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SEQUENTIAL DESIGN OF COMPUTER EXPERIMENTS

TO MINIMIZE INTEGRATED RESPONSE FUNCTIONS
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Abstract: In the last ten to fifteen years many phenomena that could only be

studied using physical experiments can now be studied by computer experiments.

Advances in the mathematical modeling of many physical processes, in algorithms

for solving mathematical systems, and in computer speeds, have combined to make

it possible to replace some physical experiments with computer experiments. In a

computer experiment, a deterministic output, y(x), is computed for each set of in-

put variables, x. This paper is concerned with the commonly occuring situation in

which there are two types of input variables: suppose x = (xc, xe) where xc is a set

of “manufacturing” (control) variables and xe is a set of “environmental” (noise)

variables. Manufacturing variables can be controlled while environmental variables

are not controllable but have values governed by some distribution. We introduce a

sequential experimental design for finding the optimum of �(xc) = E{y(xc, Xe)},
where the expectation is taken over the distribution of the environmental variables.

The approach is Bayesian; the prior information is that y(x) is a draw from a sta-

tionary Gaussian stochastic process with correlation function from the Matérn class

having unknown parameters. The idea of the method is to compute the posterior

expected “improvement” over the current optimum for each untested site; the de-

sign selects the next site to maximize the expected improvement. The procedure is

illustrated with examples from the literature.

Key words and phrases: Computer experiments, control variables, expected im-

provement, noise variables, optimization, sequential design.

1. Introduction

Many physical systems can be modeled mathematically so that responses are
computable for specified inputs, using numerical methods that are implemented
by (complex) computer codes. For example, Bernardo, Buck, Liu, Nazaret, Sacks
and Welch (1992) used computer-aided design simulators to model current ref-
erence and voltage shifter circuits. Haylock and O’Hagan (1996) modelled the
radiation dose received by body organs after ingesting radioactive iodine. Chang,
Williams, Notz, Santner and Bartel (1999) used finite-element methods to model
proximal bone stress shielding resulting from an in vivo hip prosthesis. We re-
fer to such settings as computer experiments, to contrast them with physical
experiments.
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Unlike physical experiments, where random error is a fundamental part of
the model, the output of computer experiments is generally deterministic. In
addition, observations from computer experiments can be expensive and time
consuming to collect. This is a consequence of the complexity of the code and/or
the large number of input variables. Thus, in many applications, it is impractical
to compute the response on a large grid of input variable values; this difficulty
has led investigators to develop statistical methodology to allow the response to
be accurately predicted throughout the input variable space based on a small
training sample of computed responses.

Two basic statistical frameworks have been explored in developing predic-
tors for application to computer experiments. Sacks, Schiller and Welch (1989)
and Welch, Buck, Sacks, Wynn, Mitchell and Morris (1992) adopt a “modeling
approach” in that they regard the deterministic response as a realization of a
random function. From an alternate philosophical viewpoint, Currin, Mitchell,
Morris and Ylvisaker (1991) and O’Hagan (1992) make clear that the previous
approach is essentially a Bayesian formulation of the problem where a random
function represents prior information about the deterministic function.

One important goal of computer experiments is to find input values that
optimize the response. The problem of minimizing deterministic responses has
been studied extensively in the mathematical programming literature but essen-
tially all such techniques require far too many function evaluations to be used
in most computer experiments. Instead, various statistical predictors have been
used in conjunction with traditional numerical algorithms to solve such prob-
lems. One example is Bernardo et al. (1992) who carry out a sequential strategy
for response minimization. The response is predicted throughout the full input
space based on an initial design. If the predictor is sufficiently accurate, then it
is minimized. Otherwise, a promising subregion of the input space is determined
and the response is predicted throughout the subregion based on a second-stage
design. If the predictor is sufficiently accurate in the subregion, it is minimized.
Otherwise, this process moves to a third stage and continues in this fashion until
adequate prediction accuracy is obtained. Jones, Schonlau and Welch (1998)
and Schonlau, Welch and Jones (1998) introduced a criterion-based sequential
strategy for response minimization. This also begins with an initial design, but
proceeds subsequently by choosing points one at a time, or in groups, to maximize
a criterion that favors inputs in regions where either the predicted response is
small or where there is relatively large prediction uncertainty. The true response
is calculated at each selected point, the predictor is updated, and the algorithm
continues until relative changes in the criterion value become negligible.

This paper considers the frequently occuring situation in which the input
variables can be divided into two classes, control variables and environmental
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variables. For computational convenience we assume that the environmental
variables have finite support. Our objective function depends only on the control
variables: for each fixed setting of the control variables the objective function is
the mean of the deterministic response over the distribution of the environmental
variables. Thus we seek to minimize a weighted average of the response over the
values of the environmental variables.

For example, in the hip prosthesis problem of Chang et al. (1999), the control
variables specify the geometry of the implant and the environmental variables
account for variability in patient bone properties and activity. The deterministic
response was proximal bone stress shielding, and the goal of the problem was to
determine the combination of control variables that minimized stress shielding
averaged over a discrete probability distribution for the environmental variables.
More generally, the classification of inputs as control variables or environmental
variables applies in many manufacturing settings where some inputs affecting a
process can be controlled while others cannot. For example, Welch, Yu, Kang and
Sacks (1990) were interested in minimizing the clock skews of a very large scale
integrated circuit. The control variables were the widths of six transistors, and
the environmental variables were qualitative indicators of their current–driving
capabilities.

