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Abstract: We discuss estimation in a two-stage modulated renewal process designed

for analysis of paired data on a single individual. We consider a model with pro-

portional hazard intensities. U-process methods are used to show consistency and

asymptotic normality of the parameter estimates.
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1. Introduction

The proportional hazard model remains the most commonly used semi-
parametric regression model for analysis of univariate failure time data. The
model assumes that the cumulative hazard function A(t|z) of the conditional
distribution of a failure time T given a vector of covariates is of the form

A(t|z) = A0(t)eβT z, (1.1)

where A0(t) is an unknown baseline cumulative hazard function and β is a vector
of regression coefficients. Several authors have suggested multivariate extensions
of this model. In particular, Wei, Lin and Weissfeld (1989) proposed the use of
marginal modeling of multivariate failure time data. The approach assumes that
the marginal conditional distributions of a failure time vector T = (T1, . . . , Tk)
satisfy the model (1.1), but the joint conditional distribution is left unspecified.
To account for possible dependence among the components of T , Wei, Lin and
Weissfeld (1989) and Spiekerman and Lin (1998) developed appropriate modifi-
cations of the usual profile likelihood method designed for univariate data. In
particular, they showed that that the estimates of the regression coefficients and
baseline cumulative hazards are asymptotically normally distributed, and de-
veloped robust estimates of their asymptotic covariances. The approach gained
much popularity in analyses of multivariate clustered data, in part because in
many circumstances only parameters of marginal distributions are of interest.
Results of Wei, Lin and Weissfeld (1989) and Spiekerman and Lin (1998) allow
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Figure 1. Transition diagram: R = randomization state, E = failure of the
organ receiving experimental treatment, C = failure of the organ receiving
conventional treatment, E+C = failure of both organs.

for consistent estimation of these parameters without specification of the joint
distribution of the vector T .

Models for bivariate failure times can also be defined using marked point
processes (Andersen, Borgan, Gill and Keiding (1993) and Hougaard (2000)).
Among them, Markov chains and semi-Markov processes provide the simplest ex-
ample. Both processes can be specified by assuming that transition rates satisfy
the proportional hazards model assumption. The transition rates can be further
combined to obtain the transition probability matrices of the corresponding pro-
cesses and, as a by–product, the joint and marginal distribution functions of the
failure times. However, the marginal distributions fail to satisfy the proportional
hazards model assumption and typically share in common parameters which ac-
count for the joint dependence structure of the failure times. These two features
of the marginal distributions entail that the estimation approach taken in Wei,
Lin and Weissfeld (1989) does not apply in this setting.

In this paper, we consider estimation in a semi-parametric two-stage mod-
ulated renewal process (Cox (1975)) which can be used in matched pair experi-
ments on paired organs of a single subject, such as eyes, hands, or kidneys. The
model assumes that the two organs are randomized (R) to an experimental (E)
and conventional (C) treatment. Failure of both organs (E+C) may be simulta-
neous or preceded by failure of one of the two organs. The schematic diagram of
possible transitions is shown in Figure 1 below.

In Section 2 we define the model to have proportional hazard intensities with
general risk functions, and also allow for presence of monotone censoring depen-
dent on the state occupied by the process. In Section 3 we discuss estimation of
the Euclidean component of the model and the baseline cumulative hazard func-
tion. In analogy to standard Cox regression, for purposes of estimation of the the
Euclidean component of the model, we consider solution of the profile likelihood
score equation and show that, under mild regularity conditions, the resulting
estimates are asymptotically normally distributed and have asymptotic covari-
ance structure similar to standard Cox regression. However, as noted by Oakes
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(1981), the usual continuous-time martinagle methods for analysis of stochastic
integrals and partial likelihoods fail to apply because time measurements are
recorded on a non-chronological time scale. The relevant processes are also not
adapted to a common continuous time filtration. Methods for asymptotic anal-
ysis of general modulated renewal processes were developed in Oakes and Cui
(1994), Dabrowska (1995), and Chang, Hsiung and Wu (1999), among others.
Here we use U-process methods to show consistency and asymptotic normality
of the estimates under weaker conditions than in these papers.

2. The Model

Let H be the set of possible one-step transitions corresponding to the mul-
tistage model shown in Figure 1. Thus H = H0 ∪H1 ∪H2, where

H0 = {(0, i) : i = 1, 2, 3} and Hi = {(i, 3)}, i = 1, 2. (2.1)

We consider a multivariate counting process Ñ = {Ñh(t) : h ∈ H, t ≥ 0} given
by

Ñh(t) = 1(X̃1 ≤ t, J = i) if h = (0, i), i = 1, 2, 3,

= 1(X̃1 < X̃2 ≤ t, J = i) if h = (i, 3), i = 1, 2.

Here X̃1 is the time of the occurrence of the first event and J is its type. The
variable X̃2 represents the time of the occurrence of the second event, and can be
observed only if J 6= 3. We assume that the cumulative intensity of the process
Ñ with respect to the self-exciting filtration is given by Λ = {Λh : h ∈ H}, where

Λh(t) =
∫ t

0
1(X̃1 ≥ u)αh(u)du if h ∈ H0,

=
∫ t

0
1(X̃2 ≥ u > X̃1, J = i)αh(u − X̃1)du if h ∈ Hi, i = 1, 2.

