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Abstract: We consider the random-design nonparametric regression model with

errors an unknown function of long-range dependent moving averages and of the

independent and identically distributed explanatory random vectors. We show that

the Nadaraya–Watson kernel estimator of the regression function may exhibit a di-

chotomous asymptotic behavior depending on the amount of smoothing employed:

its finite-dimensional distributions converge either to those of a not necessarily

Gaussian degenerate process with completely dependent marginals or to those of a

Gaussian white noise process. The borderline situation results in a limiting convolu-

tion of the two cases. Convergence to Gaussian white noise is also established when

the resulting errors lack a long memory. The main results here are general ana-

logues of those in Csörgő and Mielniczuk (1999), where the smoothing dichotomy

was disclosed in the case when the long-range dependence of the errors is produced

by a Gaussian sequence.
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1. Introduction

Let {Yi}∞i=1 and {Xi}∞i=1 be jointly stationary processes with respective val-
ues in R and R

d, and suppose that E(|Y |) < ∞, where (Y,X) = (Y1,X1) and
d ∈ N. The literature is extensive on the estimation of the multivariate regres-
sion function g(x) = E(Y |X = x) of Y , given X = x, from the observations
{(Yi,Xi)}n

i=1 when (Y1,X1), (Y2,X2), . . . are independent or weakly dependent.
There has been an increasing recent interest in the problem for observations which
exhibit long-range dependence (see Csörgő and Mielniczuk (1999) for references).
Various modeling assumptions have been entertained to describe long-range de-
pendence. Here we consider the model

Yi = g(Xi) + ηi , where ηi = G(Zi,Xi) , i = 1, 2, . . . , (1.1)

where G : R
1+d �→ R is a Borel measurable function. We assume condition

that X1,X2, . . . are independent and identically distributed, X has a density
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function f with respect to the Lebesgue measure on R
d and that the sequence

{Zi}∞i=1 of latent variables, assumed to be independent of the sequence {Xi}∞i=1,
is a moving-average process given by Zi =

∑∞
j=1 ajεi−j . Here {εi}∞i=−∞ is a

sequence of independent, identically distributed innovations with E(ε) = 0 and
E(ε2) = 1, where ε = ε0 throughout, and the nonzero constants {aj}∞j=1 are such
that aj = L0(j)/jβ for some β ∈ (1/2, 1) and a function L0 : [1,∞) �→ R slowly
varying at infinity. This implies

r(i) := E(Z1Zi+1) =
L(i)
iα

(1.2)

for the exponent α = 2β − 1 ∈ (0, 1) and the slowly varying function L(·) =
CβL2

0(·), with Cβ =
∫ ∞
0 (x + x2)−βdx. (The statement in (1.2) appears to be

folklore. It is Lemma 2 in Mielniczuk (1997) under an unnecessary condition on
L0, which can be removed by applying Theorem 1.9.7 in Bingham, Goldie and
Teugels (1987) to the sequence {L0(j)}∞j=1.)

Equation (1.2) implies that the sequence {Zi}∞i=1 exhibits long-range depen-
dence, or long memory, in the sense that the lagged autocovariances r(·) are
not summable. Csörgő and Mielniczuk (1999) considered the estimation of g

for that version of the model (1.1) where, in place of the present linear pro-
cess, {Zi}∞i=1 was a long-memory stationary Gaussian sequence. In this paper
we allow for a much more general form of {Zi}∞i=1 (see Brockwell and Davis
(1987, Theorem 5.7.1)). We estimate g at the points x1, . . . ,xl ∈ R

d for some
l ∈ N when the sample (Y1,X1), . . . , (Yn,Xn) is available, considering the time-
honored Nadaraya–Watson kernel estimator (ĝn(x1), . . . , ĝn(xl)) of the vector
(g(x1), . . . , g(xl)), given by (2.1) below. We show that if the amount of smooth-
ing is large in a specified sense, meaning that the weighted average in (2.1) is
taken over many observations, then the effect of dependence prevails in determin-
ing the form of the asymptotic law. This is described in Theorem 1 in which the
required norming sequence does not further depend on the amount of smoothing.
In the opposite case of Theorem 2, when the amount of smoothing is small in the
given sense, the estimators behave asymptotically as if Z1, Z2, . . . were indepen-
dent. Thus, depending on the size of the smoothing parameter, the marginals of
the asymptotic law are either completely dependent or independent. The bor-
derline case is shown in Theorem 3 to result in a convolution of the limiting
distributions in the two main cases.

The same dichotomous phenomenon was disclosed by Csörgő and Mielniczuk
(1999) for a Gaussian {Zi}. It was conceivable that the smoothing dichotomy
should extend in some form or other to the present situation; indeed the structure
of the proofs is retained here, where Sections 2, 3 and 4 respectively contain
preliminaries, the main results and all the proofs. However, the basic ingredients
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of the proofs are necessarily very different and the proofs themselves depend, in
part, upon understanding Ho and Hsing’s (1996, 1997) recent breakthrough. We
also note that the heuristic method of bandwidth choice based on the dichotomy
may be imported from Csörgő and Mielniczuk (1999) for the general case here.
The problem of the optimal bandwidth in a model analogous to (1.1), when d = 1
and the design is deterministic, is discussed by Hall, Lahiri and Polzehl (1995).