We consider an extension of the expected improvement algorithm of Jones et
al. (1998) to carry out this type of objective function minimization. We cannot
use their expected improvement algorithm because it requires direct observation
of the objective function at each selected point. This will not be possible in
many applications due to the enormous computational burden of calculating the
average response. As an example, consider again the hip replacement problem
described in the previous paragraph. The support of the environmental variables
was restricted to twelve points. Thus, twelve runs of the code are required to
calculate the objective function at each control variable setting of interest. Each
run of the finite element code requires five to ten hours so that it could take five
days to calculate a single value of the objective function.

Our algorithm attempts to optimize the objective function using a predictor
of the mean function. In brief, the algorithm proceeds as follows:
1. Calculate the responses on an initial space-filling design.
2. Use the information from these runs to select the next point according to a

modified expected improvement criterion.
3. Continue selecting points using the necessary information from all of the pre-

vious runs until a stopping criterion is met.
In Section 2 we discuss the statistical approach taken in this paper. A modi-

fied expected improvement algorithm is presented in detail in Section 3, and three
examples are given in Section 4. These examples use closed–form test functions
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to allow the optimum found by the algorithm to be checked with the true op-
timum. Section 5 contains a discussion of several important issues regarding
implementation and extensions of the algorithm. The appendix presents details
that we have found useful in implementing the algorithm.

2. Modeling

We follow the Bayesian framework proposed by many authors and assume
that prior uncertainty about the deterministic response y(x) for compact X ⊂ Rp

is represented by the stationary random function Y (x) = β0 + Z(x) for x ∈ X ,
where β0 is an unknown constant and Z(·) is taken to be a zero-mean stationary
Gaussian stochastic process with unknown variance σ2 and correlation function
R(·). The parameter β0 represents the global mean of the Y process. The
function R(·) determines the correlation between the random responses at any
two input sites in X . Stationarity implies that R(·) is translation invariant, so
that the correlation calculated for any two input sites u and v in X depends only
on u − v.

The correlation functions commonly used in practice are members of some
parametric family. The development of Section 3 assumes that the correlation
function depends on an unknown parameter vector ζ. In the examples of Section
4, we follow Handcock and Stein (1993) and use the Matérn class of correlation
functions:

R(u − v) =
p∏

i=1

1
Γ(ν)2ν−1

(
2
√

ν |ui − vi|
θi

)ν

Kν

(
2
√

ν |ui − vi|
θi

)
,

where ui and vi are the ith coordinates of u and v. Here ν > 0, θi > 0 and
Kν(·) is the modified Bessel function of order ν. The parameter θi controls the
strength of correlations in the ith input variable dimension. Larger values of
these range parameters are associated with increased dependence between the
random responses at any two fixed input sites. The parameter ν controls the
smoothness of the random field. The Y process is �ν� − 1 times mean square
differentiable, where �·� denotes the integer ceiling function. In fact, the sample
paths of the Y process are almost surely �ν�−1 times continuously differentiable
(see Cramér and Leadbetter (1967, Secs. 4.2, 7.3, and 9.2–9.5)).

We adopt a Bayesian viewpoint and assume the noninformative prior distri-
bution,

[β0, σ
2, ζ ] ∝ 1

σ2
, (1)

for the parameter vector (β0, σ
2, ζ�)�.
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Let xc and xe represent the control and environmental variable vectors, and
denote their corresponding domains by Xc and Xe. We assume that the environ-
mental variables have (approximately) a joint probability distribution with finite
support {xe,i}ne

i=1 and associated weights {wi}ne
i=1. The objective function �(·) is

given by

�(xc) =
ne∑
i=1

wi y(xc,xe,i) . (2)

Our goal is to identify the control variable settings x∗
c that minimize �(·), x∗

c =
argminxc∈Xc

�(xc). Prior uncertainty in �(·) is induced directly from the Y pro-
cess; the prior of �(·) can be described by the distribution of L(xc) =

∑ne
i=1 wi

Y (xc,xe,i) .

3. The Minimization Algorithm

3.1. Overview

As discussed in the introduction, the first stage of the modified expected
improvement algorithm involves observing the response at each site in an initial
space-filling design Sn = {t1, . . . , tn}. Denote the control variable portion of
Sn by Sc

n = {tc,1, . . . , tc,n}. With this notation, let Y Sn denote the random
vector of responses associated with Sn and LSc

n
the random vector of objective

function values associated with Sc
n. Setting L1:n = min{L(tc,1), . . . , L(tc,n)}, the

improvement at control variable site xc is defined to be In(xc) = max{0, L1:n −
L(xc)} .

Before proceeding, we note two key ways in which the specification of im-
provement given in Jones et al. (1998) differs from that used in this paper.
First, they replace the random variable L1:n with the known quantity ymin ≡
min{y(t1), . . . , y(tn)}, the minimum of the observed responses on Sn; as noted
above, L1:n is unknown because there are no direct observations on the objective
function. Second, they replace L(xc) by Y (x). Our changes reflect the fact that
we are concerned with minimization of the mean of y(·) over the environmental
variables.

With the above notation, we can summarize the proposed algorithm.
S0 : Choose the initial set of design points Sn = {t1, . . . , tn} according to a space-

filling criterion. We use the ACED software of Welch (1985) to choose a
maximin distance design in the set of Latin Hypercube Sampling (LHS)
designs.

S1 : Estimate the correlation parameter vector ζ̂n. ζ by the maximizer of the
posterior density of ζ given Y Sn from (16),
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S2 : Choose the (n+1)-st control variable site, tc,n+1, to maximize the posterior
expected improvement given the current data, i.e.,

tc,n+1 = argmax
xc∈Xc

E { In(xc) |Y Sn , ζ̂n } , (3)

where E { · |Y Sn , ζ } denotes the posterior conditional mean given the ob-
served data Y Sn and the correlation parameter vector ζ.