The functions αh, h ∈ H assume the form

αh(u) = qh(Zh, u, θ)er(Z,u,β)α(u), (2.2)

where Zh = Z if h ∈ H0 and Zh = (X1, Z) if h ∈ Hi, i = 1, 2. In addition,∑
h∈H0

qh(Zh, u, θ) = 1, (2.3)

and qh > 0 if h ∈ Hi. For h ∈ H0, we assume that either qh > 0 for all h ∈ H0

or qh ≡ 0 for h = (0, 3) and qh > 0 for h 6= (0, 3).
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The relative risk function exp r(Z, u, β) serves to describe covariate effects
which do not depend on the transition type. Simple examples of it may cor-
respond to the choice of r(Z, u, β) = βT Z used in standard Cox regression, or
relative risk functions considered by Prentice and Self (1983). The function
r(Z, u, β) may also depend on time (u) and with this choice we can accom-
modate external time dependent covariates (Andersen et al. (1993)), such as
r(Z, u, β) = βT Zf(u), where f(u) is a known function or a function dependent
on a Euclidean parameter. Other choices include the parametric partial Cox
regression model.

The functions qh(Zh, u, θ), h ∈ H serve to describe transition-specific effects
of covariates. In the case of transitions originating from state 0, we use Zh = Z

and assume that the functions qh, h ∈ H, satisfy the constraint (2.3). Multino-
mial regression models, such as the multinomial logistic or probit models can be
used to incorporate this constraint. On the other hand, in the case of transitions
originating from states i = 1, 2, we allow the transition effects to depend also on
the length of the sojourn time X̃1 in state 0.

If both the r and qh functions depend only on the covariate Z, then (2.2)−
(2.3) corresponds to a semi-Markov model. Special cases of it include the semi-
Markov extensions of the models of Freund (1961) and Marshall and Olkin (1967).
The choice

q0i(Z0i, u, θ) =
exp[θ0iZ + θ′0iu]

1 +
∑2

j=1 exp[θ0jZ + θ′0ju]
, i = 1, 2,

q03(Z03, u, θ) = 1−Σ2
j=1q0j(Z0j , u, θ), and qi3(Zi3, u, θ) = exp[θT

i3Z +θ′i3(X̃1 +u)],
i = 1, 2, provides the example of Wold’s process discussed in Cox (1975) and
Oakes and Cui (1994). As opposed to semi-Markov models, the transition rates
depend in this case both on the sojourn time in each state and calendar time.

We further note that setting

Ah(x|z) =
∫ x

0
qh(Zh, u, θ)er(Z,u,β)α(u)du, h ∈ H0,

the survival function of the sojourm time X̃1, is given by

S0(x|z) = P (X̃1 > x|Z = z) = exp[−
∑

h∈H0

Ah(x|z)] = exp[−
∫ x

0
er(Z,u,β)α(u)du],

and P (J = i|X̃1 = x,Z = z) = q0i(Z, x, θ) for i = 1, 2, 3. The conditional
survival function in state i, i = 1, 2 is given by

Si(x|x1, z) = P (X̃2 − X̃1 > x|Z = z, X̃1 = x1, J = i) = exp[−Ai3(x|x1, z)],
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Figure 2. Transition diagram of the censored model. The states R, E, C and
E+C are defined as in Figure 1. L = loss-to-follow-up.

where
Ai3(x|x1, z) =

∫ x

0
qi3(Zi3, u, θ)er(Z,u,β)α(u)du.

These two displays can further be combined to obtain the joint and marginal con-
ditional distribution functions of (X̃1, X̃2) (Dabrowska. and Lee (1996)). How-
ever, the marginals do not follow the proportional hazard model.

We assume now that the process is subject to censoring and the censored
process can be represented using the transition diagram shown in Figure 2.
Thus the observable variables are given by a vector W with entries

W = (X1, J,X2, δ1, δ2, Z) if J ∈ {1, 2} and δ1 = 1,

= (X1, J, δ1, Z), if J = 3 and δ1 = 1,

= (X1, δ1, Z), if δ1 = 0, (2.4)

where Xi = X̃i∧Ci and δi = 1(Xi = X̃i), i = 1, 2. We further make the following
assumptions on the censoring process and the covariate.

Condition 2.1. (i) The marginal distribution µ of the covariate Z is non-
degenerate; (ii) conditionally on Z, C1 and (X̃1, J) are independent, and (iii) for
i = 1, 2, C2 ≥ C1 ∨ X̃1 a.s., and (C1, C2) and X̃2 are conditionally independent
given (Z, X̃1)1(X̃1 ≤ C1, J1 = i).

For the sake of convenience, denote by Hc the collection of possible pairs of
one-step transitions in the censored model. Thus Hc = Hc

0 ∪Hc
1 ∪Hc

2 where

Hc
0 = {(0, j) : j = 1, 2, 3, c}, Hc

1 = {(1, 3), (1, c)}, Hc
2 = {(2, 3), (2, c)} .