2. Preliminaries

Let K0 be a univariate kernel, a Borel measurable function on R, with proper-
ties specified later. For x = (x1, . . . , xd) ∈ R

d, define K(x) = K0(x1) · · ·K0(xd).
Putting x/b = (x1/b, . . . , xd/b) for b > 0, consider the Nadaraya–Watson esti-
mate of g(x):

ĝn(x) =
∑n

i=1 K(x−Xi
bn

)Yi∑n
i=1 K(x−Xi

bn
)

, x ∈ R
d, (2.1)

where bn > 0 is a sequence of deterministic bandwidths tending to zero. Setting
Kbn(x) = b−d

n K(x/bn), let f̂n(x) = n−1 ∑n
i=1 Kbn(x − Xi) be the corresponding

kernel estimate of the density f of X at x, and introduce also fn(x) = E(f̂n(x)),
x ∈ R

d.
We write an ∼ bn if an/bn → 1 as n → ∞, and let D−→ denote convergence in

distribution. All asymptotic relations are meant as n → ∞. Using the modeling
assumptions in the introduction throughout, consider

Yn,m =
n∑

k=1

∑
1≤j1<j2<···<jm

m∏
i=1

ajiεk−ji
for some m ∈ N ,

the building blocks of Ho and Hsing’s (1996, 1997) theory. Avram and Taqqu
(1987) proved that if mα < 1 and E(ε2m) < ∞, then {Yn,m}∞n=1 is long-range
dependent and

an,m

n
Yn,m

D−→ Y ∗
m, (2.2)

where an,m ∼ n/[E(Y 2
n,m)]1/2. Then by Lemma 6.1 in Ho and Hsing (1996) (in

the statement of which the constant must be squared) an,m may be chosen as

an,m = Cm(β)
nmα/2

Lm/2(n)
, where Cm(β) =

√
m! (1 − mα)(2 − mα)

2
.

The random variable Y ∗
m in (2.2) is given by the multiple Wiener–Itô integral

Y ∗
m = Km(β)

∫
· · ·

∫
{−∞<u1<···<um<1}

[ ∫ 1

0

m∏
j=1

[(v − uj)+]−βdv
]
dB(u1) · · · dB(um) ,
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where Km(β) = Cm(β)/Cm/2
β for the Cβ in (1.2), and B is a standard Brownian

motion on R. Thus Y ∗
m is the value Y ∗

m(1) of a Hermite process Y ∗
m(t), t ≥ 0,

of rank m, given by the same formula with t replacing 1 (see e.g. Avram and
Taqqu (1987)). We have E(Y ∗

m) = 0 and E([Y ∗
m]2) = 1. Here Y ∗

1 is normally
distributed, but Y ∗

2 , Y ∗
3 , . . . are not.

We say that the Borel measurable function K0 on R is a kernel of order
κ ∈ N, κ ≥ 2, if

∫
K0(s)ds = 1,

∫
K0(s)sids = 0 for i = 1, . . . , κ − 1 and∫

K0(s)sκds �= 0. For h : R �→ R and k = 0, 1, . . ., let h(k)(·) denote the kth
derivative of the function h(·), with h(0)(·) = h(·). Let Hj(·) and H̃j(·) be
the distribution functions of

∑j
i=1 aiε1−i and

∑∞
i=j+1 aiε1−i, respectively, and

introduce the functions Gj(z,x) =
∫

R
G(z + v,x) dHj(v), j = 0, 1, . . ., so that,

an empty sum being understood as zero, H0(v) = 0 or 1 according as v < 0 or
v ≥ 0, and thus G0(z,x) = G(z,x), z ∈ R, x ∈ R

d. Furthermore, H(·) := H̃0(·)
is the distribution function of Z = Z1. For a fixed x ∈ R

d and an integer m ∈ N,
consider the following conditions.

C0(x,m): There exist an integer τ ∈ {0} ∪ N and a number λ > 0 such that for
every r = 0, . . . ,m + 2, the derivative G

(r)
τ (u,x) = ∂rGτ (u,x)/∂ur exists and is

continuous on R. If G
(r)
τ,λ(u,x) := sup−λ≤v≤λ |G(r)

τ (u + v,x)|, u ∈ R,

Cm
τ,λ(G(·,x); z) := max

0≤r≤m+2
sup
I⊂N

E
([∣∣∣G(r)

τ,λ

(
z +

∑
i∈I

aiεi,x
)∣∣∣ ]4)

< ∞

for all z ∈ R, where the supremum is taken over all subsets I of the natural
numbers;

C
∗
0(x,m): There exist a neighborhood Ux ⊂ R

d of x, an integer τ ∈ {0} ∪ N

and a number λ > 0 such that for every y ∈ Ux the derivative G
(r)
τ (z,y) =

∂rGτ (z,y)/∂zr exists and is continuous for each r = 0, . . . ,m + 2, and supy∈Ux

Cm
τ,λ(G(·,y); z) < ∞ for every z ∈ R;

C1(0): K0 is bounded and K0(y) = 0 for y �∈ [−1, 1];

C1(κ): K0 is a bounded kernel of order κ such that K0(y) = 0 for y �∈ [−1, 1];

C2(x): g is twice continuously differentiable in a neighborhood of x;

C3(x): f(x) > 0 and f is continuously differentiable in a neighborhood of x;

C4(x): E(G(Z,x)) = 0, E(G2(Z,x)) > 0 and the function E(G2(Z, ·)) is bounded
in a neighborhood of x;

C5(x): E(G(Z,x)) = 0, E(G2(Z,x)) > 0 and E([ supy∈Vx
|G(Z,y)|]2) < ∞ for a

neighborhood Vx ⊂ R
d of x.
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Conditions C2(x)−C4(x) were used in Theorem 1 of Csörgő and Mielniczuk
(1999), C5(x) is somewhat stronger than C4(x), while C0(x,m) is the basic condi-
tion of Ho and Hsing (1997) on the function G(·,x). As they point out, C0(x,m)
holds with τ = 0 if the continuous derivatives G(r)(·,x) are all bounded on
R, r = 0, . . . ,m + 2. Similarly, the version C

∗
0(x,m), local uniformity in the

vector variable, is satisfied with τ = 0 if there exists a neighborhood Ux of x
such that the derivatives G(r)(·,y) exist and are continuous for each y ∈ Ux,
r = 0, . . . ,m + 2, and max0≤r≤m+2 supy∈Ux

supz∈R
|G(r)(z,y)| < ∞.