S3 : Choose the environmental variable site corresponding to the control site
tc,n+1 to minimize the posterior mean square prediction error given the cur-
rent data, i.e.

te,n+1 = argmin
xe∈Xe

E { [L̂n+1(tc,n+1) − L(tc,n+1)]2 |Y Sn , ζ̂n } (4)

where L̂n+1(·) is the posterior mean me(ζ) given in (13), based on the
(n + 1)-point design Sn ∪ (tc,n+1,xe).

S4 : Determine if the algorithm should be stopped. If the stopping criterion is not
met, set Sn+1 = Sn ∪ (tc,n+1, te,n+1) and calculate the underlying response
y(·) at (tc,n+1, te,n+1). Then set n to (n + 1) and continue with S1. If
the criterion is met, the global minimizer is set to be the minimizer of
the empirical best linear unbiased predictor (EBLUP) based on the current
design. Specific stopping criteria are discussed in the examples of Section 4.
The optimizations required in (3) and (4) are carried out using the simplex

algorithm of Nelder and Mead (1965). The starting simplex is determined ran-
domly; repeated attempts are made to find an optimal solution to avoid becoming
trapped in local optima.

3.2. Some details

The following result, discussed in O’Hagan (1992), is used throughout.

Result 1. Let U1 and U2 denote q1 × 1 and q2 × 1 random vectors having the
Gaussian distribution(

U1

U2

)
|β, σ2 ∼ Nq1+q2

[(
F 1

F 2

)
β , σ2

(
R11 R12

R�
12 R22

)]
,

where β ∈ Rk and σ2 > 0. It is assumed that the elements of each F i and Rij

are known, each F i has full column rank, and the correlation matrix is positive
definite. Let the parameter vector (β, σ2) have the noninformative prior distri-
bution [β, σ2] ∝ 1/σ2 for β ∈ Rk and σ2 > 0. The posterior distribution of U1

given U2 is q1-variate t: [U1|U2] ∼ Tq1(m1|2, σ̂2R1|2, q2 − k), where Tq1(µ,Σ, ν)
denotes a q1-variate shifted t-distribution with location shift (mean) µ, scale
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matrix Σ and ν degrees of freedom. We have m1|2 = F 1β̂ + R12R
−1
22 (U2 −

F 2β̂) for β̂ = (F�
2 R−1

22 F 2)−1F�
2 R−1

22 U2, σ̂2 = [U�
2 R−1

22 U2 − β̂
�
(F�

2 R−1
22 F 2)β̂]/

(q2−k) and R1|2 = R11−R12R
−1
22 R�

12 +(F 1 −R12R
−1
22 F 2)(F�

2 R−1
22 F 2)−1(F 1−

R12R
−1
22 F 2)�.

3.3. Selection of control variables

We obtain a simplified expression for the posterior expected improvement.
Note first that

E { In(xc) |Y Sn , ζ } = ELSc
n
|Y Sn ,ζ

{
E {In(xc) |Y Sn ,LSc

n
, ζ }

}
. (5)

To evaluate the inner expectation, we require the posterior distribution of L(xc)
given Y Sn , LSc

n
and ζ. Define the ne × 1 vector Y 1 and the (n · ne) × 1 vector

Y 2 as follows: Y 1 = [Y (xc,xe,1), . . . , Y (xc,xe,ne)]� and Y 2 = [Y (tc,1,xe,1), . . . ,
Y (tc,1,xe,ne), . . . , Y (tc,n,xe,1), . . . , Y (tc,n,xe,ne)]� . Here Y 1 is the random vec-
tor of responses at control site xc paired with each environmental support point,
and Y 2 is the random vector of responses at the n control sites of Sc

n com-
bined with each of the environmental support points. Given (β0, σ

2, ζ�)�, the
random vector (Y �

1 ,Y �
Sn

,Y �
2 )� has a joint Gaussian distribution with mean

(1�
ne

,1�
n ,1�

n·ne
)�β0 and covariance matrix σ2 ((Rζ,ij )) for i, j ∈ {1, Sn, 2}, where

1r is the r × 1 vector of ones and Rζ,ij is the matrix of correlations between
the responses in the corresponding random vectors. Because Gaussian ran-
dom vectors remain Gaussian under linear transformations, we see easily that
(L(xc),Y �

Sn
,L�

Sc
n
)� given (β0, σ

2, ζ�)� has a Gaussian distribution with mean
β012n+1 and covariance matrix

σ2


w�Rζ,11w w�Rζ,(1,Sn) w�Rζ,12(In ⊗ w)

· Rζ,(Sn,Sn) Q23

· · Q33

 , (6)

where Q23 = Rζ,(Sn,2)(In⊗w) and Q33 = (In⊗w�)Rζ,22(In⊗w). Here, Ir de-
notes the r × r identity matrix, w = (w1, . . . , wne)� is the vector of probabilities
(weights) defining the uncertainty distribution of the environmental variables,
and ⊗ denotes the Kronecker product operator. The missing entries in the co-
variance matrix are defined by symmetry.

The posterior distribution of L(xc) given Y Sn , LSc
n

and ζ, is a shifted,
univariate t. Specifically, let t(µ, v, ν) denote a univariate t-distribution with
mean µ, scale parameter v and ν degrees of freedom and Z�

c = (Y �
Sn

,L�
Sc

n
),

c�ζ,12 = w�[Rζ,(1,Sn) Rζ,12(In ⊗ w)] and

Cζ,22 =

(
Rζ,(Sn,Sn) Q23

· Q33

)
.
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It follows from Result 1 that

L(xc) |Y Sn ,LSc
n
, ζ ∼ t(mc(ζ), σ̂2

c (ζ)Rc(ζ), 2n − 1), (7)

where mc(ζ) = β̂c,0(ζ) + c�ζ,12C
−1
ζ,22 (Zc − β̂c,0(ζ)12n), β̂c,0(ζ) = (1�

2nC−1
ζ,22Zc)/

(1�
2nC−1

ζ,2212n), σ̂2
c (ζ)=[Z�

c C−1
ζ,22Zc−β̂2

c,0(ζ)(1�
2nC−1

ζ,2212n)]/(2n−1), and Rc(ζ)=
w�Rζ,11w − c�ζ,12C

−1
ζ,22cζ,12 + (1 − c�ζ,12C

−1
ζ,2212n)2/(1�

2nC−1
ζ,2212n).

