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Abstract: Factor analysis is a standard tool in educational testing contexts, which
can be fit using the EM algorithm (Dempster, Laird and Rubin (1977)). An ex-

tension of EM, called the ECME algorithm (Liu and Rubin (1994)), can be used
to obtain ML estimates more efficiently in factor analysis models. ECME has an

E-step, identical to the E-step of EM, but instead of EM’s M-step, it has a sequence
of CM (conditional maximization) steps, each of which maximizes either the con-

strained expected complete-data log-likelihood, as with the ECM algorithm (Meng
and Rubin (1993)), or the constrained actual log-likelihood. For factor analysis, we

use two CM steps: the first maximizes the expected complete-data log-likelihood
over the factor loadings given fixed uniquenesses, and the second maximizes the

actual likelihood over the uniquenesses given fixed factor loadings. We also de-
scribe EM and ECME for ML estimation of factor analysis from incomplete data,
which arise in applications of factor analysis in educational testing contexts. ECME

shares with EM its monotone increase in likelihood and stable convergence to an
ML estimate, but converges more quickly than EM. This more rapid convergence

not only can shorten CPU time, but at least as important, it allows for a substan-
tially easier assessment of convergence, as shown by examples. We believe that the

application of ECME to factor analysis illustrates the role that extended EM-type
algorithms, such as the even more general AECM algorithm (Meng and van Dyk

(1997)) and the PX-EM algorithm (Liu, Rubin and Wu (1997)), can play in fitting
complex models that can arise in educational testing contexts.
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1. Introduction

Factor analysis has been a standard tool in psychology, psychometrics, and
educational testing contexts for the better part of this century (for recent refer-
ences, see Longford and Muthén (1992) and Meredith (1993)). For many years,
maximum likelihood (ML) estimation has been popular for fitting factor analysis
models, especially those having restrictions on the parameters, the “confirma-
tory case.” A variety of iterative computational methods can be used to perform
ML estimation (e.g., LISREL-7, Jöreskog and Sörbom (1988)), but probably the
easiest to implement and one of the most stable in the sense of monotonely in-
creasing the likelihood, is the EM algorithm (Dempster, Laird and Rubin (1977),
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henceforth, DLR). Introduced by DLR, EM for ML factor analysis was described
in detail in Rubin and Thayer (1982). Despite its reliable monotone convergence,
the rate of convergence of EM can be painfully slow in factor analysis models, so
slow, in fact, that it can be difficult to assess convergence, as noted, for example,
by Bentler and Tanaka (1983) and further discussed by Rubin and Thayer (1983).

A new algorithm, the ECME algorithm of Liu and Rubin (1994), can be ap-
plied to factor analysis and related models, and holds much promise as it shares
advantages with both EM and Newton-stepping algorithms. ECME is an ex-
tension of the ECM algorithm of Meng and Rubin (1993), itself an extension of
EM, but ECME’s rate of convergence, at least judged by the number of itera-
tions, is substantially faster than either EM or ECM, yet it retains EM’s stable
monotone convergence to an ML estimate, and is only modestly more difficult to
implement. This increased rate of monotone convergence makes it easier to judge
convergence, and total computation time can be less than with EM, especially in
difficult cases.

Briefly, the ECM (Expectation, Conditional Maximization) algorithm mod-
ifies the EM (Expectation, Maximization) algorithm by replacing its M step,
which maximizes the current expected complete-data log-likelihood over the en-
tire vector parameter θ, by a sequence of conditional maximization steps (in-
dexed by s = 1, . . . , S), each of which maximizes the expected complete-data
log-likelihood but over a function of θ, say θs, subject to the rest of θ, say θs,