However, the generality of condition C
∗
0(x,m) is greatly restricted by such

sufficient conditions expressed in terms of G only. Note that conditions C
∗
0(x,m)

and C5(x) may hold for various unbounded functions G when some weak assump-
tions on the distribution of innovations are permissible. For example, consider
the situation when G(z,y) = Pk(z)G∗(y), where Pk is a polynomial of order
k and G∗ is bounded with y in a neighborhood of x. Then conditions C5(x)
and C

∗
0(x,m) hold (with τ = 0) provided the innovations have finite moments

up to the order 4k. This follows easily from the Hölder inequality. Moreover,
both conditions are also satisfied if Pk is replaced by the indicator function of an
arbitrary interval, provided the distribution function of ε has a continuous and
integrable second derivative (see Ho and Hsing (1997, Remark 1)).

As another nontrivial example consider the Tobin model, a kind of a censored
regression model widely used in econometrics, as expressed in the context of
possibly long-range dependent observations by Cheng and Robinson (1994). In
this model,

Yi =
{ 〈b ,Xi〉 + Wi , if 〈b ,Xi〉 + Wi > 0,

0 , otherwise,
i = 1, 2, . . . ,

where 〈· , ·〉 stands for the inner product in R
d, b ∈ R

d is a fixed unknown vector
and Wi = R(Zi) for some Borel measurable function R : R �→ R, and where we
now assume that {Zi}∞i=1 is a moving-average process as defined between (1.1) and
(1.2). Here, if S(·) denotes the distribution function of W = R(Z) and I{ · } is the
indicator function, then, as Cheng and Robinson (1994) point out, we have g(x) =
〈b ,x〉[1 − S(−〈b ,x〉)] +

∫ ∞
−〈b,x〉 w dS(w) and G(z,x) = [〈b ,x〉 + R(z)]I{R(z) >

−〈b ,x〉} − g(x), (z,x) ∈ R
1+d, whenever E(|R(Z)|) < ∞. Assuming that R(·)

is bounded and that the distribution function Hε(t) = P{ε ≤ t}, t ∈ R, has a
continuous and integrable second derivative H ′′

ε (·), we see that for each x ∈ R

the function G
(r)
τ (·,x) is bounded and continuous whenever τ ≥ r. Moreover,

condition C
∗
0(x,m) holds for any x ∈ R and m ∈ N since each integer τ ≥ m + 2

is a good choice. Indeed, changing variables, differentiating under the integral
sign and changing the variable back, and then repeating all this r − 1 times, for
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any bounded Borel measurable function h : R �→ R we get

dr

zr
E

(
h
(
z +

τ∑
i=1

aiε1−i

))
=

(−1)r

a1 · · · ar

∫
Rr

h
(
z +

τ∑
i=1

aiti
)[ r∏

i=1

H ′′
ε (ti)

τ∏
j=r+1

H ′
ε(tj)

]
dt1 . . . dtr

for every r = 0, . . . ,m+2. The statement then is justified by two applications of
this equation with the bounded functions h(z) = I{R(z) > −〈b ,x〉} and h(z) =
R(z)I{R(z) > −〈b ,x〉}, z ∈ R. Since the function G(·,x) is discontinuous for
each x ∈ R

d, it is indeed the most general form of condition C
∗
0(x,m) that is

needed for the Tobin model, with some τ ≥ m + 2, as stressed above in general
terms. Of course, the required boundedness in condition C4 is trivially satisfied
if R(·) is bounded, and C2 holds whenever S(·) has a continuously differentiable
density.

Conditions C2(x), C3(x) and C5(x) are used in Theorem 1 here, and while
C2(x) is also required in Theorem 2, a stronger form of the smoothness condition
C3(x) and more smoothness in the vector variable of G is needed besides C4(x),
exactly as in Csörgő and Mielniczuk (1999). Letting |y| be the Euclidean norm
of y ∈ R

d and putting

|G′(z,x)| =
d∑

k=1

∣∣∣∂G(z,x)
∂xk

∣∣∣ and |G′′(z,x)| =
d∑

j=1

d∑
k=1

∣∣∣∂2G(z,x)
∂xj∂xk

∣∣∣
for each z ∈ R and x = (x1, . . . , xd) ∈ R

d, these extra conditions are the following.

C6(x): f(x) > 0 and f is twice differentiable in a neighborhood of x;

C7(x): For each z ∈ R outside a set of Lebesgue measure zero, the function G(z, ·)
is twice differentiable in a neighborhood of x such that E(sup{|G′(Z,y)|2 : |y −
x| ≤ δ}) < ∞ and E(sup{|G′′(Z,y)| : |y − x| ≤ δ}) < ∞ for some δ = δ(x) > 0.

We note that condition C7(x) is satisfied for the Tobin model at every x if
the distribution function S(·) of W = R(Z) has a bounded second derivative and
the level sets {z ∈ R : R(z) = a} have Lebesgue measure zero for all a ∈ R.