The distribution (7) results in the posterior mean of In(xc) given Y Sn , LSc
n

and ζ:

E { In(xc) |Y Sn ,LSc
n
, ζ }

= (L1:n − mc)T2n−1

L1:n − mc√
σ̂2

c Rc


+

1
2(n − 1)

(2n−1)
√

σ̂2
cRc+

(L1:n−mc)2√
σ̂2

cRc

t2n−1

L1:n−mc√
σ̂2

cRc

 , (8)

where Tν(·) and tν(·) denote the standard t cumulative distribution function and
density function with ν degrees of freedom. Appendix A.1 contains a discussion
of some computational simplifications regarding this calculation. The two terms
in (8) have simple intuitive interpretations. The first term is “large” when the
prediction mc of L(xc) is “small”. The second term is “large” when the pre-
diction uncertainty σ̂2

c Rc of L(·) at xc is “large”. Thus, the posterior expected
improvement criterion in (5) will choose tc,n+1 roughly in an area of the con-
trol variable space where L(·) is predicted to be small or where there is high
uncertainty in the prediction of L(·).

The posterior expected improvement of (5) is estimated by Monte Carlo sim-
ulation. A random sample of size Nc is obtained from the posterior distribution
of LSc

n
given Y Sn and ζ. For each sample, the minimum loss L1:n is obtained

and the expectation in (8) is computed. The estimate of the posterior expected
improvement is taken to be the average of these quantities over all Nc observa-
tions. Note that the posterior expected improvement can be estimated at any
control site xc using the same Monte Carlo sample. This follows from the fact
that the posterior distribution of LSc

n
given Y Sn and ζ does not depend on xc.

We now obtain this posterior distribution and describe how to sample from it.
Proceeding along the same lines as before we find that, given (β0, σ

2, ζ�)�,
the random vector (L�

Sc
n
,Y �

Sn
)� has a joint Gaussian distribution with mean

β012n and covariance matrix

σ2

(
Q33 Q�

23

· Rζ,(Sn,Sn)

)
.
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From Result 1, the posterior distribution of LSc
n

given Y Sn and ζ is n-variate t:

LSc
n
|Y Sn , ζ ∼ Tn (mζ,n, σ̂2

n(ζ)Rζ,n, n − 1) , (9)

where mζ,n = β̂n,0(ζ)1n + Q�
23R

−1
ζ,(Sn,Sn)(Y Sn − β̂n,0(ζ)1n), σ̂2

n(ζ) = [Y �
Sn

R−1
ζ,(Sn,Sn)Y Sn − β̂2

n,0(ζ) (1�
n R−1

ζ,(Sn,Sn)1n)]/(n − 1), and β̂n,0(ζ) = (1�
n R−1

ζ,(Sn,Sn)

Y Sn)/(1�
n R−1

ζ,(Sn,Sn)1n). Also, Rζ,n = Q33 − Q�
23R

−1
ζ,(Sn,Sn)Q23 + [1n − Q�

23

R−1
ζ,(Sn,Sn)1n][1n−Q�

23R
−1
ζ,(Sn,Sn)1n]�/(1�

n R−1
ζ,(Sn,Sn)1n). We sample from the pos-

terior distribution of (9) in two steps.
1. Sample from a chi-square distribution with n−1 degrees of freedom and denote

the result by χ2
n−1. Set σ̃2(ζ) = (n − 1) σ̂2

n(ζ)/χ2
n−1.

2. Sample LSc
n
, given Y Sn and ζ, from a n-variate normal distribution with

mean mζ,n and covariance matrix σ̃2(ζ) Rζ,n .

3.4. Selection of environmental variables

The selection of the environmental variable site requires the evaluation of the
expectation in (4). Letting Jn(xe) = [L̂n+1(tc,n+1) − L(tc,n+1)]2 be the squared
prediction error at tc,n+1 for L̂n+1(·), this is performed by first noting that

E {Jn(xe) |Y Sn , ζ } = EY (tc,n+1,xe) |Y Sn ,ζ {E {Jn(xe) |Y Sn , Y (tc,n+1,xe), ζ } } .

(10)
Recall that L̂n+1(tc,n+1) is taken to be the posterior mean of L(tc,n+1) given
Y Sn , Y (tc,n+1, ·) and ζ. Hence, an analytic expression for the inner expectation
can be obtained upon specification of this posterior distribution. Define the
ne × 1 vector Y 3 as Y 3 = [Y (tc,n+1,xe,1), . . . , Y (tc,n+1,xe,ne)]�. Here Y 3 is
the random vector of responses at the (n + 1)-st control site tc,n+1 and each
environmental support point. We require the following correlation matrices and
vectors:

Corr [Y 3,Y
�
3 ] = Rζ,33 , Corr [Y 3,Y

�
Sn

] = Rζ,(3,Sn) ,

Corr [Y 3, Y (tc,n+1,xe)] = rζ,3 , Corr [Y Sn , Y (tc,n+1,xe)] = rζ,Sn .
(11)

In addition, let Z�
e = (Y �

Sn
, Y (tc,n+1,xe)), e�

ζ,12 = w�[Rζ,(3,Sn) rζ,3] and

Eζ,22 =

(
Rζ,(Sn,Sn) rζ,Sn

· 1

)
.