being fixed at previously estimated values. If the (θ1, . . . , θS) span the parameter
space of θ, the ECM algorithm will converge in the same way as EM to an ML
estimate. ECME (Expectation, Conditional Maximization of Either) replaces
each of one or more of ECM’s final CM steps with a step that conditionally max-
imizes the actual likelihood function over θs rather than the expected complete-
data log-likelihood as with ECM. Typically, the conditional maximization of the
actual likelihood over θs is more difficult than the conditional maximization of
the expected complete-data log-likelihood over θs. Thus, ECME is typically more
tedious to implement than ECM, and some of its steps are computationally more
expensive. The reward, however, is an increased rate of convergence, with an
attendant increased ability to assess convergence and decreased total computer
time, both obtained without losing the monotone increase in likelihood and sim-
ple implementation, both advantages relative to potentially faster converging
Newton-stepping methods. ECME itself can be embedded in the even more gen-
eral AECM algorithm (Meng and van Dyk (1997)), which is closely related to
multicycle ECM (MCECM, Meng and Rubin (1993)). Another advantage of us-
ing these EM-type algorithms is that large sample standard errors (if desired
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(see warnings in Rubin and Thayer (1983), concerning their inferential propri-
ety)) can be obtained numerically using only the code for EM (Meng and Rubin
(1991)) or ECM (van Dyk, Meng and Rubin (1995)).

In Section 2 we briefly review the factor analysis model, and in Section
3 we present ML estimation using EM and ECME from complete data. Our
version of ECME for factor analysis with complete data uses only two CM steps,
the first conditionally maximizing the expected complete-data log-likelihood over
the factor loadings given the uniquenesses using closed form expressions, and
the second conditionally maximizing the actual likelihood over the uniquenesses
using simple low-dimensional Newton-Raphson, which in this case is reliable. In
section 5 we apply EM and ECME to the complete-data numerical example used
in Rubin and Thayer (1982), which shows that in this example, ECME relative
to EM takes 1/5 the number of iterations and 80% of the CPU time on a SPARC
station 2.

We do not attempt a complete comparison with the array of competing
algorithms for ML factor analysis (e.g., Jöreskog (1967), Jennrich and Robinson
(1969), Clarke (1970), Jamshidian and Jennrich (1993)). Our emphasis is to show
that ECME, like EM and ECM, is easily implemented and has stable monotone
convergence, but can be more effective in practice when the rate of convergence
of EM is very slow. Moreover, EM, ECM, and ECME can, with essentially no
modification, handle missing data in the variables as presented in Section 4,
which most other methods can not (also see Little and Rubin (1987), p.149, for
EM; and Liu (1996), for ECME). The version of ECME that we implement most
closely parallels the ECME algorithm with complete data and has an E step and
three CM steps: the first CM-step maximizes the expected log-likelihood over
the factor loading matrix, the second CM-step maximizes the constrained actual
likelihood over the population mean of the variables, and the third CM-step
updates the uniquenesses by maximizing the constrained actual likelihood. Our
example in Section 5, analyzing three models for an educational testing data set
with missing values, shows that when some of uniquenesses are close to or equal
to zero, the basic EM algorithm is hopelessly slow whereas ECME converges
satisfactorily. ECME, or a combination of early iterations of EM followed by
ECME, appears much preferable to straight EM.

2. The Model

Factor analysis can be viewed as a normal linear regression analysis of an
observed p-dimensional variable Y on an unobservable variable Z consisting of
q < p factors that are themselves normal; the key assumption allowing estima-
tion despite all Z being missing is that the components of Y are conditionally
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independent given Z. For n independent observations of Y, we then have

Yi|(Zi, β,R, σ2) ind∼ Np

(
α + Ziβ,Diag(σ2

1 , . . . , σ
2
p)
)

for i = 1, . . . , n,

where Yi is the (1×p) vector of the ith observation, α is the (1×p) mean vector,
Zi is the (1 × q) vector of the q factors that follows Zi

iid∼ Nq(0, R) with R > 0,
β is the (q × p) regression coefficient matrix, and σ2

j is non-negative scalar for
j = 1, . . . , p. In the terminology of factor analysis, β is the factor-loading matrix,
and σ2 = (σ2

1 , . . . , σ
2
p) is the vector of uniquenesses. Commonly, R is assumed

to be the identity matrix I. The factor loading matrix, β, may contain a priori
zeros, in which case the model is called a confirmatory factor analysis model. In
general, θ = (β,R, σ2) is to be estimated along with α.

For identifiability conditions, especially for exploratory factor analysis, see
Anderson (1984) and Basilevsky (1994). In the situation without fully identifiable
parameters, EM-type algorithms converge to points that are equivalent with
respect to the observed likelihood function.