For a Borel measurable function h : R �→ R, set h∞(z) = E(h(z +Z)), z ∈ R,
and

mh = min
k∈N

{
k : h

(k)
∞ (0) exists, h

(j)
∞ (0) = 0 for j = 1, . . . , k − 1, and h

(k)
∞ (0) �= 0

}
,

when meaningful. Ho and Hsing (1997) call mh the power rank of h with re-
spect to the distribution of Z. As they point out, if Z is standard normal
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and E(h2(Z)) < ∞, then mh is the Hermite rank of h defined as mink∈N{k :
E(Hk(Z)h(Z)) �= 0}, with Hk being the kth Hermite polynomial. Hermite
ranks are used in the random-design regression context by Csörgő and Miel-
niczuk (1999). Now for the G in (1.1) and x ∈ R

d, let m(x) denote the power
rank of G(·,x) with respect to the distribution of Z, and consider G∞(z,x) =
E(G(z + Z,x)) with derivatives G

(r)
∞ (z,x) = ∂rG∞(z,x)/∂zr , z ∈ R.

To motivate part of the development, we note that, as applied to the present
function G(·,x) for some x ∈ R

d, Theorem 3.1 of Ho and Hsing (1997) states
that if E(ε8) < ∞, E(G(Z,x)) = 0, E(G2(Z,x)) < ∞ and condition C0(x, p) is
satisfied for some p ∈ N for which pα < 1, then for every γ > 0,

E
([ n∑

k=1

G(Zk,x) −
p∑

r=1

G (r)
∞ (0,x)Yn,r

]2) ≤ Cx(γ) max(n, n2−(p+1)α+γ) (2.3)

for a finite constant Cx(γ) > 0.
For a fixed x ∈ R

d, consider now the functions

Gn(z,x) = E(G(z,X)Kbn (x− X)) and Gn,∞(z,x) = E(Gn(z + Z,x)) , z ∈ R ,

with derivatives G
(r)
n (z,x)=∂rGn(z,x)/∂zr and G

(r)
n,∞(z,x) = ∂rGn,∞(z,x)/∂zr .

If we assume condition C
∗
0(x,m) with some τ ≥ 0 and Ux, then the function

G∞(z,y) := E(G(z+Z,y)) =
∫

R
G(z+v,y) dH(v) and its derivatives G

(r)
∞ (z,y) =

∂rG∞(z,y)/∂zr , z ∈ R, are well defined for each y ∈ Ux; in fact, G
(r)
∞ (z,y) =∫

R
G

(r)
τ (z + v,y) dH̃τ (v) for every z ∈ R by an application of Lemma 1.1 in Ho

and Hsing (1997), r = 0, . . . ,m + 2. Introducing the rectangle Rn(x) = [x1 −
bn, x1 + bn] × · · · × [xd − bn, xd + bn] with center x = (x1, . . . , xd) and assuming
also C1(0),

G (r)
n,∞(z,x) =

∫
Rn(x)

G(r)
∞ (z,y)Kbn(x − y)f(y) dy

=
∫

Ux

G(r)
∞ (z,y)Kbn(x − y)f(y) dy , z ∈ R , (2.4)

for every r = 0, . . . ,m + 2 and n ≥ n0(Ux) := min{k ∈ N : Rn(x) ⊂ Ux, n ≥
k}. Here n0(Ux) ∈ N since bn → 0, by Fubini’s theorem and the fact that
differentiation and integration can be interchanged under C

∗
0(x,m). By (1.1),

E(G(Z,X) |X) = E(η |X) = 0 almost surely. Then we see from (2.4) that
G

(0)
n,∞(0,x) = Gn,∞(0,x) = 0 for every x ∈ R

d and n ∈ N if, for example, C1(0)
holds.

The following result is crucial for Theorem 1, the case of large bandwidths.
It is based on an extension of Ho and Hsing’s (1997) Theorem 3.1 in (2.3), which
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we state at the beginning of the proof of the lemma. The extension itself is
obtained by simply monitoring an issue of uniformity in the original proof.

Lemma 1. Suppose E(ε8) < ∞, conditions C1(0), C5(x) and C
∗
0(x, p) hold for

some x ∈ R
d and some p ∈ N, and the density function f(·) is bounded in a

neighborhood of this x. If pα < 1, then for every γ > 0,

E
([ n∑

k=1

Gn(Zk,x) −
p∑

r=1

G (r)
n,∞(0,x)Yn,r

]2) ≤ C∗
x(γ)max(n, n2−(p+1)α+γ)

for a finite constant C∗
x(γ) > 0.

The next lemma is also a consequence of (2.3). It gives an upper bound for
the stochastic order of

∑n
i=1 G(Zi,x) when m(x)α ≥ 1, needed in the proof of

Theorem 2*.

Lemma 2. If E(ε8) < ∞, E(G(Z,x)) = 0, E(G2(Z,x)) < ∞ and condition
C0(x,m(x)) is satisfied for the power rank m(x) ≥ 2 of G(·,x), and if m(x)α ≥ 1
for the given x ∈ R

d, then for every γ > 0,

M2
n(x) := E

([ n∑
k=1

G(Zk,x)
]2) ≤ Cx(γ)n1+γ

for the constant Cx(γ) in (2.3).

3. Results

Let the different points x1, . . . ,xl ∈ R
d be given. In all four theorems below

(and also in Theorem 1*, not stated in detail) we assume that the respective
power ranks m(x1), . . . ,m(xl) of the l functions G(·,x1), . . . , G(·,xl) are well
defined with respect to the distribution of Z, and from now on we use the symbol
m := min(m(x1), . . . ,m(xl)) for the smallest power rank pertaining to the points
x1, . . . ,xl. Recall (2.1) and that fn(·) = E(f̂n(·)), where fn(x) → f(x) under
C3(x) and C1(κ) for any κ ≥ 2.