It follows from Result 1 that the posterior distribution of L(tc,n+1), given Y Sn ,
Y (tc,n+1,xe) and ζ, is univariate t:

L(tc,n+1) |Y Sn , Y (tc,n+1,xe), ζ ∼ t(me(ζ), σ̂2
e(ζ) Re(ζ), n) , (12)
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where
me(ζ) = β̂e,0(ζ) + e�

ζ,12E
−1
ζ,22 (Ze − β̂e,0(ζ)1n+1) , (13)

σ̂2
e(ζ) = [Z�

e E−1
ζ,22Ze − β̂2

e,0(ζ) (1�
n+1E

−1
ζ,221n+1)]/n, Re(ζ) = w�Rζ,33w − e�

ζ,12

E−1
ζ,22eζ,12+(1−e�

ζ,12E
−1
ζ,221n+1)2/(1�

n+1E
−1
ζ,221n+1), and β̂e,0(ζ) = (1�

n+1E
−1
ζ,22Ze)

/(1�
n+1E

−1
ζ,221n+1). The posterior mean me(ζ) is the best linear unbiased predic-

tor of L(tc,n+1) based on the design Sn ∪ (tc,n+1,xe). Then,

E {Jn(xe) |Y Sn , Y (tc,n+1,xe), ζ } =
n σ̂2

e(ζ)
n − 2

Re(ζ) , (14)

which is the variance of the posterior distribution in (12).
A closed form expression for the posterior mean square prediction er-

ror of (10) at xe can be obtained. Let m1(ζ) denote the posterior mean
of Y (tc,n+1,xe), given Y Sn and ζ, m1(ζ) = β̂n,0(ζ) + r�

ζ,Sn
R−1

ζ,(Sn,Sn) (Y Sn −
β̂n,0(ζ)1n). Define M�

e = (Y �
Sn

,m1(ζ)), which is just Ze with m1(ζ) in place of
Y (tc,n+1,xe). Taking the outer expectation in (10) of the quantity in (14) gives

E {Jn(xe) |Y Sn , ζ }

=
1

n − 2

[
M�

e

(
E−1

ζ,22 −
E−1

ζ,221n+11�
n+1E

−1
ζ,22

1�
n+1E

−1
ζ,221n+1

)
M e +

n − 1
n − 3

σ̂2
n(ζ)

]
Re(ζ) .

(15)

The formulas for β̂n,0(ζ) and σ̂2
n(ζ) were given in conjunction with the posterior

distribution of (9). Some computational simplifications involving calculation of
the posterior mean square prediction error are discussed in Appendix A.2.

In this presentation, all posterior distributions are given up to the unknown
correlation parameter vector ζ. The probability density function of the posterior
distribution of ζ, given Y Sn , is

p(ζ |Y Sn) ∝ p(ζ)
[σ̂2

n(ζ)]−(n−1)/2√
1�

n R−1
ζ,(Sn,Sn)1n

|Rζ,(Sn,Sn)|−1/2 , (16)

where p(ζ) is a prior distribution on the permissible range of values for the
correlation parameters (see Handcock and Stein (1993)). Recall from (1) that
p(ζ) ∝ 1. It is possible to carry out a fully Bayesian analysis by using (16) to
integrate ζ out of the posterior distributions given above. However, we adopt
the simpler approach of setting ζ equal to its posterior mode and then proceed
by substituting this mode for ζ wherever necessary. The posterior mode is the
restricted maximum likelihood (REML) estimator of ζ (see Cressie (1991, Sec.
2.6.1)).
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4. Examples

The following examples illustrate the operation of the modified expected
improvement algorithm. All calculations are made with the Matérn family of
correlation functions described in Section 2. The correlation parameter vector is
given by ζ = (θ1, . . . , θp, ν)�. The test functions are taken from Dixon and Szego
(1978).

4.1. Branin function

In this example, we assume the response y(·) is the product y(x) = yb(15x1−
5, 15x2) × yb(15x3 − 5, 15x4), where

yb(u, v) = (v − 5.1
4π2

u2 +
5
π

u − 6)2 + 10(1 − 1
8π

) cos(u) + 10

is the Branin function and x1, . . . , x4 lie in [0, 1]4. The Branin function is defined
on the (u, v) domain [−5, 10] × [0, 15] in R2. We take x1 and x4 to be the
control variables, xc = {x1, x4}, and x2 and x3 to be the environmental variables,
xe = {x2, x3}.

The joint distribution of the environmental variables is given in Table 1. The
true objective function is obtained from (2) using these weights.

Table 1. Probability distribution for x2 and x3.

x3

0.2 0.4 0.6 0.8
0.25 0.0375 0.0875 0.0875 0.0375

x2 0.5 0.0750 0.1750 0.1750 0.0750
0.75 0.0375 0.0875 0.0875 0.0375
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Figure 1. True objective function (left panel) and EBLUP based on initial
40-point design (right panel).
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The modified expected improvement algorithm was run twice, once to predict
the global maximizer and once to predict the global minimizer of this objective
function. Each run of the algorithm was started with the same 40-point maximin
distance LHS design generated by the software package ACED. Figure 1 gives
perspective plots of the true objective function and the EBLUP of this function
based on the 40-point initial design. The global maximizer x∗ of the true objec-
tive function is located at (0, 1) with �(x∗) = 16, 261.37. The global minimizer x∗
is located at (0.20263, 0.25445) with �(x∗) = 323.01174. Note that the response
surface is poorly predicted from the initial design.
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55

57

59

x1

x
4

Figure 2. Projection of a selection of points from the sequential design for
predicting the global maximizer of the Branin function. The integers sequen-
tially identify points chosen by the algorithm.