Define processes

Nh(x) = 1(X1 ≤ x, J = i, δ1 = 1) if h = (0, i), i = 1, 2, 3,
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= 1(X1 ≤ x, δ1 = 0) if h = (0, c),

= 1(X2 − X1 ≤ x, J = i, δ1 = 1, δ2 = 1) if h = (i, 3), i = 1, 2,

= 1(X2 − X1 ≤ x, J = i, δ1 = 1, δ2 = 0) if h = (i, c),

and set Yh(x) = 1(X1 ≥ x) for h ∈ Hc
0, Yh(x) = 1(X2 − X1 ≥ x, J1 = i, δ1 = 1)

for h ∈ Hc
i , i = 1, 2. Finally, let

Mh(x) = Nh(x) −
∫ x

0
Yh(u)Ah(du|Zh), h ∈ Hc.

If φ(W ) = {φh(X1, Zh), φh′(X2, Zh′) : h ∈ Hc
0, h

′ ∈ Hc
j , j = 1, 2} is a vector of

measurable functions, then the the processes∫ x

0
φh(u, Z)Mh(du), x ≥ 0, h ∈ Hc

0,

form orthogonal martingales with respect to the filtration F0x = σ(Nh(u), Z,
Yh(u+) : u ≤ x, h ∈ Hc

0), and similarly, the processes∫ x

0
φh(u,Z,X1)Mh(du), x ≥ 0, h ∈ Hc

i , i = 1, 2,

form orthogonal martingales with respect to the filtration Fix =σ(Nh(u), Yh(u+),
Z1(δ1 = 1, J1 = i), X11(δ1 = 1, J1 = i) : u ≤ x, h ∈ Hc

i ). Using direct calculation,
it is also easy to verify that the processes are orthogonal. Note, however, that
processes originating from the state i, i = 1, 2 and processes originating from the
state 0 are not adapted to a common filtration.

3. Estimation

We now assume that we have a sample of size n of independent identically
distributed (i.i.d.) observations from the censored renewal model, and consider
estimation of the parameters (β, θ) and the baseline cumulative hazard function
A.

For the sake of convenience, we assume that the functions r(Z, u, β) and
qh(Zh, u, θ) do not share parameters in common and are differentiable with re-
spect to β and θ, respectively. We also assume that the derivatives ṙ(Z, u, β) and
q̇h(Zh, u, θ) satisfy a certain form of Lipschitz continuity. To avoid cumbersome
notation, this Lipschitz continuity assumption is stated in the Appendix. Set
φh(Zh, u, ξ) = [φ1h(Zh, u, ξ), φ2h(Zh, u, ξ)]T , where

φ1h(Zh, u, ξ) = ṙ(Z, u, β),

φ2h(Zh, u, ξ) =
q̇h

qh
(Zh, u, θ), h ∈ H.
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For i = 1, . . . , n, define processes S
(0)
hi (u, ξ) = Yhi(u)er(Zi,u,β)qh(Zhi, u, θ), S(1)

hi (u,
ξ) = φh(Zhi, u, ξ)S(0)

hi (u, ξ) and S
(2)
hi (u, ξ) = φh(Zhi, u, ξ)⊗2S

(0)
hi (u, ξ). Let S(p)(u,

ξ) = n−1ΣiΣhS
(p)
hi (u, ξ). For p = 0, 1, 2, let s(p)(u, ξ) = E S(p)(u, ξ). We assume

that these expectations are finite in a neighborhood of the true parameter ξ0,
and denote by Σ(ξ0) the matrix

Σ(ξ0) =
∑

h

∫ τ

0

[
s(2)

s(0)
(u, ξ0) −

(
s(1)

s(0)
(u, ξ0)

)⊗2]
ENhi(du). (3.1)

To estimate the parameter ξ, we use solution to the score equation Φn(ξ) =
oP (n−1/2), where

Φn(ξ) =
1
n

n∑
i=1

∑
h

∫ τ

0
[φh(Zhi, u, ξ) − S(1)

S(0)
(u, ξ)]Nhi(du). (3.2)

Define also

Σ̂n(ξ) =
1
n

n∑
i=1

∑
h

∫ [
S(2)

S(0)
(u, ξ) −

(
S(1)

S(0)
(u, ξ)

)⊗2]
Nhi(du). (3.3)

Proposition 3.1. Suppose that the Conditions 2.1, A.1, A.2 and A.3 hold, and
that the matrix (3.1) is finite and nonsigular. With probability tending to 1, the
score equation Φn(ξ) = oP (n−1/2) has a root ξ̂ in the ball B(ξ0, εn). Moreover,√

n[ξ̂ − ξ0] is asymptotically N(0, Σ(ξ0)−1). The matrix Σ(ξ0) can be estimated
consistently by Σ̂n(ξ̂).

We also have a similar asymptotic normality result for the baseline cumula-
tive hazard function A. The estimate is defined by Â(x, ξ̂), where

Â(x, ξ) =
1
n

∫ x

0

∑
i

∑
h Nhi(du)

S(0)(u, ξ)
(3.4)

is the weighted Nelson-Aalen estimator.