One part of the smoothing dichotomy, for “large” bandwidths that allow the
long memory of the errors in (1.1) to prevail, is expressed by the first result.

Theorem 1. Suppose that condition C1(κ) holds for some κ ∈ {2, 3, . . .}, con-
ditions C2(xj), C3(xj), C5(xj) and C

∗
0(xj ,m) hold for all j = 1, . . . , l and the

smallest power rank m ∈ N, and that E(εmax(8,2m)) < ∞. If mα < 1, the
sequence {nbd+4

n } is bounded, nmαL−m(n) = o(nbd
n) and

n(m−r)α/2

L(m−r)/2(n)
E

(
[G(r)

∞ (0,X) − G(r)
∞ (0,xj)]Kbn(xj − X)

)
→ 0 , r = 1, . . . ,m ,

(3.1)
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for all j = 1, . . . , l, then, with an,m as in (2.2),

an,m

(
ĝn(x1) − g(x1), . . . , ĝn(xl) − g(xl)

) D−→ Y ∗
m

(
G(m)

∞ (0,x1), . . . , G(m)
∞ (0,xl)

)
.

Concerning the size requirements on the bandwidth sequence {bn}, we refer
to the discussion in Csörgő and Mielniczuk (1999), from which the analysis of the
other conditions can also be extended to corresponding versions in this paper.

Observe that if xj for some j ∈ {1, . . . , l} is such that m(xj) > m then it
follows by Theorem 1 that an,m[ĝn(xj)− g(xj)]

P−→ 0. However, if the conditions
of the theorem are satisfied with m replaced by m(x) for a single x ∈ R

d, the
result applied with l = 1 yields an,m(x)[ĝn(xj) − g(xj)]

D−→G
(m(x))
∞ (0,x)Y ∗

m(x),

where the limit is nondegenerate since G
(m(x))
∞ (0,x) �= 0. If we proved only the

latter conclusion, then of course its l-fold application could not give the joint
asymptotic distribution in the theorem.

Special attention must be paid to condition (3.1). Notice first that Lemma 1
yields an,m[

∑n
i=1 Gn(Zk,xj) − ∑m

r=1 G
(r)
n,∞(0,xj)Yn,r]/n

P−→ 0 for all j = 1, . . . , l.
However, it may happen that G

(r)
n,∞(0,xj) �= 0 for some n and r < m even though

G
(r)
∞ (0,xj) = 0, and in this case an,mG

(r)
n,∞(0,xj)Yn,r/n is not necessarily oP (1).

Thus the role of condition (3.1) is to make an,m
∑m−1

r=1 G
(r)
n,∞(0,xj)Yn,r/n asymp-

totically negligible. On the other hand, to understand the condition, observe also
that since by (2.4),

E
(
[G(r)

∞ (0,X) − G(r)
∞ (0,x)]Kbn(x − X)

)
= G(r)

n,∞(0,x) − G(r)
∞ (0,x)fn(x)

=
∫

Ux

[
G(r)

∞ (0,y) − G(r)
∞ (0,x)

]
f(y)Kbn(x − y) dy (3.2)

for all n ≥ n0(Ux) under C
∗
0(x,m), condition (3.1) is in fact a problem for deter-

ministic kernel estimation, which depends only upon the smoothness of the m+1
functions G

(1)
∞ (0,y), . . . , G(m)

∞ (0,y) and f(y) with y near the points x1, . . . ,xl. It
is for the sake of this problem that we entertain kernels with some order κ, i.e. use
condition C1(κ), rather than assuming simply as in Csörgő and Mielniczuk (1999)
that K0 is a symmetric density. It is for the sake of easy comparison between the
two sets of conditions for Theorem 1, there and here, that we delineate condition
(3.1) for separate discussion; with a normal sequence {Zi} in (1.1) no such extra
condition enters the picture.

Notice first of all that for the case of r = m, condition (3.1) does not demand
any rate of convergence. Hence, under C

∗
0(xj ,m), assuming only that the function

G
(m)
∞ (0, ·) is continuously differentiable in a neighborhood of xj and condition

C3(xj) is also satisfied for f(·), j = 1, . . . , l, we have (3.1) for r = m whenever
C1(κ) holds for any order κ ≥ 2. In particular, if m = 1 in Theorem 1, then
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with the only extra condition that G
(1)
∞ (0, ·) is continuously differentiable in a

neighborhood of xj , j = 1, . . . , l, the conclusion holds with the standard normal
Y ∗

1 in the limit. To handle the general case, introduce

νm(r) = νd,α
m (r) = min

{
n ∈ N : n > α

d + 4
2d

(m − r)
}
, r = 1, . . . ,m ,

and let κm = max(νm(1), 2) ∈ N. Clearly, 1 = νm(m) ≤ νm(m−1) ≤ · · · ≤ νm(1)
and κ1 = 2. Of course, the full force of C

∗
0(xj ,m) is not needed to ensure (3.2)

at xj, j = 1, . . . , l, but we assume it to avoid further conditions irrelevant to the
present context. The condition on f(·) below reduces to C3(xj), j = 1, . . . , l,
whenever νm(1) = 1.