Figures 2 and 3 show contour plots of the true objective function along
with the projection of (some of) the points added by the modified expected
improvement algorithm when finding the maximum and minimum, respectively.
The algorithm was run with Nc = 100 Monte Carlo samples to estimate the
posterior expected improvement. In both cases, the projections of the (same)
initial 40-point design onto x1×x4 space, the control variable space, are denoted
by open circles. The modified expected improvement algorithm added 19 points
to predict the global maximizer, while it added 116 points to predict the global
minimizer. To enhance visibility, a selection of these points are indicated on the
plots according to the order in which they were added to the design.
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Figure 3. Projection of a selection of points from the sequential design for
predicting the global minimizer of the Branin function. The integers sequen-
tially identify points chosen by the algorithm.

In its search for the global maximum, the modified expected improvement
algorithm focused on the regions of the control variable space near the global
maximum and the prominent local maximum at (0.75011, 1), with a few searches
along the lower boundary due to the large standard errors of prediction there.
The algorithm was stopped at the 59-point design because the expected im-
provements of the points 57–59 are small relative to the expected improvements
observed in previous steps, on the order of 10−1–102. The algorithm should not
be terminated after the observation of a single small expected improvement, be-
cause it can get trapped in a local optimum. However, a longer series of small
expected improvements suggests that the algorithm can be terminated. Note
that “smallness” of the expected improvement is established relative to previ-
ously observed expected improvements. The predictor of the global maximizer
is taken to be a point x̂∗ that maximizes the EBLUP based on the final 59-point
design. This point is x̂∗ = (0, 1).

In searching for the global minimum, the modified expected improvement
algorithm heavily visited the region of the true global minimum, and frequently
visited the regions of local minima at (1, 0.25445) and (0.46287, 0.25445). Table
2 gives the expected improvement for the last ten points added by the algorithm.
The algorithm was terminated at point 156 because the expected improvements
appear to have stabilized, and are small relative to previous values. The predictor
of the global minimizer based on the EBLUP, calculated from the final 156-point
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design, is x̂∗ = (0.21096, 0.23324) with �(x̂∗) = 326.67005. Thus, the predicted
global minimum is within 1.15% of the true global minimum.

Table 2. Expected improvement for last ten points of final design.

Point Expected Improvement
147 0.49574
148 3.651 × 10−2

149 7.00628× 10−2

150 0.16862
151 8.05449× 10−2

Point Expected Improvement
152 5.20332× 10−2

153 0.21567
154 3.61129× 10−2

155 5.91403× 10−2

156 2.48648× 10−2

All computations were performed on a Sun Ultra 5. For minimization of
the Branin function, once correlation parameter estimates had been obtained,
the search component of the modified expected improvement algorithm required
35 s to find the first site added and 520 s to find the final site added. This
time increases with design size due to the larger systems of linear equations that
must be solved. Our correlation parameter estimation algorithm required 270 s
to obtain initial REML estimates of the correlation parameters, and 6930 s for
final estimates. If the power exponential class of correlation functions given by
Welch et al. (1992) is assumed for these calculations, our times are 145 s and
6690 s. If the GaSP (Gaussian Stochastic Process) software developed by W. J.
Welch is used to obtain maximum likelihood estimates of the power exponential
correlation parameters, these times can be reduced further to 45 s and 2150 s.

4.2. Hartman 6 function

The function

z(x1, . . . , x6) = −
4∑

i=1

ci exp

− 6∑
j=1

αij (xj − pij)2
 ,

defined on the six-dimensional unit hypercube [0, 1]6 is known as the Hartman
6 function, where the quantities {ci}, {αij} and {pij} are given in Table 3. The
underlying response is taken to be a logarithmic transformation of the Hartman
6 function, y(x) = − log(−z(x)).

Table 3. Coefficients for Hartman 6 function.

i αij , j = 1, . . . , 6 ci

1 10 3 17 3.5 1.7 8 1
2 .05 10 17 .1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 .05 10 .1 14 3.2

i pij , j = 1, . . . , 6
1 .1312 .1696 .5569 .0124 .8283 .5886
2 .2329 .4135 .8307 .3736 .1004 .9991
3 .2348 .1451 .3522 .2883 .3047 .6650
4 .4047 .8828 .8732 .5743 .1091 .0381
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The control variables are taken to be xc = {x1, x2, x4, x6} and the environmental
variables are xe = {x3, x5}. We assume environmental variables are distributed
independently, with the marginal distribution of each variable given in Table 4.
It is a discretization of a triangular distribution with support on seven points.
The resulting joint distribution provides the weights used in (2) to obtain the
true objective function.

Table 4. Marginal probability distribution for x3 (and x5).

x 0.125 0.25 0.375 0.5 0.625 0.75 0.875
Probability 9/128 1/8 3/16 15/64 3/16 1/8 9/128

The modified expected improvement algorithm was run to predict the global
minimizer of this objective function. The posterior expected improvement was
estimated with Nc = 100 Monte Carlo samples. The algorithm started with a
50-point maximin distance LHS design generated by the software package ACED,
and it added 32 points until it stopped. The algorithm was stopped at the 82-
point design because the expected improvements of the last three points added
are small relative to the expected improvements, on the order of 10−3–10−1,
observed previously. Table 5 gives the expected improvement for the last ten
points added by the algorithm.

Table 5. Expected improvement for last ten points of final design.