Proposition 3.2. Suppose that the assumptions of Proposition 3.1 and Condi-
tion A.4 hold. Then the process

Ŵ (x) =
√

n[Â(x, ξ̂) − A(x)] +
√

n[ξ̂ − ξ0]
∫ x

0

S(1)

S(0)
(u, ξ̂)Â(du, ξ̂)

converges weakly in `∞[0, τ ] to a time transformed Brownian motion with vari-
ance function

C(x) =
∫ x

0

A(du)
s(0)(u, ξ0)

.
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Moreover, Ŵ and
√

n[ξ̂ − ξ0] are asymptotically independent.

In analogy to the standard Cox regression model, the score function Φn(ξ)
is equal to the derivative of the log-profile likelihood obtained by replacing the
unknown cumulative hazard function by the weighted Nelson-Aalen estimator
(3.4). In he supplement (http://www.stat.sinica.edu.tw/statistica), we
give a generalization of Propositions 3.1 and 3.2 in Nan, Edmond and Wellner
(2004) to verify that Σ(ξ0) forms the information matrix for the parameter ξ0.
Thus, if ξ̂ is a solution to the score equation , then the matrix Σ̂n(ξ̂) provides
an estimate of the Fisher information for the Euclidean parameter of the model.
In addition, ξ̂ is asymptotically efficient and any other regular estimator of this
parameter is asymptotically at least as dispersed as ξ̂.

Under regularity conditions assumed in the Appendix, the functions φh(Zh,
u, ξ) are only Lipschitz continuous with respect to ξ. If the functions φh are
differentiable with respect to ξ, then the estimate can be obtained using the con-
jugate gradient or quasi-Newton algorithm with finite difference or user supplied
gradient. Note however, that if ξ̂0 is an arbitrary

√
n-consistent estimator of the

parameter ξ, then the one-step estimate ξ̂ = ξ̂0 + Σ̂n(ξ̂0)−1Φn(ξ̂0) is asymptoti-
cally efficient, so that construction of the estimate ξ̂ can be implemented using
the Fisher scoring algorithm without differentiation of the score function. Alter-
natively, the estimate can be obtained using the direct search polytope or simplex
algorithms which do not require differentiability of the φh functions. Standard
numerical packages, such as Matlab, IMSL and R provide options for the above
mentioned algorithms.

Appendix

Section A.1 collects notation and some results from the theory of U-statistics.
They are used to show Propositions 3.1 and 3.2 in Sections A.2 and A.3, respec-
tively.

A.1. Preliminaries

Let W1, . . . ,Wn be i.i.d. random variables with some distribution P. An
(asymmetric) U-statistics with kernel g(W1, . . . ,Wm) is denoted by

Un,m(g) =
(n − m)!

n!

∑
(i1,...,im)∈Im

n

g(Wi1 , . . . ,Wim),

where Im
n is the collection of vectors (i1, . . . , im) with distinct coordinates, each

in {1, . . . , n}. Assuming that the kernel g satisfies E |g(W1, . . . ,Wm)| < ∞, its
Hoeffding projection of degree m is denoted by πm[g](W1, . . . ,Wm). We have

πm[g](W1, . . . ,Wm) = g(W1, . . . ,Wm) +
∑

A⊂{1,...,m}

(−1)|A|E Ag(W1, . . . ,Wm),

http://www.stat.sinica.edu.tw/statistica
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where for ∅ 6= A = {i1, . . . , ip}, 1 ≤ p ≤ m, E A denotes conditional expectation
with respect to variables Wj , j ∈ A. Then Un,m(πm[g]) forms a canonical U
statistics of degree m.

We now put Wm = (W1, . . . ,Wm). The derivation of the asymptotic prop-
erties of the estimates uses the following lemma. Its proof can be found in the
supplement to this paper at http://www.stat.sinica.edu.tw/statistica.

Lemma A.1. Let G be a measurable class of P-canonical kernels with envelope
G(Wm), such that E Gp(Wm) < ∞ for some p ∈ (1, 2). Suppose that the class
of truncated kernels Gn = {g(Wm)1(G(Wm) < nm/p) : g ∈ G} is Euclidean for
the envelope G(Wm)1(G(Wm) < nm/p). Then

nm(p−1)/p sup{|Un,m(g)| : g ∈ G} →P 0. (A.1)

Remark A.1. This lemma can be applied also to the U-processes Un,m(gn)
with kernels gn varying over a class of functions Gn dependent on n. In this
case, however, we require that the sequence of envelopes Gn(Wm) be uniformly
Lp-integrable.

Remark A.2. If the class G consists of a single function, then a Marcinkiewicz-
Zygmund-type theorem in Teicher (1998) provides a stronger, almost sure con-
vergence result. Unfortunately, we have not been able to extend it to the present
setting. On the other hand, if p ∈ (0, 1) and the class G has an envelope satis-
fying E G(Wm)p < ∞, then the Marcinkiewicz-Zygmund-type theorem in de la
Peña and Giné (1999) implies that (A.1) holds almost surely. If p = 1, and the
class G is Euclidean for the envelope G(Wm) satisfying E G(Wn) < ∞ then the
Glivenko-Cantelli Theorem entails that (A.1) holds for U-processes whose kernels
have mean zero but are not necessarily P-canonical.