3. The EM and ECME Algorithms for Factor Analysis from Complete
Data

Given n fully observed observations Y1, . . . , Yn, the ML estimate of α is
Ȳ = (1/n)

∑n
i=1 Yi, and the complete-data sufficient statistics for θ are Cyy =

(1/n)
∑n

i=1(Yi−Ȳ )′(Yi−Ȳ ), Cyz =(1/n)
∑n

i=1(Yi−Ȳ )′Zi, and Czz=(1/n)
∑n

i=1 Z ′
iZi.

The EM algorithm is straightforward (also see Rubin and Thayer (1982)).

EM
E-step: given the current estimate of θ, calculate the expected complete-data
sufficient statistics E(Cyy |Y, θ) = Cyy, Ĉyz = E(Cyz|Y, θ) = Cyyγ, and Ĉzz =
E(Czz|Y, θ) = γ′Cyyγ + ∆, where γ and ∆ are the regression coefficient matrix
and residual covariance matrix of Z on Y given θ, respectively, which can be
obtained using the Gaussian sweep operator (e.g., see Little and Rubin (1987),
Section 6.5) as follows:[

β′Rβ + Diag(σ2) β′R
Rβ R

]
SWP[1,2.,,,.p]

=⇒
[
−(β′Rβ + Diag(σ2))−1 γ

γ′ ∆

]
,

where SWP[S] means application of the sweep operator to the matrix on the left
hand side with respect to the diagonal pivotal elements indicated by the index
set S.

M-step: replace the complete-data sufficient statistics Cyy, Cyz, and Czz with
their expected values, and then find the complete-data maximum likelihood esti-
mates of (β, σ2) and R (if it is unknown). Letting Si be the set of the indexes of
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all the nonzero factors for the ith component yi of the outcome variable Y , then[
Cyy Cyyγ

γ′Cyy γ′Cyyγ + ∆

]
SWP[Si+p]

=⇒
[
Σ̃(p×p) ∗
β̃(q×p) ∗

]
,

where Si + p is the set consisting of all the elements in Si increased by p, the
(i, i)th element of the (p × p) matrix Σ̃ is σ̂2

i , and β̂ji = 0 if, a priori, βji

is zero; otherwise β̂ji is the (j, i)th element, β̃ji, of the (q × p) matrix β̃. When
some outcome variables have the same nonzero loading factors, the corresponding
factor-loading coefficients are obtained simultaneously. If R contains unknowns,
R̂ can be obtained by maximizing ln(|R|) − tr(ĈzzR

−1), which may need some
special techniques according to the specification of the unknowns of R.

As has been noticed in practice, because of the large fraction of missing infor-
mation contained in the missing factor scores Z, EM for ML factor analysis can
have a very slow convergence rate. With ECME, we partition θ = (β,R, σ2) into
θ1 = (β,R) and θ2 = σ2, where CM step 1 maximizes the expected complete-data
log-likelihood over θ1, and CM step 2 maximizes the actual likelihood over θ2; α

is still estimated by Ȳ . The reason for this choice of CM steps is that the actual
likelihood is simply a p-dimensional normal with restrictions on the covariance
matrix, and numerical maximization over p-dimensional σ2 with (β,R) fixed is
easier than numerical maximization over (p× q)-dimensional β and (possibly) R

with σ2 fixed. Thus, each iteration of this version of ECME consists of an E-step
and two CM-steps. The ECM algorithm corresponding to this partition of θ is
the same as EM because, with observed factors, Z, the maximizations over (β,R)
and over σ2 involve distinct factors in the likelihood.

ECME
E-step: the same as the E-step of EM.
CM-step 1: the same as the M-step of EM for parameters β and R.

CM-step 2: find σ̂2 to maximize the actual constrained likelihood given β, which
can be done, for example, using Newton-Raphson iterations. More specifically,
σ̂2 maximizes the function

f(σ2) = − ln
∣∣∣β′Rβ + Diag(σ2)

∣∣∣− tr
(
Cyy(β′Rβ + Diag(σ2))−1

)
(1)

over σ2 for fixed β and R.