Proposition. Suppose that condition C
∗
0(xj ,m) is satisfied, f(·) is νm(1) times

continuously differentiable in a neighborhood of xj, j = 1, . . . , l, the kernel satis-
fies condition C1(κ) with an order κ ≥ κm and the sequence {nbd+4

n } is bounded.
If for each r = 1, . . . ,m, the function G

(r)
∞ (0, ·) is νm(r) times continuously dif-

ferentiable in a neighborhood of xj , j = 1, . . . , l, then (3.1) holds.

Direct smoothness conditions on ∂rG(z, ·)/∂xr , z ∈ R, ensure these condi-
tions on G

(r)
∞ (0, ·). However, we emphasize that under C

∗
0(x,m) the function

G(·,x) does not even have to be continuous to talk about the functions G
(r)
∞ (0, ·).

This point is important as we saw when discussing Tobin models in the previous
section; this is what makes Theorem 1 applicable to these models.

We also note that in the case that {Zi} in (1.1) is Gaussian satisfying
(1.2) for some α ∈ (0, 1), Csörgő and Mielniczuk’s (1999) Theorem 1* ex-
tends their Theorem 1 to a situation in which the sequence {Xi} of explanatory
vectors is weakly dependent, under the assumption that the errors do not de-
pend on the explanatory vectors, so that for a Borel function G : R �→ R, the
modeling assumption in (1.1) simplifies to Yi = g(Xi) + ηi = g(Xi) + G(Zi),
i = 1, . . . , n. In this model, a corresponding result remains valid for the present
case when {Zi} is a linear process: assuming the partially simplified conditions
of the present Theorem 1 and condition (2.10) of Csörgő and Mielniczuk (1999)
on the weak dependence of {Xi}, the conclusion above holds with the limit-
ing vector Y ∗

m(G(m)
∞ (0), . . . , G(m)

∞ (0)), provided rG(n) := E(G(Z1)G(Z1+n)) =
|rm(n)|(1 + o(1)) and

∑
1≤i	=j≤n |rG(j − i)| = O(n2−mαLm(n)). Under further

conditions on G, depending on the value of m, the latter proviso can be es-
tablished by techniques of Ho and Hsing (1997), and hence Theorem 1* can be
formulated for the present moving averages {Zi}.

Setting σ2(x) = [
∫
K2(y) dy] E(G2(Z,x))/f(x), x ∈ R

d, where E(G2(Z,x))
= E(η2 |X = x) and

∫
K2(y) dy = [

∫ 1
−1K

2
0 (y) dy]d, we now come to the oppo-

site part of the dichotomy for “small” bandwidths, when the Nadaraya–Watson
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estimator ĝn behaves as if the errors were independent, even though they are
long-range dependent.

Theorem 2. Suppose E(εmax(8,2m)) < ∞, condition C1(κ) holds for some
κ ∈ {2, 3, . . .} and conditions C2(xj), C4(xj), C6(xj), C7(xj) and C0(xj ,m) hold
for all j = 1, . . . , l and the smallest power rank m ∈ N. If mα < 1, nbd+4

n → 0,
nbd

n → ∞, but nbd
n = o(nmαL−m(n)), then√

nbd
n

(
ĝn(x1) − g(x1), . . . , ĝn(xl) − g(xl)

) D−→
(
σ(x1)N1, . . . , σ(xl)Nl

)
, (3.3)

where N1, . . . , Nl are independent standard normal random variables.

Note that Theorem 2 establishes the asymptotic independence of ĝn(xi) and
ĝn(xj) for i �= j and hence is much stronger than its univariate special case.
Of course, the small-bandwidth condition nbd

n = o(nmαL−m(n)) for the minimal
rank m implies the same for all the individual ranks m(x1), . . . ,m(xl), and,
except for those that are equal to m, we can have m(xj)α ≥ 1, j = 1, . . . , l,
This is not surprising in view of Theorem 2* below. The next theorem describes
the borderline case between “large” and “small” bandwidths, resulting in an
asymptotic convolution of the two parts of the dichotomy.

Theorem 3. Suppose E(εmax(8,2m)) < ∞, condition C1(κ) holds for some
κ ∈ {2, 3, . . .} and conditions C2(xj), C4(xj), C6(xj), C7(xj) and C0(xj ,m) hold
for all j = 1, . . . , l and the smallest power rank m ∈ N. If mα < 1, nbd+4

n → 0
and nbd

n/a2
n,m → C2

b for some constant Cb ∈ (0,∞), then√
nbd

n

(
ĝn(x1) − g(x1), . . . , ĝn(xl) − g(xl)

)
D−→

(
Cb G(m)

∞ (0,x1)Y ∗
m + σ(x1)N1, . . . , Cb G(m)

∞ (0,xl)Y ∗
m + σ(xl)Nl

)
,

where N1, . . . , Nl are standard normal and Y ∗
m is as in Theorem 1 such that the

l + 1 random variables Y ∗
m, N1, . . . , Nl are independent.

Although the sequence {Zi}∞i=1 is always long-range dependent if β ∈ (1/2, 1),
so that α = 2β − 1 ∈ (0, 1) in (1.2), the transformed sequences {G(Zi,xj)}∞i=1,
j = 1, . . . , l, may lack long memory if mα ≥ 1 for their smallest power rank m.
It is natural to expect in this case that the conclusion of Theorem 2 holds for all
bandwidth sequences {bn} such that nbd

n → ∞ and nbd+4
n → 0. Indeed, this is

the content of the next result.

