and if the sample
size is reasonably large, it is probably better to estimate F and G by directly
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maximizing the likelihood function. Then the variance can be estimated based
on the observed information.

Theorem 5.1. Suppose that (A1) and (A2) hold. Then for any (t1, t2) ∈ R+2,

F (0)
n (t1, t2) →a.s. F0(t1, t2), and Fn(t1, t2) →a.s. F0(t1, t2), as n → ∞.

(5.19)

Let [0, τ ] ≡ [0, τ1] × [0, τ2], where τ1 and τ2 are two positive numbers. Let
D[0, τ ] be the space of bivariate functions which are right continuous and have
left limits on [0, τ ], see for example, Neuhaus (1971). We equip this space with
the supremum norm || · ||∞, i.e., for any g ∈ D[0, τ ], ||g||∞ = supt∈[0,τ ] |g(t)|. The
convergence in distribution below is according to Hoffmann-Jørgensen (1984);
see e.g., Van der Vaart and Wellner (1996) for a description. For the asymptotic
normality in the case of continuous F , the following extra conditions are needed.

(A3) the support of G is a bounded interval [0, τ ].
(A4) F is continuous, and G has a continuous density function g with g/F

being bounded on [0, τ ].

Theorem 5.2. Suppose that (A1), (A2), (A3) and (A4) hold. Let A(t) =∫ τ
t dG(u)/F (u). Then

√
nA (F (0)

n − F0) ⇒D Z, as n → ∞ on [τ0, τ ], where
τ0 > 0 and where Z is a Gaussian process on [τ0, τ ].

Theorem 5.1 justifies our proposed estimator Fn in the sense that it is con-
sistent. Theorem 5.2 states that the F

(0)
n is asymptotically normal. However, its

finite sample behavior is not satisfactory. We are not able to rigorously prove the
weak convergence of Fn, although Theorem 5.2 and heuristics indicate that Fn

should be asymptotically normal. The main technical difficulties are: (a) we are
not able to prove the weak convergence of F

(0)
n on [0, τ ], only on [τ0, τ ] for some

τ0 > 0; and (b) the denominator K+
n (s1, s2) inside the integral in (3.13) converges

to 0 as (s1, s2) → τ . However, simulations suggest that Fn outperforms F
(0)
n with

finite sample size. In particular, Fn outperforms F
(0)
n on the boundary points,

which appears to be true in general (i.e., not just in our simulation models). The
better performance of Fn on the boundary points is particularly important to
estimation of marginal distributions. Therefore, we prefer Fn although we have
not been able to demonstrate its asymptotic distribution.

6. Discussion

A main difficulty in the present estimation problem is that there do not
appear to exist straightforward estimators of marginal distributions. At least we
have not been able to construct such estimators without first estimating the joint
distribution. This is in contrast to estimation of a distribution function based
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on bivariate right-censored or bivariate data with a single component subject
to truncation, in which marginal distributions can be easily estimated, which
in turn facilitates estimation of the joint distribution. In this regard, bivariate
truncation problem appears to be more difficult.

On the other hand, if the marginals of F can be estimated easily, perhaps via
information outside of the data then, based on (3.11), we can derive an estimating
equation for F . Let

H(t1, t2) =
∫
[0,t1]

∫
[0,t2]

dS∗(s1, s2)
K+(s1, s2)

.

Then dF (t1, t2) = F (t1, t2)dH(t1, t2) by equation (3.12). Let S(t1, t2) = P (T1 >

t1, T2 > t2). We have

S(t1, t2) =
∫
(t1,∞)

∫
(t2,∞)

F (s1, s2)dH(s1, s2).

Since S(t1, t2) = 1 − F1(t1) − F2(t2) + F (t1, t2), it follows that

F (t1, t2) = F1(t1) + F2(t2) − 1 +
∫
(t1,∞)

∫
(t2,∞)

F (s1, s2)dH(s1, s2).

For known F1, F2 and H, this is an inhomogeneous Volterra equation with an
unique solution F , see for example Kontorovich and Akilov (1982, p.396). A
related equation arises in the bivariate right-censorship model as described by
Gill, Van der Laan and Wellner (1995), in which marginal distributions can be
estimated by using the Kaplan-Meier estimator. However, this is not the case in
the present bivariate truncation model. Therefore, the approaches of Dabrowska
(1988) and Prentice and Cai (1992) for estimating the joint distribution based
the bivariate right-censored data, and the Volterra integral approach described
in Gill, Van der Laan and Wellner (1995), do not seem to apply.