To conclude this section, we denote by

Vn,m(g) =
1

nm

∑
(i1,...,im)

g(Wi1 , . . . ,Wim), g ∈ G,

the V-process corresponding to the kernels g, g ∈ G. In the following we use
V-processes of degree m ≤ 4 and apply Lemma A.1 and Remarks A.1−A.2 to
verify that the difference

√
n|Vn,m(g)−Un,m(g)| converges to 0 almost surely if g

is a fixed function, and in probability if g varies over appropriately chosen classes
of functions.

A.2. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on two lemmas. Lemma A.2 shows
asymptotic normality of the score process Φn(ξ0). Lemma A.3 shows consistency
and asymptotic normality of the regression estimates.

http://www.stat.sinica.edu.tw/statistica
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Condition A.1. Let εn be a sequence such that εn ∼ n−γ , γ ∈ (0, 1/2). Let
B(ξ0, εn) = {ξ : |ξ − ξ0| ≤ εn}. Then

(i) inf{s(0)(u, ξ) : u ≤ τ , ξ ∈ B(ξ0, εn)} > 0;
(ii) sup{|S(p)(u, ξ0) − s(p)(u, ξ0)| : u ≤ τ, p = 0, 1, 2} = op(1);
(iii) there exist functions ψ1h(Zh, u), ψ2h(Zh, u), h ∈ H such that for ξ∈B(ξ0, εn)

and h ∈ H, we have |φh(Zh, u, ξ) − φh(Zh, u, ξ0)| ≤ |ξ − ξ0|ψ1h(Zh, u) and
|[φhbh](Zh, u, ξ)− [φhbh](Zh, u, ξ0)| ≤ |ξ − ξ0|ψ2h(Zh, u), where bh(Zh, u, ξ) =
qh(Zh, u, θ)er(Z,u,β);

(iv) for u ≤ τ , we have E Yh(u)gh(Zh, u) < ∞ and

sup

{∣∣∣∣ 1n
n∑

i=1

Yhi(u)gh(Zhi, u) − E Yh(u)gh(Zh, u)
∣∣∣∣ : u ≤ τ, h ∈ H

}
= op(1),

where gh(Zh, u) = ψ2h(Zh, u), [ψh1ψh2](Zh, u), ψh1(Zh, u)[bφh](Zh, u, ξ0) or
gh(Zh, u) = ψh2(Zh, u)φh(Zh, u, ξ0).

To simplify notation, we now set φhi(u, ξ) = φh(Zhi, u, ξ) for i = 1, . . . , n.
Define S̄

(1)
i (u, ξ) = Σh|φhi|(u, ξ)S(0)

hi (u, ξ) and let s̄(1)(u, ξ) = E S̄
(1)
i (u, ξ). In the

following we assume that these expectations are finite in a neighborhood of ξ0.
Define

f̄1(Wi,Wj , t) =
∑

h

∫ t

0

|φih|S
(0)
j + S̄

(1)
j

s(0)
(u, ξ0)Nhi(du),

and set ḡ(2)(Wi,Wj) = f̄1(Wi,Wj , τ),

ḡ(3)(Wi,Wj ,Wk) =
∫ τ

0

S
(0)
k

s(0)
(u, ξ0)f̄1(Wi,Wj , du), (A.2)

ḡ(4)(Wi,Wj ,Wk,Wl) =
∫ τ

0

(
S

(0)
k

s(0)

)(
S

(0)
`

s(0)

)
(u, ξ0)f̄1(Wi,Wj , du).

We assume the following moment condition.

Condition A.2. E |ḡ(2)(Wi,Wj , τ)|r2(i,j) < ∞, E |ḡ(3)(Wi, Wj ,Wk)|r3(i,j,k) < ∞
and E |ḡ(4)(Wi,Wj ,Wk,Wl)|r4(i,j,k,l) <∞, where rm(i1, . . . , im) = 2dm(i1, . . . , im)
/(2m−1), and dm(i1, . . . , im) is the number of distinct indices among (i1, . . . , im),
m = 2, 3, 4.

Lemma A.2. If conditions A.1 and A.2 are satisfied and the matrix Σ0(ξ0) is
non-singular, then

√
nΦn(ξ0) =⇒ N (0,Σ(ξ0)).

Proof. Define

g(Wi,Wj , t) =
∑

h

∫ t

0

φihS
(0)
j − S

(1)
j

s(0)
(u, ξ0)Nhi(du),
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and set g(2)(Wi,Wj) = g(Wi,Wj , τ),

g(3)(Wi,Wj ,Wk) = −
∫ τ

0

S
(0)
k − s(0)

s(0)
(u, ξ0)g(Wi,Wj , du),

g(4)(Wi,Wj , Wk,Wl) =
∫ τ

0

(
S

(0)
k − s(0)

s(0)

)(
S

(0)
` − s(0)s(0)

)
(u, ξ0)f̄1(Wi,Wj , du).