Theorem 2*. Suppose E(ε8) < ∞, condition C1(κ) holds for some κ ∈ {2, 3, . . .}
and conditions C2(xj), C4(xj), C6(xj), C7(xj) and C0(xj ,m(xj)) hold for the
power ranks m(xj) for all j = 1, . . . , l. If mα ≥ 1 for the smallest power rank
m ∈ N, nbd

n → ∞ and nbd+4
n → 0, then (3.3) holds.
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Again, this result is a counterpart of Theorem 2* in Csörgő and Mielniczuk
(1999), in which {Zi}∞i=1 is Gaussian and the sequences {G(Zi,xj)}∞i=1, j =
1, . . . , l, all have short memory in an arbitrary fashion.

4. Proofs

Proof of Lemma 1. First we state an extension of Ho and Hsing’s (1997)
Theorem 3.1, for sums of a sequence of functions of {Zk}n

k=1 instead of sums
of a single function. Let n0 ∈ N and consider a sequence {Gn(·)}∞n=n0

of Borel
measurable real functions on R with the associated functions Gn,j(z) = E(Gn(z+∑j

i=1 aiε1−i)), j ∈ {0} ∪ N, and Gn,∞(z) = E(Gn(z + Z)), and their derivatives
G

(r)
n,j (z) and G

(r)
n,∞(z), z ∈ R, r = 0, 1, . . . . Setting Yn,0 = n, a careful analysis

of Ho and Hsing’s (1997) Theorem 3.1 proof, including their Lemmas 6.1 and
6.2, reveals the following extension. If E(ε8) < ∞, supn≥n0

E(G 2
n(Z)) < ∞,

supn≥n0
max1≤r≤p |G (r)

n,∞(0)| < ∞ and supn≥n0
Cp

τ,λ(Gn; z) < ∞ at every z ∈ R

for some τ ∈ {0} ∪ N, λ > 0 and some p ∈ N for which pα < 1, then for every
γ > 0,

E
([ n∑

k=1

Gn(Zk) −
p∑

r=0

G
(r)
n,∞(0)Yn,r

]2) ≤ C(γ)max(n, n2−(p+1)α+γ)

for a finite constant C(γ) > 0.

The lemma will follow if we show that under the stated conditions at x ∈ R
d,

the three assumptions above are satisfied for the choice Gn(·) = Gn(·,x), n ≥
n0(x) := max(n0(Ux), n0(Vx)), Here n0(Ux) is the threshold number defined at
(2.4), n0(Vx) is the analogous threshold pertaining to Vx in condition C5(x) and

Gn(z,x)=
∫

Rn(x)
G(z,y)Kbn(x−y)f(y)dy=

∫
Ux∩Vx

G(z,y)Kbn(x−y)f(y)dy, z∈R ,

for every n ≥ n0(x), as an analogue of (2.4), and where we also assume without
loss of generality that both Ux and Vx are contained in that neighborhood of x
where f(·) is bounded. First,

sup
n≥n0(Vx)

E(G2
n(Z,x)) = sup

n≥n0(Vx)

∫
R

[ ∫
Vx

G(z,y)Kbn(x − y)f(y) dy
]2

dH(z)

≤
{ ∫

R

[
sup
y∈Vx

|G(z,y)|
]2

dH(z)
}{ ∫

Vx

|Kbn(x − y)|f(y) dy
}2

≤ f2
Vx

C2
KE

([
sup
y∈Vx

|G(Z,y)|
]2)

< ∞



RANDOM-DESIGN REGRESSION WITH LONG-MEMORY ERRORS 783

by condition C5(x), where fU = supy∈U f(y) for U ⊂ R
d and CK =

∫
[−1,1]d

|K(w)|dw. Similarly, from (2.4),

sup
n≥n0(Ux)

max
1≤r≤m

|G (r)
n,∞(0,x)| ≤ fUxCK max

1≤r≤m
sup
y∈Ux

∫
R

|G(r)
τ (v,y)| dH̃τ (v) < ∞

for the τ in condition C
∗
0(x,m).

Finally, introducing Gn,j(z,x) = E(Gn(z +
∑j

i=1 aiε1−i,x)), j ∈ {0} ∪ N, so
that Gn,0(z,x) = Gn(z,x), we see by Fubini’s theorem that for the τ in condition
C
∗
0(x,m) and for all n ≥ n0(Ux) and z ∈ R, we have

Gn,τ (z,x) =
∫

R

[ ∫
Ux

G(z + v,y)Kbn(x− y)f(y) dy
]
dHτ (v)

=
∫

Ux

Gτ (z,y)Kbn(x− y)f(y) dy .

Thus, since differentiation and integration can again be interchanged under
C
∗
0(x,m),

sup
n≥n0(Ux)

Cm
τ,λ(Gn(·,x); z) ≤ sup

y∈Ux

Cm
τ,λ(G(·,y); z)

∫
Ux

|Kbn(x − y)|f(y) dy

≤ fUxCK sup
y∈Ux

Cm
τ,λ(G(·,y); z)

for every z ∈ R. Thus if C1(0) holds and bn → 0, the locally uniform condition
C
∗
0(x,m) for G implies the condition C0(x,m) for Gn uniformly in n.

Proof of Theorem 1. The distributional convergence in (2.2) and inspection
of the proof of Theorem 1 in Csörgő and Mielniczuk (1999) shows that it suffices
to prove that

∆n,m(x) :=
∣∣∣an,m

n

n∑
k=1

Gn(Zk,x) − G(m)
∞ (0,x)fn(x)

an,m

n
Yn,m

∣∣∣ P−→ 0 , (4.1)

where P−→ denotes convergence in probability and x is any one of x1, . . . ,xl; the
desired convergence in (4.1) is the counterpart of equation (4.5) in that paper.
Indeed, the present condition C5(x) is somewhat stronger than condition C4(x)
there. The only other difference in the stipulated regularities, used in the proof
to yield the sufficiency of (4.1) in the present context, is that condition C1 there
requires that K0 be a symmetric density, and hence the present condition C1(κ)
is weaker. However, C1(κ) suffices both there and here since what is needed is
the consistency of f̂n(x), which under C3(x) follows for any kernel of order κ

satisfying the rest of condition C1(κ), by a simple adaptation of the proof of
Devroye and Wagner’s (1979) theorem.