For bivariate right-censored data there exist several competing estimators of
the distribution function, see for example, Campbell (1981), Dabraskow (1988),
Prentice and Cai (1992), Gill, Van der Laan and Wellner (1995), and Van der
Laan (1996). For bivariate data when a single component is subject to truncation,
Güler (1996) described three different estimators. This may also be the case for
bivariate data when both components are subject to truncation. It would be
of interest to search for estimators for both the bivariate distribution and its
marginals different from the ones considered in this paper.
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Appendices

Appendix A: Motivation for using K∗ in constructing F
(0)
n

The use of K∗ in constructing F
(0)
n may not be obvious at first look. It

arises in our attempt to express the distributions of the observed ages of onset
and the observed ages at interview in terms of F . The distribution function of
the observable ages of onset is given by

F ∗(t1, t2) = P (T1 ≤ t1, T2 ≤ t2|T1 ≤ C1, T2 ≤ C2). (A.20)

Since dG∗(t1, t2) = α−1F (t1, t2)dG(t1, t2), (A.20) can be rewritten as

F ∗(t1, t2) = α−1
∫

P (T1 ≤ t1 ∧ c1, T2 ≤ t2 ∧ c2)dG(c1, c2) (A.21)

=
∫

F (t1 ∧ c1, t2 ∧ c2)
F (c1, c2)

dG∗(c1, c2)

= G∗(t1, t2) + ξ∗1(t1, t2) + ξ∗2(t1, t2) + F (t1, t2)
∫ ∞

t1

∫ ∞

t2

dG∗(c1, c2)
F (c1, c2)

,

where

ξ∗1(t1, t2)=
∫ ∞

t1

∫
t2
0

F (t1, c2)
F (c1, c2)

dG∗(c1, c2)=P (C1>t1, T1≤ t1, C2≤ t2|T1≤C1, T2≤C2),

ξ∗2(t1, t2)=
∫ t1

0

∫ ∞

t2

F (c1, t2)
F (c1, c2)

dG∗(c1, c2)=P (C2>t2, T2≤ t2, C1≤ t1|T1≤C1, T2≤C2).

It can be verified that

K∗(t1, t2) ≡ F ∗(t1, t2) − G∗(t1, t2) − ξ∗1(t1, t2) − ξ∗2(t1, t2). (A.22)

From (A.21), we obtain K∗(t1, t2) = F (t1, t2)
∫
(t1,∞)

∫
(t2,∞)

dG∗(c1,c2)
F (c1,c2)

, which is
exactly (3.4).

Appendix B: Proofs

Proof of Theorem 5.1

Without loss of generality, we assume that the supports of both F and G

are [0,∞) × [0,∞). To simplify notations, let t = (t1, t2), c = (c1, c2) and write∫ ∞
t =

∫ ∞
t1

∫ ∞
t1

.
By the multivariate version of Helly’s Selection Theorem, there exists a non-

decreasing, right-continuous function F∗ such that any subsequence of F
(0)
n has a
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further subsequence converging to F∗ at every continuity point t of F∗. (Billings-
ley (1986, p.392)). If we can show that F∗ = F for every t, then the whole
sequence converges to F pointwise.

If F (t) = 0, then by the definition of K∗
n, K∗

n(t) = 0 with probability one.
Therefore F

(0)
n (t) = 0 with probability one. So we need only prove (5.19) for

t satisfying F (t) > 0. By the definition of K∗, (3.4), K∗(t) > 0. This implies
F∗(t) > 0, since otherwise the left side of (3.8) converges to K∗(t) > 0 by
consistency of empirical distribution functions, whereas the right side converges
to 0.

Step (i). We first prove that

F (0)
n (t)

∫ ∞

t

dG#
n (c)

F
(0)
n (c)

→a.s. F∗(t)
∫ ∞

t

dG∗(c)
F∗(c)

.

By the second equality of (3.8), it suffices to show that

F (0)
n (t)

∫ ∞

t

dG∗
n(c)

F
(0)
n (c)

→a.s. F∗(t)
∫ ∞

t

dG∗(c)
F∗(c)

.

Write

F (0)
n (t)

∫ ∞

t

dG∗
n(c)

F
(0)
n (c)

− F∗(t)
∫ ∞

t

dG∗(c)
F∗(c)

=
∫ ∞

t

F
(0)
n (t)

F
(0)
n (c)

d(G∗
n − G∗)(c) +

∫ ∞

t

[
F

(0)
n (t)

F
(0)
n (c)

− F∗(t)
F∗(c)

]
dG∗(c)

≡ A1n + A2n.

Now A1n converges to zero by the uniform convergence of empirical measures
and A2n converges to zero by the Dominated Convergence Theorem.
Step (ii). We now show that F∗ ≡ F . Since K∗

n(t) →a.s. K∗(t) for every t, and
K∗(t) = F (t)

∫ ∞
t

dG∗(c)
F (c) , it follows that

F (t)
∫ ∞

t

dG∗(c)
F (c)

= F∗(t)
∫ ∞

t

dG∗(c)
F∗(c)

. (A.23)

Since dG∗(t) = α−1F (t)dG(t), we have F (t)
∫ ∞
t dG(c) = F∗(t)

∫ ∞
t

F (c)
F∗(c)dG(c).