The details of the Newton-Raphson method for finding σ2 to maximize the func-
tion f(σ2) in equation (1) are simple, and the method is quite reliable rela-
tive to globally maximizing the actual likelihood function of the parameters
θ = (β,R, σ2) over both σ2 and (β,R). The detailed computation of the gra-
dient and the Hessian for the Newton-Raphson method are special cases of those
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given in Section 4. The convergence criterion for the Newton-Raphson method
is not critical as long as Newton-Raphson increases the likelihood function. In
practice, only one or two steps of Newton-Raphson are needed when ECME is
close to convergence, but because Newton-Raphson does not guarantee (mono-
tone) convergence, it can be important to check that Newton-Raphson actually
increases the constrained likelihood.

4. The EM and ECME Algorithms for Factor Analysis from Incom-
plete Data

As can be seen from the previous section or Rubin and Thayer (1982),
the EM algorithm actually finds the ML estimates of the parameters (β,R, σ2)
by iteratively maximizing the expected complete-data log-likelihood given α̂ =∑n

i=1 Yi/n, which is obtained by maximizing the actual likelihood function. This
version of EM can be regarded as a trivial version of ECME in which there is
a CM step maximizing the constrained actual likelihood over α given (β,R, σ2).
This CM step gives α̂ =

∑n
i=1 Yi/n at all iterations, because the maximization

does not involve the current estimates of the other parameters. This clarification
helps to understand the modifications needed to extend EM-type algorithms for
factor analysis from incomplete data.

We define the complete data to be {Yi,obs, Yi,mis, Zi : i = 1, . . . , n}, where
Yi,obs and Yi,mis are, respectively, the observed and missing components of Yi.
Denote by Yobs the observed data {Yi,obs : i = 1, . . . , n}, and now denote by θ all
the parameters in the model, including α, i.e., θ = {α, β,R, σ2}. The complete-
data log-likelihood function is

Lcom(θ|Yi,obs, Yi,mis, Zi : i = 1, . . . , n)

= −n

2

p∑
i=1

ln σ2
i − 1

2
trace

[
Diag−1(σ2)

n∑
i=1

(Yi − α − Ziβ)′(Yi − α − Ziβ)
]

−n

2
ln |R| − 1

2
trace

[
R−1

n∑
i=1

Z ′
iZi

]

= −n

2

p∑
i=1

ln σ2
i − 1

2
trace

[
Diag−1(σ2)

n∑
i=1

(Yi − (1, Zi)

(
α

β

)
)′(Yi − (1, Zi)

(
α

β

)
)
]

−n

2
ln |R| − 1

2
trace

[
R−1

n∑
i=1

Z ′
iZi

]
, (2)

which gives a set of sufficient statistics for θ as follows:

Syy =
n∑

i=1

Y ′
i Yi, Sz∗y =

n∑
i=1

(
1
Z ′

i

)
Yi, and Sz∗z∗ =

n∑
i=1

(
1
Z ′

i

)
(1, Zi).
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EM
E-step: Compute the expected values of the sufficient statistics Ŝyy =E(Syy|Yobs,
θ̂), Ŝz∗y = E(Sz∗y|Yobs, θ̂), and Ŝz∗z∗ = E(Sz∗z∗ |Yobs, θ̂) from the joint distribution
of (Yi, Zi) given θ = θ̂ :

(Yi, Zi)|θ ∼ Np+q

(
(α, 0),

[β′Rβ + Diag(σ2) β′R
Rβ R

])

for i = 1, . . . , n. This can be accomplished using, for example, the Gaussian sweep
operator to compute the conditional expectation and covariance matrix,

(Ŷi, Ẑi) and V̂ =
[ V̂Y ′

i ,Yi
V̂Y ′

i ,Zi

V̂Z′
i,Yi

V̂Z′
i,Zi

]
,

of (Yi, Zi) given Yi,obs and (α, β, σ2), where Ŷi,obs = Yi,obs and the elements of
V̂ with at least one index corresponding to the observed components Yi,obs are
zero; then

Ŝyy =
∑

i

(
Ŷ ′

i Ŷi + V̂Y ′
i ,Yi

)
, Ŝz∗y =

∑
i

( Ŷi

Ẑ ′
iŶi + V̂Z′

i,Yi

)
,

and

Ŝz∗z∗ =
∑

i

( 1 Ẑi

Ẑ ′
i Ẑ ′

iẐi + V̂Z′
i,Zi

)
.