Point Expected Improvement
73 5.01422× 10−5

74 2.92048× 10−3

75 8.58409× 10−3

76 8.59993× 10−7

77 6.19091× 10−3

Point Expected Improvement
78 2.57626× 10−3

79 9.67359× 10−4

80 1.60879× 10−6

81 2.03093× 10−6

82 2.22035× 10−7

The algorithm was not stopped at points 73 or 76 because the small expected
improvements at these points were followed by substantially larger expected im-
provements. The true global minimizer of the objective function is x∗ = (0.40459,
0.88231, 0.57389, 0.03865), with �(x∗) = −1.13630 (−3.11522 on the origi-
nal scale). The minimizer of the EBLUP based on the 82-point final design is
x̂∗ = (0.38928, 0.87683, 0.58822, 0.03835), with �(x̂∗) = −1.13018 (−3.09621 on
the original scale). Thus, the predicted global minimum is within 1% of the true
global minimum.

The search component of the modified expected improvement algorithm re-
quired 50 s to find the first site added, and 220 s to find the final site added. Our
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REML estimation of the Matérn correlation parameters required 2140 s and 4230
s, and our times were 1105 s and 3100 s for the power exponential correlation pa-
rameters. Maximum likelihood estimation of the power exponential parameters
using GaSP required 115 s and 415 s.

5. Discussion

To obtain estimates of the correlation parameters, the modified expected im-
provement algorithm requires the specification of an initial experimental design
at which the responses are calculated. We have used maximin distance LHS de-
signs; however, other initial designs have equal intuitive appeal. For example, the
cascading LHS designs of Handcock (1991) contain both space-filling and local
components. The latter designs may yield estimates of the process variance and
correlation smoothness parameters that are superior to those that are obtained
from designs that only contain a space-filling component (such as maximin dis-
tance LHS designs). Multi-stage initial designs that contain a space-filling stage
to obtain estimates of the correlation parameters, followed by a prediction-based
stage to improve the quality of the predictor, could also be investigated. The
choice of initial designs is an area of active research.

An important issue not considered in this paper is the choice of sample size
for the initial design. The initial design should not be too small, because this
can result in a poor estimate of the correlation parameters and can substantially
increase the number of points that will need to be added by the sequential opti-
mization strategy. An initial design that is too large risks wasting observations
that are not needed. The sizes of the initial designs we used were chosen based
on informal guidelines from the literature for predicting the response (Jones et
al. (1998)). To our knowledge there are no formal results regarding the choice
of sample size for computer experiments, and this is also an area for further
research.

It is important to note that no formal rule for stopping the modified expected
improvement algorithm has been given. There are two major reasons for this.
First, the expected improvements at each stage of the algorithm are not monotone
decreasing. The estimates of the correlation parameters are updated after each
new point is added and this, combined with information in the new observed
response, affects the prediction quality and uncertainty throughout the control
variable space. Thus, although the expected improvement generally decreases,
the circumstances present at any particular stage of the algorithm do not prohibit
finding expected improvements that are larger than previously observed. Second,
the size of the expected improvements depends on the scale of the response, as
can be seen from the examples in Section 4. These two factors preclude easy
identification of a relative or an absolute stopping criterion.



SEQUENTIAL DESIGN OF COMPUTER EXPERIMENTS 1149

The number of points that need to be added by the algorithm before ter-
mination, can depend heavily on the properties of the objective near the global
optimum. If the objective is relatively flat with little curvature near the global
optimum, or has several local optima with objective function values near that of
the global optimum, the algorithm will run much longer than if the global opti-
mum is clearly identifiable. The Branin function example of Section 4 illustrates
this phenomenon, as the global maximum stands out clearly while the surface is
flat around the global minimum, with two local minima having similar function
values to the global minimum.

This paper focuses on optimizing the mean of y(xc,Xe). In practice, other
functionals of this distribution may be of greater importance. For example, the
median or other quantiles of y(xc,Xe), or Var( y(xc,Xe) ), may be of interest.

Work is underway to extend the modified expected improvement algorithm
to the problem of optimizing one objective function subject to a constraint on
another objective. This setting occurs often in practice, see for example Chang
et al. (1999) and Schonlau et al. (1998). This problem is complicated by the
need to estimate the correlation structure between the two objectives.
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Appendix. Computational Considerations

A.1. Improvement criterion

Each component of the matrix in (6) is needed in the computation of the
improvement criterion (8). It is possible to derive simpler expressions for some
of these components by taking advantage of the product structure of the Matérn
correlation function. More generally, suppose the correlation function has the
following form: R(u,v) =

∏p
j=1 Rj(u(j), v(j)), where u(j) (v(j)) is the jth coor-

dinate of the p-dimensional vector u (v), and the Rj are one-dimensional cor-
relation functions. Without loss of generality, we suppose that the pc control
and pe environmental components of the input vector u are grouped as follows:
u� = (u�

c ,u�
e )�, where p = pc + pe. We can write R(·) as

R(u,v) =
pc∏

j=1

Rj(u(j)
c , v(j)

c )
pe∏

j=1

Rj+pc(u
(j)
e , v(j)

e ) , (17)

where u
(j)
c (v(j)

c ) and u
(j)
e (v(j)

e ) are the jth control and environmental components
of the partitioned vector u (v).
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Let

Rζ,(Sc
n,Sc

n) =

( pc∏
k=1

Rk(t
(k)
c,i , t

(k)
c,j )

)
and Rζ,ee =

( pe∏
k=1

Rk+pc(x
(k)
e,i ,x

(k)
e,j )

)
.

(18)
Here Rζ,(Sc

n,Sc
n) is the n × n correlation matrix formed from the control variable

components of the n-point design Sn, i.e. from the points in Sc
n. The ne × ne

correlation matrix Rζ,ee is formed from the support points of the environmental
variable distribution. From (17), Rζ,11 = Rζ,ee and Rζ,22 = Rζ,(Sc

n,Sc
n) ⊗ Rζ,ee.