Let H(t) = F (t)/F∗(t). We have

H(t)
∫ ∞

t
dG(c) =

∫ ∞

t
H(c)dG(c). (A.24)

By the assumption that G is continuous, H is continuous. We show that H(t) =
k0 for all t > 0, where k0 is a constant independent of t. If this is not true,



BIVARIATE TRUNCATION 1065

let tM and tm be points where H(t) achieves global maximum and minimum,
respectively. It suffices to show that H(tm) = H(tM ). Suppose not and consider
two cases.
(a) Both tm and tM are finite, then either

H(tm)
∫ ∞

tm
dG(c)<

∫ ∞

tm
H(c)dG(c) or H(tM )

∫ ∞

tM

dG(c)>
∫ ∞

tM

H(c)dG(c),

which contradicts (A.24).
(b) At least one of tm and tM is not finite. We only consider the case when

tm = (t∗1,∞). So limt∗2→∞ H(t∗1, t∗2) ≤ H(t1, t2) for all (t1, t2). We can take
t∗1 to satisfy limt∗2→∞ H(t∗1, t∗2) < H(t1, t2) for all t1 > t∗1. Then there exists a
large M0 > 0 such that H(t∗1,M0) ≤ H(t1, t2) for all t1 > t∗1, t2 > M0, where
strict inequality holds in a subset B0 of {(t1, t2) : t1 > t∗1, t2 > M0} with∫
B0

dG > 0. Therefore, H(t∗1,M0)
∫ ∞
t∗1

∫ ∞
M0

dG(c1, c2) <
∫ ∞
t∗1

∫ ∞
M0

H(c1, c2)dG

(c1, c2). This again is a contradiction.

It follows that H(t) = k0 for all t > 0. Since limt→∞ H(t) = limt→∞
[F (t)/F∗(t)] = 1, we have k0 = 1. This implies that F∗(t) = F (t) for all t > 0.
Continuity of F∗ and F implies that F∗(t) = F (t) for all t ≥ 0, and F

(0)
n is

consistent.
Fianlly, consistency of Fn follows directly from the strong consistency of S∗

n

and K+
n , and (3.13).

Proof of Theorem 5.2. The result can be proved by verifying the conditions of
the theorem on the asymptotic distribution of infinite-dimensional M-estimators
of Van der Vaart (1995). Here we give a direct proof, since it takes less space.

By (3.4), (3.8) and some straightforward calculation, we have

n+1
n

[K∗
n(t)−K∗(t)]=[F (0)

n (t)−F (t)]
∫ τ

t

dG∗
n(c)

F
(0)
n (c)

−F (t)
∫ τ

t

F
(0)
n (c)−F (c)

F (c)F (0)
n (c)

dG∗(c)

+F (t)
∫ τ

t
[F (0)

n (c)]−1d(G∗
n − G∗)(c) +

1
n

Fn(t). (A.25)

We ignore the last term on the right side of (A.25) since it is of order lower than
n−1/2. Let

An(t) =
∫ τ

t

dG∗
n(c)

F
(0)
n (c)

, A(t) =
∫ τ

t

dG∗(c)
F (c)

,

Dn(t) =
n + 1

n
[K∗

n(t) − K∗(t)] − F (t)
∫ τ

t
F−1(c)d(G∗

n − G∗)(c),

and φn(t) = [F (0)
n (t)−F (t)]A(t). It follows from (A.25) and dG∗ = α−1FdG that

Dn(t) = φn(t) − F (t)
∫ τ

t

φn(c)
αF (c)A(c)

dG(c) + r1n(t) + r2n(t), (A.26)
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where

r1n(t) = [F (0)
n (t) − F (t)][An(t) − A(t)] + α−1F (t)

∫ τ

t
[F (c) − F (0)

n (c)]([F (0)
n (c)]−1

−[F (c)]−1)dG(c),

r2n(t) = F (t)
∫ τ

t
[(F (0)

n (c))−1 − (F (c))−1]d(G∗
n − G∗)(c).

By the strong consistency of F
(0)
n , supτ0≤t≤τ |r1n(t)| = op(1)||F (0)

n − F ||ττ0 . Since
the class of bivariate distribution functions is universal Donsker, F (τ) > 0 and
F

(0)
n is consistent, and an empirical process indexed by a Donsker class is asymp-

totically equicontinuous, it follows that supτ0≤t≤τ |r2n(t)| = op(n−1/2). Let the
operator Γ with domain D2[τ0, τ ] be defined by

Γh(t) = h(t) − α−1F (t)
∫ τ

t

g0(c)
F (c)A(c)

h(c)dc.

This operator closely resembles the Volterra operator, its continuous invertibil-
ity can be proved the same way as in Kantorovich and Akilov (1982, p.396).
Notice that assumption (iii) is needed here. By (A.26), we have (n1/2φn(t) =
n1/2Γ−1Dn(t) + op(1). By the weak convergence of empirical processes, n1/2Dn

converges in distribution to a Gaussian process in D[τ0, τ ]. Since Γ−1 is a linear
operator, n1/2φn converges to a Gaussian process in D[τ0, τ ]. This completes the
proof.
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