M-step: This is, in principle, the same as the M-step of the EM algorithm for
factor analysis from complete observations when the first component of (1, Zi)
in Equation (2) is, computationally, viewed as a factor, and the intercept con-
stants α are viewed as the corresponding (unrestricted) factor loadings. To be
more specific, for each j = 1, . . . , p, let Sj be the set of the indexes of all the
nonzero factors for the outcome variable yj, including index 0 corresponding to
the intercept with “factor loading” αj . We then obtain α̂j , (β̂1,j , . . . , β̂q,j), and
(σ̂2

1 , . . . , σ̂
2
p) by applying the sweep operator as follows:

[
Ŝyy ∗
Ŝz∗y Ŝz∗z∗

]
SWP[Sj + 1 + p]

=⇒


 Σ̃(p×p) ∗

α̃(1×p) ∗
β̃(q×p) ∗


 ,

where the (j, j)th element of the (p× p) matrix (1/n)Σ̃ is σ̂2
j , the jth element of

α̃ is α̂j, and β̂k,j = 0 if, a priori, βk,j is zero, and otherwise β̂k,j is the (k, j)th
element, β̃k,j, of the (q × p) matrix β̃.
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There are different versions of ECME for factor analysis from incomplete
data. Here we describe the version of ECME that most closely parallels the
ECME algorithm already described for the complete-data case in Section 3.

ECME
E-step: the same as the E-step of the previous EM.
CM-step 1: the same as the M-step of EM for parameters β and R.
CM-step 2: find α to maximize the constrained actual likelihood given β, R,
and σ2; this has a closed-form solution as described below.
CM-step 3: find σ2 to maximize the constrained actual likelihood given α, β,

and R; this can be done using Newton-Raphson as described below.
For a fully observed vector Y , we have from the model in Section 2:

Y |θ ∼ N(α, β′Rβ + Diag(σ2)).

Let Ii,obs be the set of the indexes of the observed components of Yi for i =
1, . . . , n, Ψ = β′Rβ + Diag(σ2), αIi,obs

be the components of α corresponding to
the observed components of Yi, and Ψ[Ii,obs,Ii,obs] be the sub-matrix of Ψ whose
row and column indexes correspond to the observed components of Yi. Then we
have

Yi,obs ∼ Np(αIi,obs
,Ψ[Ii,obs,Ii,obs])

for i = 1, . . . , n, and the actual log-likelihood function is:

Lobs(θ|Yobs) = −1
2

n∑
i=1

(
ln |Ψ[Ii,obs,Ii,obs]|

+trace
[
Ψ−1

[Ii,obs,Ii,obs]
(Yi,obs − αIi,obs

)′(Yi,obs − αIi,obs
)
])

.

(3)

Let A(i) be the (p × p) matrix with (j, k)th element equal to the corresponding
element of Ψ−1

[Ii,obs,Ii,obs]
if both the jth and the kth components of Yi are observed,

and zero otherwise, and let B(i) = A(i)(Yi − α)′(Yi − α)A(i). Note that B(i) does
not depend on Yi,mis.

From (3) we obtain

∂Lobs(θ|Yobs)
∂α

=
n∑

i=1

A(i)(Yi − α)′,

∂Lobs(θ|Yobs)
∂α′∂α

= −
n∑

i=1

A(i),

∂Lobs(θ|Yobs)
∂σ2

j

= −1
2

n∑
i=1

(
A

(i)
j,j − B

(i)
j,j

)
,
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and
∂2Lobs(θ|Yobs)

∂σ2
j ∂σ2

k

=
1
2

n∑
i=1

A
(i)
j,k

(
A

(i)
j,k − 2B(i)

j,k

)

for σ2
j > 0 and σ2

k > 0 (j, k = 1, . . . , n). As a result, we have

α̂ =
( n∑

i=1

A(i)
)−1( n∑

i=1

A(i)Yi

)
,

where the missing components of Yi can be replaced with any values because the
coefficients A(i) for the missing components Yi,mis are zero. This gives CM-step 2.