The (3, 3) entry in the matrix of (6) simplifies nicely: (In⊗w�)Rζ,22(In⊗w) =
(In ⊗ w�)(Rζ,(Sc

n,Sc
n) ⊗ Rζ,ee)(In ⊗ w) = (w�Rζ,eew)Rζ,(Sc

n,Sc
n).

Let Se
n = {te,1, . . . , te,n} denote the environmental variable portion of the

n-point design Sn. Define the n × ne matrix Rζ,(Se
n,e) as follows:

Rζ,(Se
n,e) =

( pe∏
k=1

Rk+pc(t
(k)
e,i ,x

(k)
e,j )

)
. (19)

This is the cross-correlation matrix formed between the environmental variable
components of the design and the support points of the environmental variable
distribution. With Rζ,(Se

n,e)[ i ; · ] denoting the ith row of this matrix, (17) can
be used to show that

Rζ,(Sn,2)(In ⊗ w) = diag
(

Rζ,(Se
n,e)[ i ; · ]w

)
Rζ,(Sc

n,Sc
n) , (20)

where diag ( ai ) denotes a diagonal matrix having the {ai} as elements. The
diagonal matrix in (20) is denoted by Dζ,(Se

n,e) .

Let rζ,(Sc
n,c) = (

∏pc

k=1 Rk(t
(k)
c,1 ,x

(k)
c ), . . . ,

∏pc

k=1 Rk(t
(k)
c,n,x

(k)
c ))� be the vector

of correlations involving the elements of Sc
n and an arbitrary control site xc. Ap-

plication of (17) establishes the following: R�
ζ,(1,Sn) = diag (

∏pc

k=1 Rk(t
(k)
c,i ,x

(k)
c ) )

Rζ,(Se
n,e) and (In ⊗ w�)R�

ζ,12w = (w�Rζ,eew) rζ,(Sc
n,c).

Several inversions of the matrix Cζ,22 are needed to compute the expected
improvement. These inversions are carried out by solving appropriate systems
of linear equations using iterative refinement. Incorporating some of the simpli-
fications presented above, the generic system that must be solved is:(

Rζ,(Sn,Sn) Dζ,(Se
n,e)Rζ,(Sc

n,Sc
n)

Rζ,(Sc
n,Sc

n)Dζ,(Se
n,e) (w�Rζ,eew)Rζ,(Sc

n,Sc
n)

) (
x1

x2

)
=

(
b1

b2

)
.

This 2n × 2n system is solved by finding the solutions to two n × n systems of
linear equations. First, x1 is obtained by solving(

Rζ,(Sn,Sn) −
Dζ,(Se

n,e)Rζ,(Sc
n,Sc

n)Dζ,(Se
n,e)

w�Rζ,eew

)
x1 = b1 −

Dζ,(Se
n,e)b2

w�Rζ,eew
.
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Second, the vector x3 is obtained as the solution to the system Rζ,(Sc
n,Sc

n)x3 = b2.
Then x2 is computed as x2 = (x3 − Dζ,(Se

n,e)x1)/(w�Rζ,eew).

A.2. Posterior mean square prediction error criterion

The correlation matrices and vectors in (11) are needed for the calculation of
the posterior mean square prediction error of (15). We present simplified expres-
sions for these quantities, assuming the product correlation structure introduced
in the previous section.

It is clear that Rζ,33 = Rζ,ee, where Rζ,ee is defined in (18). Let rζ,(Se
n,e) =

(
∏pe

k=1 Rk+pc(t
(k)
e,1 ,x

(k)
e ), . . . ,

∏pe

k=1 Rk+pc(t
(k)
e,n,x

(k)
e ))� denote the vector of corre-

lations involving the elements of Se
n and an arbitrary environmental site xe,

and Dζ,(Sc
n,n+1) = diag(

∏pc

k=1 Rk(t
(k)
c,i , t

(k)
c,n+1)) denote the diagonal matrix of cor-

relations involving the elements of Sc
n and the (n + 1)-st control site tc,n+1

found according to (3). Then R�
ζ,(3,Sn) = Dζ,(Sc

n,n+1)Rζ,(Se
n,e) and rζ,Sn =

Dζ,(Sc
n,n+1) rζ,(Se

n,e), where Rζ,(Se
n,e) is defined in (19). Finally, we note that

rζ,3 = (
∏pe

k=1 Rk+pc(x
(k)
e,1 ,x

(k)
e ), . . . ,

∏pe

k=1 Rk+pc(x
(k)
e,ne ,x

(k)
e ))� is the vector of cor-

relations involving the support points of the environmental variable distribution
and an arbitrary environmental site xe.

Several inversions of the matrix Eζ,22 are needed to compute the posterior
mean square prediction error. These inversions are carried out by solving appro-
priate systems of linear equations using iterative refinement. Incorporating some
of the simplifications presented above, the generic system that must be solved is: Rζ,(Sn,Sn) Dζ,(Sc

n,n+1)rζ,(Se
n,e)

r�
ζ,(Se

n,e)Dζ,(Sc
n,n+1) 1

 (
x1

x2

)
=

(
b1

b2

)
.

This (n + 1) × (n + 1) system is solved by finding the solution x1 to an n × n

system of linear equations and then calculating x2. First, x1 is obtained by solv-
ing (Rζ,(Sn,Sn) −Dζ,(Sc

n,n+1) rζ,(Se
n,e)r

�
ζ,(Se

n,e)Dζ,(Sc
n,n+1))x1 = b1 − b2Dζ,(Sc

n,n+1)

rζ,(Se
n,e). Second, x2 is computed as x2 = b2 − r�

ζ,(Se
n,e)Dζ,(Sc

n,n+1)x1.
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