The score function satisfies Φn(ξ0) =
∑4

j=2 Φn,j(ξ0), where Φn,2(ξ0) = Vn,2(g(2)),
Φn,3(ξ0) = Vn,3(g(3)) and

Φn,4(ξ0) =
1
n

n∑
i=1

∑
h

∫ τ

0

[
φihS(0) − S(1)

s(0)

(S(0) − s(0))2

s(0)S(0)

]
(u, ξ0)Nhi(du).

It is easy to verify that for i 6= j, we have E g(2)(Wi,Wj) = 0, and

Un,2(g(2)) =
1
n

∑
i

∑
h

∫ τ

0

φihs(0) − s(1)

s(0)
(u, ξ0)Mih(du) + U2,n(π2[g(2)]).

The first term is a sum of i.i.d. variables with mean zero and covariance Σ(ξ0).
The second term is a canonical U statistic of degree 2. The moment con-
dition A.2 and Remark A.2 imply that E |π2[g(2)](Wi,Wj)|4/3 < ∞ so that√

nUn,2(π2[g(2)]) → 0 a.s. By the Central Limit Theorem and Slutzky’s Theo-
rem, we have

√
nUn,2(g(2)) =⇒ N (0, Σ(ξ0)). Further, for any sequence (i, j, k, `)

of distinct indices, the kernels g(3)(Wi, Wj ,Wk) and g(4)(Wi,Wj ,Wk,W`)) have
mean zero. Moreover, their Hoeffding expansion is given by

Un,3(g(3)) = Un,2(E {13}g
(3)) + Un,2(E {23}g

(3)) + Un,3(π3[g(3)]),

Un,4(g(4)) = Un,2(E {34}g
(4)) +

∑
A={134},{234}

Un,3(π3[E Ag(4)]) + Un,4(π4[g(4)])

and, in both cases, the Condition A.2 implies that
√

nUn,3(g(3)) → 0 a.s. and√
nUn,4(g(4)) → 0 a.s. To complete the proof, we note that Conditions A.2 and

Remark A.2 imply that
√

n|Vn,p(g(p)) − Un,p(g(p))| → 0 a.s. for p = 2, 3, 4.
Finally, for any ε > 0,

P (
√

n|Φn,4(ξ0)| > ε) ≤ P

(√
n|Φn,4(ξ0)| > ε, sup

u

s(0)

S(0)
(u, ξ0) ≤ 1 + ε

)
+P

(√
n|Φn,4(ξ0)| > ε, sup

u

s(0)

S(0)
(u, ξ0) > 1 + ε

)
≤ P

(√
nVn,4(g(4)) >

ε

(1 + ε)

)
+ P

(
sup

u

∣∣∣∣S(0)

s(0)
(u, ξ0) − 1

∣∣∣∣ >
ε

(1 + ε)

)
,
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and both terms converge to 0.

We now turn to showing that the equation Φn(ξ) = oP (n−1/2) has a consis-
tent solution. For this purpose, let

f̄11(Wi,Wj , t) =
∑

h

∫ t

0

[ψ1h(Zhi, u) + ψ1h(Zhj , u)]S(0)
j (u, ξ0)

s(0)(u, ξ0)
Nhi(du).

The functions ḡ(12), ḡ(13) and ḡ(14) are given by (A.2) with the integrator f̄1

replaced by f̄11.

Condition A.3.

E [E g(12)(Wi,Wj)|Wi]r1(i) < ∞, E [E g(12)(Wi,Wj)|Wj ]r1(j) < ∞,

E |ḡ(12)(Wi,Wj)|r2(i,j) < ∞, E |ḡ(13)(Wi, Wj ,Wk)|r3(i,j,k) < ∞,

E |ḡ(14)(Wi,Wj , Wk,Wl)|r4(i,j,k,l) < ∞,

where rm(i1, . . . , im) = 2dm(i1, . . . , im)/(2m−1+2γ), dm(i1, . . . , im) is the num-
ber of distinct indices among (i1, . . . , im) and m = 1, 2, 3, 4.

Lemma A.3. Under the assumed regularity conditions, the matrix Σ̂n(ξ) defined
by (3.3) satisfies (i) Σ̂n(ξ0) →P Σ(ξ0); (ii) Φn(ξ) − Φ(ξ0) = (ξ − ξ0)T Σ̂n(ξ0) +
rem(ξ), where

sup
{
|rem(ξ) − rem(ξ0)|
n−1/2 + |ξ − ξ0|

: ξ ∈ B(ξ0, εn)
}

= oP (1);

and (iii) sup{|Σ̂n(ξ) − Σ̂n(ξ0)| : ξ ∈ B(ξ0, εn)} →P 0.

By Lemma 5.1 in Dabrowska (2007), these three conditions and asymptotic
normality of

√
nΦn(ξ0) imply that, with probability tending to 1, the score equa-

tion Φn(ξ) = oP (n−1/2) has a root ξ̂ in B(ξ0, εn) and
√

n[ξ̂− ξ0] is asymptotically
normal with mean zero and covariance Σ(ξ0)−1.