For CM-step 3, the transformation δj = ln σ2
j , that is,

σ2
j = exp(δj) (j = 1, . . . , p), (4)

is useful especially when some of the uniquenesses are close to or equal to zero.
For the transformation (4) we have

∂Lobs(θ|Yobs)
∂δj

= −σ2
j

2

n∑
i=1

(
A

(i)
j,j − B

(i)
j,j

)

and

∂2Lobs(θ|Yobs)
∂δj∂δk

=




σ2
j σ2

k

2

∑n
i=1 A

(i)
j,k

(
A

(i)
j,k − 2B(i)

j,k

)
, if j �= k,

σ2
j σ2

k

2

∑n
i=1 A

(i)
j,k

(
A

(i)
j,k − 2B(i)

j,k

)
+ ∂Lobs(θ|Yobs)

∂δj
, if j = k,

which provides the gradient and the Hessian for Newton-Raphson for δ, and thus
gives CM-step 3 for σ2. Again, it is wise to check that Newton-Raphson actually
increases the constrained likelihood because Newton-Raphson does not guarantee
(monotone) convergence.

5. Numerical Examples

5.1. Factor analysis from complete observations

We applied both EM and ECME to the same data and model as used in
Rubin and Thayer (1982) with p = 9,

Cyy =




1.0 0.554 0.227 0.189 0.461 0.506 0.408 0.280 0.241
1.0 0.296 0.219 0.479 0.530 0.425 0.311 0.311

1.0 0.769 0.237 0.243 0.304 0.718 0.730
1.0 0.212 0.226 0.291 0.681 0.661

1.0 0.520 0.514 0.313 0.245
1.0 0.473 0.348 0.290

1.0 0.374 0.306
1.0 0.672

1.0




,
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q = 4, R = I, and, a priori zero factor loadings on factor-score 4 for variables 1
— 4 and zero factor loadings on factor-score 3 for variables 5 — 9. Also we used
the same starting values for both EM and ECME:

(
β(0)

)′
=




0.5954912 −0.4893347 −0.3848925 0.0000000
0.6449102 −0.4408213 −0.3555598 0.0000000
0.7630006 0.5053083 −0.0535340 0.0000000
0.7163828 0.5258722 0.0219100 0.0000000
0.6175647 −0.4714808 0.0000000 0.1931459
0.6464100 −0.4628659 0.0000000 0.4606456
0.6452737 −0.3260013 0.0000000 −0.3622682
0.7868222 0.3690580 0.0000000 0.0630371
0.7482302 0.4326963 0.0000000 0.0431256




,

which is created from the spectral decomposition of Cyy, and
(
σ2

i

)(0) = 10−8 for
i = 1, . . . , 9.
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Figure 1. Convergence of EM (solid line) and ECME (dashed line) for the
complete-data numerical example; displayed are increases in likelihood.

In this example, ECME converges much faster than EM, as we can see from
Figures 1 and 2, where the corresponding log-likelihood function and the esti-
mates of σ2 = (σ2

1 , . . . , σ
2
9) are displayed. Specifically, here ECME converges

faster than EM by a factor of five in number of iterations. Without any attempt
to optimize code, on a SPARC station 2, ECME took about 25% less CPU time
than EM (EM — 29 sec.; ECME — 22 sec.). More important than any savings in
computer time using ECME rather than EM, at least in this example, is the eas-
ier assessment of convergence using ECME rather than EM. From Figures 1 and
2, we see that EM converges so slowly that it is difficult, at many points in the
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iterative sequence, to detect changes, which can lead to stopping before actual
convergence (e.g., after 1000-2000 iterations), but that this uncertain detectabil-
ity of convergence does not happen with ECME. Thus when combined with its
monotone convergence, ECME certainly appears to be an attractive alternative
to EM for ML factor analysis with complete data.
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Figure 2. Convergence of EM (solid line) and ECME (dashed line) for the
complete-data numerical example; displayed are the convergence of compo-
nents of the uniquenesses, σ2 = (σ2

1 , . . . , σ2
9) with sigma.1 = σ1, . . ., and

sigma.9 = σ9.
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5.2. Factor analysis from incomplete observations

To illustrate the EM and ECME algorithms for ML estimation of factor
analysis from incomplete data, we consider the example displayed in Table 1
(Efron (1994)), which is a random sample of 20 observations of five variables with
missing values represented by “?”, from Mardia, Kent and Bibby (1979), p. 2-
5. The variables are examination grades from five courses, Mechanics, Vectors,
Algebra, Analysis, and Statistics. The examinations on the first two courses used
closed-book examinations and the other three used open-book.