Proof. Part (i) and (iii) follows easily from application of Conditions A.1.
For ξ ∈ B(ξ0, εn), let φ̃hi(u, ξ) = φhi(u, ξ) − φhi(u, ξ0), and set S̃(1)(u, ξ) =
n−1ΣiΣhφ̃hi(u, ξ)Shi(u, ξ0). The Condition A.1 and elementary algebra imply
that, for ξ ∈ B(ξ0, εn), we have rem(ξ)− rem(ξ0) = rem1(ξ)+oP (|ξ−ξ0|2), where

rem1(ξ) =
1
n

n∑
i=1

∑
h

∫ τ

0

[
φ̃hi(u, ξ) − S̃(1)(u, ξ)

S(0)(u, ξ0)

]
Nih(du).

We have rem1(ξ0) = 0 and part (ii) follows if we show

sup
{√

n|rem1(ξ)| : ξ ∈ B(ξ0, εn)
}

= op(1). (A.3)
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Define

fξ(Wi, Wj , t) =
∑

h

∫ t

0

φ̃ih(u, ξ)S(0)
hj (u, ξ0) − S̃

(1)
hj (u, ξ)

s(0)(u, ξ0)
Nhi(du)

and set f
(2)
ξ (Wi,Wj) = fξ(Wi,Wj , τ),

f
(3)
ξ (Wi,Wj ,Wk) = −

∫ τ

0

S
(0)
k − s(0)

s(0)
(u, ξ0)fξ(Wi,Wj , du),

f (4)(Wi, Wj ,Wk,Wl) =
∫ τ

0

(
S

(0)
k − s(0)

s(0)

)(
S

(0)
` − s(0)

s(0)

)
(u, ξ0)f11(Wi,Wj , du).

Here the last term does not depend on ξ. We have rem1(ξ) =
∑4

j=2 rem1j(ξ),

where rem12(ξ) = Vn,2(f
(2)
ξ ), rem13(ξ) = Vn,3(f

(3)
ξ ) and

rem14(ξ) =
1
n2

∑
i,j

∫ τ

0

(S(0) − s(0))2

s(0)S(0)
(u, ξ0)fξ(Wi, Wj , du).

The U statistic Un,4(f (4)) has a similar Hoeffding decomposition as Un,4(g(4))
in Lemma A.2. The assumed moment conditions and Remark A.2 imply n1/2−γ

Un,4(g(4)) → 0 a.s. and n1/2−γVn,4(f (4)) → 0 a.s. For any ε > 0, P (
√

n sup
|remn14(ξ)| > ε) is bounded by

P

(√
nεnVn,4(f (4)) >

ε

(1 + ε)

)
+ P

(
sup

u

∣∣∣∣[S(0)

s(0)

]
(u, ξ0) − 1

∣∣∣∣ >
ε

(1 + ε)

)
.

The right hand side tends to zero because εn ∼ n−γ . It follows that the term
rem14(ξ) satisfies (A.2).

Now consider the statistic Un,2(f
(2)
ξ ). For ξ ∈ B(ξ0, εn), we have

Un,2(f
(2)
ξ ) = Un,1(E {1}f

(2)
ξ ) + Un,1(E {2}f

(2)
ξ ) + Un,2(π2[f

(2)
ξ ]) (A.4)

=
1
n

∑
i

∑
h

∫ τ

0

[
φ̃ih(u, ξ) − s̃(1)(u, ξ)

s(0)(u, ξ0)

]
Mih(du) + Un,2

(
π2

[
f

(2)
ξ

])
.

The class of functions Fn = {f(Wi) = E f
(2)
ξ (Wi,Wj |Wi) : ξ ∈ B(ξ0, εn)} has

envelope Fn(Wi) = εnF (Wi), F (Wi) = E ḡ(12)(Wi,Wj)|Wi. The class of trun-
cated functions {f(Wi)1(F (Wi) ≤ nα) : f ∈ Fn} is Euclidean for the envelope
Fn(Wi) = εn[F (Wi)1(F (Wi) ≤ nα) + E F (Wi)1(F (Wi) ≤ nα)], where α = 1/p,
p = 2/(1+2γ). Since εn ∼ n−γ and E F (Wi)p < ∞, it follows that the first term of
(A.4) satisfies Condition A.3. A similar argument can be applied to the remaining
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to terms of (A.4). In particular, in the case of the last term, Lemma A.1 is applied
to the class Fn = {fξ(Wi,Wj) = π2[f

(2)
ξ ](Wi,Wj) : ξ ∈ B(ξ0, ε0)} with envelope

Fn(Wi,Wj) = εnF (Wi,Wj), F (Wi,Wj) = ḡ(12)(Wi,Wj) + E {1}ḡ
(12)(Wi,Wj) +

E {2}ḡ
(12)(Wi,Wj) + E ḡ(12)(Wi,Wj). The term Vn,3(f

(3)
ξ ) can be handled in an

analogous fashion.

A.3. Proof of Proposition 3.2

Set N.i = ΣhNhi and define

H1 = 2C(τ) + 8E
[ ∫ τ

0

Si

s(0)
(u, ξ0)A(du)

]2

,

H22(Wi,Wj) =
∫ τ

0

S
(0)
j

[s(0)]2
(u, ξ0)N.i(du),

H23(Wi,Wj ,Wk) =
∫ τ

0

S
(0)
j

s(0)

S
(0)
k

s(0)
N.i(du).