Table 1. Marks in examinations with missing values indicated by the symbol
“?” (Efron (1994))

Closed book exams Open book exams
Student Mechanics Vectors Algebra Analysis Statistics

2 53 61 72 64 73
9 30 69 50 52 45
16 17 53 57 43 51
9 30 69 50 52 45
16 17 53 57 43 51
18 48 38 41 44 33
20 30 34 43 46 18
1 ? 63 65 70 63
3 51 67 65 65 ?
4 ? 69 53 53 53
5 ? 69 61 55 45
6 ? 49 62 63 62
7 44 61 52 62 ?
8 49 41 61 49 ?
10 ? 59 51 45 51
11 ? 40 56 54 ?
12 42 60 54 49 ?
13 ? 63 53 54 ?
14 ? 55 59 53 ?
15 ? 49 45 48 ?
17 39 46 46 32 ?
19 46 40 47 29 ?
21 ? 30 32 35 21
22 ? 26 15 20 ?

As in Efron (1994), we assume the data in Table 1 are i.i.d. N5(µ,Ψ) and
that the missing-data mechanism is ignorable (Rubin (1976)). It has been noticed
(Rubin (1994)) that ML estimation of Ψ without any restrictions beyond positive
definiteness leads to a singular covariance matrix; this issue is discussed further
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in Liu and Rubin (1998). Here, we assume that the covariance matrix Ψ has a
pattern represented by a factor analysis model; we consider three such models:
Model I: q = 1 with no a priori zero loadings.
Model II: q = 2. One factor has no a priori zero loadings and the other has
zero loadings for the two closed-book examinations.
Model III: q = 2. One factor has no a priori zero loadings and the other has
zero loadings for the three open-book examinations.
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Figure 3. Convergence of EM (solid line) and ECME (dashed line) for the
incomplete-data numerical example with Model I; displayed are the conver-
gence of likelihood and components of the uniquenesses, σ2 = (σ2

1 , . . . , σ2
5)

with sigma.1 = σ1, . . . , and sigma.5 = σ5.

For Model I, with starting values for α equal to the observed averages for each
variable (40.82, 51.91, 51.82, 49.32, 46.82), β = (1, . . . , 1), and σ2 = (1, . . . , 1),
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both EM and ECME converged to the same stationary point (Table 2), with log-
likelihood -236.03. The numbers of iterations of EM and ECME are, respectively,
337 and 220. Without optimization of the computer codes, ECME took 3.7 sec.
of CPU time and EM took 1.1 sec. The convergence of the loglikelihood and the
uniquenesses is displayed in Figure 3. For this relatively simple example without
optimization of the computer codes, there appears to be minimal advantage to
using ECME rather than EM.

Table 2. ML estimates of Model I

Mechanics Vectors Algebra Analysis Statistics
α̂ 40.51 51.91 51.82 49.32 44.36

β̂ 4.48 9.64 11.45 10.48 16.82

σ̂2 96.30 78.15 13.47 36.76 25.90

The upper-left 2 × 2 submatrix of the covariance matrix of the observations
according to Model II is

Ψ =

[
β2

1,1 + β2
2,1 + σ2

1 β1,1β1,2 + β2,1β2,2

β1,1β1,2 + β2,1β2,2 β2
1,2 + β2

2,2 + σ2
2

]
.

Given (β1,1, . . . , β1,5), there is a problem of nonidentifiability for (β2,1, β2,2) and
(σ2

1 , σ
2
2) as is evident in the the upper-left (2×2) sub-matrix of Ψ; that is, at most

three parameters, c1,1 = β2
2,1+σ2

1, c1,2 = β2,1β2,2, and c2,2 = β2
2,2+σ2

2 , rather than
the four, can be identified. We use the ML estimates of α, β, and (σ2

3 , σ
2
4 , σ

2
5)

in Model I as the starting points for the corresponding parameters in Model II,
σ2

1 = 96.30/2, σ2
2 = 78.15/2, β2,1 = 6.94 =

√
σ2

1, and β2,2 = ±6.25 =
√

σ2
2, which

are chosen in such a way that c1,1 and c2,2 start with the ML estimates of σ2
1

and σ2
2 from Model I and c1,2 = ±0.5√c1,1c2,2. With these two sets of starting

points, both EM and ECME converge to stationary points that have the same
value of the actual likelihood function with subspace represented by the following
stationary point (Table 3), with log-likelihood -235.36. The numbers of iterations
of EM and ECME are, respectively, 299 (241) and 176 (148), where the values
in parentheses correspond to the starting points with negative β2,2. ECME took
3.3 sec. of CPU time and EM took 1.2 sec. The convergence of the loglikelihood
and the diagonal elements of Ψ is displayed in Figure 4. With this example as
well, there appears to be little advantage to using ECME rather than EM.
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Figure 4. Convergence of EM (solid line) and ECME (dashed line) for the
incomplete-data numerical example with Model II; displayed are the conver-
gence of likelihood and components of the uniquenesses, σ2 = (σ2

1 , . . . , σ2
5)

with sigma.1 = σ1, . . . , and sigma.5 = σ5.

Table 3. ML estimates of Model II

Mechanics Vectors Algebra Analysis Statistics
α̂ 40.20 51.91 51.82 49.32 44.48

β̂ 4.80 9.73 11.37 10.54 16.85
6.07 -5.27 0.00 0.00 0.00

σ̂2 59.04 48.45 15.24 35.57 24.71
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Figure 5. Convergence of 15,000 iterations of EM followed by ECME (solid
line) and straight ECME (dashed line) for the incomplete-data numerical ex-
ample with Model III; displayed are the convergence of likelihood and com-
ponents of the uniquenesses, σ2 = (σ2

1 , . . . , σ2
5) with sigma.1 = σ1, . . . , and

sigma.5 = σ5. Note the use of the logarithmic scale for the number of itera-
tions.

Unlike Model II, Model III does not appear to have a problem of nonidenti-
fiability even though Model III has one more parameter than Model II. As with
Model II, for model III we use the following starting points: the ML estimates
of α, β, σ2

1 , and σ2
2 from Model I, σ2

3 = 13.47/2, σ2
4 = 36.76/2, σ2

5 = 25.90/2,
β2,3 =

√
σ2

3 = 2.60, β2,4 = ±
√

σ2
4 = ±4.29, and β2,5 = ±

√
σ2

5 = ±3.60. ECME
takes about 900 iterations on average to converge with 35 sec. of CPU time,
whereas EM effectively would run “forever” and never actually converge due to
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the zero uniquenesses. Hence we switched to ECME after 15,000 EM iterations,
and ECME then took 37 iterations on average to converge using an average total
of 57 sec. of CPU time. All the EM sequences with ECME speeding lead to the
same estimates with log-likelihood -235.23. The ML estimates of the parameters
found are as follows:

ML estimates of Model III

Mechanics Vectors Algebra Analysis Statistics
α̂ 40.74 51.91 51.82 49.32 44.79

β̂ 4.79 9.59 11.17 11.33 16.34
0.00 0.00 1.52 -4.24 5.50

σ̂2 93.46 78.98 17.36 0.00 0.00

The straight ECME sequences, however, lead to slightly different stationary
points with log-likelihood about -235.26. For more discussion on multiple modes,
see Rubin and Thayer (1982, 1983). In this example, there is an enormous benefit
to using ECME rather than EM, at least after EM has become “stuck”.

6. Practical Conclusion

The conclusion from the examples in Section 5 is clear: especially when zero
uniqueness are possible, EM cannot be relied on to reach the MLE, whereas
ECME or an initial run of EM followed by ECME can work in this difficult case.
In practice, initial inexpensive iterations of EM followed by iterations of ECME
to convergence appears to be an effective strategy. These conclusions could shift
to a recommendation to use only ECME if the code for ECME were optionized.

Other practical issues that should be investigated include the fitting of factor
analysis models with more complicated data structures, for example, clustered
observations (Longford and Muthén (1992)) with incomplete data, and the ap-
plication of very recent extensions of ECME, AECM (Meng and van Dyk (1997))
and PX-EM (Liu, Rubin and Wu (1998)). These extensions may be quite im-
portant in fitting other hidden (or latent) variables models that are common in
educational testing contexts.
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