Condition A.4. E H22(Wi,Wj)r2(i,j) < ∞ and E H23(Wi,Wj ,Wk)r3(i,j,k) <

∞, where rm(i1, i2, . . . , im) = 2dm(i1, i2, . . . , im)/(2m − 1) for m = 2, 3 and
dm(i1, i2, . . . , im) is the number of distinct indices among (i1, . . . , im).

We first show that that the process {
√

nIn(t), t ≤ τ},

In(t) =
1
n

∫ t

0

∑
i N.i(du)

S(0)(u, ξ0)
− A(t)

converges weakly in `∞([0, τ ]) to a time-transformed Brownian motion with vari-
ance function C(t) defined in the statement of Proposition 3.2. Set

g
(1)
t (Wi) =

∫ t

0

N.i(du)
s(0)(u, ξ0)

−
∫ t

0

S
(0)
i

s(0)
(u, ξ0)

EN.i(du)
s(0)(u, ξ0)

,

g
(2)
t (Wi,Wj) = −

∫ t

0

S
(0)
j − s(0)

[s(0)]2
(u, ξ0)[N.i − E N.i](du),

g(3)(Wi,Wj ,Wk) =
∫ τ

0

(
S

(0)
j

s(0)
− 1

)(
S

(0)
k

s(0)
− 1

)
(u, ξ0)

N.i(du)
s(0)(u, ξ0)

.

Then In(t) = Σ3
j=1In,j(t), where In,1(t) = n−1Σig

(1)
t (Wi), In,2(t) = Vn,2(g

(2)
t )

and

In,3(t) =
1
n

∫ t

0

(S(0) − s(0))2

s(0)S(0)
(u, ξ0)

n∑
i=1

N.i(du).
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The process
√

nIn,1(t) has uncorrelated increments and nvarIn,1(t)=C(t). Hence
its finite dimensional distributions converge weakly to the finite-dimensional dis-
tributions of a time-transformed Brownian motion with variance function C(t).
Further, the process In,1(t) can be represented as a difference of two monotone
functions (in t) and has envelope

Hn;1(Wi) =
∫ τ

0

M.i(du)
s(0)(u, ξ0)

+ 2
∫ τ

0

S
(0)
i (u, ξ0)A(du)

s(0)(u, ξ0)
.

Using (a + b)2 ≤ 2a2 + 2b2, we have E H2
n;1(Wi) ≤ H1 < ∞. Therefore equicon-

tinuity of the process {
√

nIn,1(t), t ≤ τ} follows since {In,1(t), t ≤ τ} forms an
empirical process over a Euclidean class of functions with a square integrable
envelope.

Further, set

H(Wi, Wj) =
∫ τ

0

S
(0)
j + s(0)

[s(0)]2
(u, ξ0)[N.i + E N.i](du)

and In,2(t) = (n − 1)n−1Un,2(g
(2)
t ) + n−2Σn

i=1g
(2)
t (Wi,Wi). The first term is a

U-process over the class of functions G = {g(2)
t : t ≤ τ} and consists of canonical

kernels with envelope H(Wi,Wj) satisfying E H(Wi,Wj)p, p = 4/3. The class
of truncated kernels {g(2)

t 1(H < n2/p) : g ∈ G} is Euclidean for the envelope
H1(H < n2/p) since each function g

(2)
t 1(H < n2/p) can be written as a linear

combination of four monotone functions bounded by H1(H < n2/p). Hence
by Lemma A.1, we have

√
n sup{|Un,2(g

(2)
t )| : t ≤ τ} = oP (1). Application of

Remark A.2 shows also that
√

n sup{|Vn,2(g
(2)
t )| : t ≤ τ} = oP (1).

Remark A.2, Condition A.4 and similar algebra as in Lemma A.2 show that√
nVn,3(g(3)) → 0 a.s. For any ε > 0, P (supt

√
nIn3(t) > ε) is bounded by

P (
√

nVn,3(g(3)) > ε/(1 + ε)) + P (supu |[S(0)/s(0)](u, ξ0) − 1| > ε/(1 + ε)) → 0.
Taylor expansion also yields An(t, ξ̂)−A(t, ξ0) = [An−A](t, ξ0)−(ξ̂−ξ0)Ȧn(t, ξ∗),
where ξ∗ is on the line segment between ξ̂ and ξ0 and

Ȧn(t, ξ) = −n−1

∫ t

0

[
S(1)

(S(0))2

]
(u, ξ)

n∑
i=1

N.i(du).

The condition A.1 implies that sup{|S(p) − s(p)(u, ξ)| : ξ ∈ B(ξ0, εn), u ≤ τ, p =
0, 1} = oP (1) and, using this, it is easy to see that sup{|Ȧn(t, ξ0)− Ȧ(t, ξ0)| : t ≤
τ} = oP (1) and sup{|Ȧn(t, ξ) − Ȧn(t, ξ0)| : t ≤ τ, ξ ∈ B(ξ0, εn)} = oP (1).
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