784 SÁNDOR CSÖRGŐ AND JAN MIELNICZUK

To show (4.1), we write ∆n,m(x) ≤ ∆ (1)
n,m(x) + ∆ (2)

n,m(x) + ∆ (3)
n,m(x), where,

using G
(r)
∞ (0,x) = 0 for all r = 1, . . . ,m − 1,

∆ (1)
n,m(x) =

an,m

n

∣∣∣ n∑
k=1

Gn(Zk,x) −
m∑

r=1

G (r)
n,∞(0,x)Yn,r

∣∣∣,
∆ (2)

n,m(x) =
m−1∑
r=1

∣∣∣G(r)
n,∞(0,x)

∣∣∣ an,m

an,r

∣∣∣an,r

n
Yn,r

∣∣∣
=

m−1∑
r=1

Cm(β)
Cr(β)

∣∣∣G(r)
n,∞(0,x) − G(r)

∞ (0,x)fn(x)
∣∣∣ n(m−r)α/2

L(m−r)/2(n)

∣∣∣an,r

n
Yn,r

∣∣∣ P−→0

by (2.2) with r = 1, . . . ,m − 1 replacing m and by condition (3.1), and

∆ (3)
n,m(x) =

∣∣∣G (m)
n,∞(0,x) − G(m)

∞ (0,x)fn(x)
∣∣∣ ∣∣∣an,m

n
Yn,m

∣∣∣ P−→ 0,

also by (2.2) and the case r = m of condition (3.1). Finally, choosing γ ∈ (0, α)
in Lemma 1 and using Chebyshev’s inequality, we have

P
{
∆ (1)

n,m(x) ≥ θ
}
≤ C∗

x(γ)C2
m(β)

θ2Lm(n)
max

( 1
n1−mα

,
1

nα−γ

)
→ 0

for every θ > 0, proving the theorem.

Proof of the Proposition. Let x be any one of x1, . . . ,xl. By (3.2) we write

G (r)
n,∞(0,x) − G(r)

∞ (0,x)fn(x)

=
∫
[0,1]d

[
G(r)

∞ (0,x − bnw) − G(r)
∞ (0,x)

]
f(x− bnw)K(w) dw

for all n large enough. Expanding G
(r)
∞ (0,x − bnw) and f(x − bnw) about x to

νm(r) and νm(1) terms, respectively, and using that the order of K0 is at least
κm, it is routine to see that∣∣∣G (r)

n,∞(0,x) − G(r)
∞ (0,x)fn(x)

∣∣∣ = O
(
bdνm(r)
n

)
, r = 1, . . . ,m .

Thus (3.1) will follow if we show that

n(m−r)α/2

L(m−r)/2(n)
bdνm(r)
n → 0 , r = 1, . . . ,m .

This is true for r = m. Let m > 1 and r = 1, . . . ,m − 1. Since nbd+4
n ≤ Cd+4

(and so bn ≤ C/n1/(d+4) for all n ∈ N, for some constant C > 0) and

νm(r) > α
d + 4
2d

(m − r) implies µm(r) :=
2dνm(r)
α(m − r)

− (d + 4) > 0 ,



RANDOM-DESIGN REGRESSION WITH LONG-MEMORY ERRORS 785

it follows that

nb
2dνm(r)/[α(m−r)]
n

L1/α(n)
≤ Cµm(r)+d+4

L1/α(n)
1

nµm(r)/(d+4)
→ 0 .

Raising this to the power of (m − r)α/2, the desired convergence follows.

Proof of Theorem 2. Since C6(xj) is stronger than C3(xj), inspection of the
proof of Theorem 2 in Csörgő and Mielniczuk (1999) reveals that if nbd

n → ∞
and nbd+4

n → 0 for the bandwidths, then under the conditions C2(xj), C4(xj),
C6(xj), C7(xj) and C1(κ) for some integer κ ≥ 2 (the last of which and C6(xj) also
make f̂n(xj) consistent for f(xj) as noted above, j = 1, . . . , l), the conclusion of
Theorem 2 there and here holds true for all stationary sequences {Zk}∞k=1 which
satisfy only two additional conditions. One is that the sequence {h(Zk)}∞k=1 is
ergodic for (5l choices of) a non-negative Borel measurable h : R �→ R such
that E(h(Z)) < ∞, while the other is that for each j = 1, . . . , l, the sequence
{n−1An

∑n
k=1 G(Zk,xj)}∞n=1 is stochastically bounded for a numerical sequence

An → ∞ for which nbd
n/A2

n → 0.

In our present situation, it is well known that the linear process {Zk}∞k=1 is er-
godic as a “moving function” of the ergodic stationary sequence {εi}∞i=−∞ of inde-
pendent and identically distributed variables, and hence the sequence {h(Zk)}∞k=1

is also ergodic.
Also, assuming E(G(Z,x1)) = · · · = E(G(Z,xl)) = 0 and that the l condi-

tions C0(x1,m), . . . , C0(xl,m) hold, mα < 1 and E(εmax(8,2m)) < ∞, the first
statement of Corollary 3.3 of Ho and Hsing (1997) implies that

an,m

n

( n∑
k=1

G(Zk,x1), . . . ,
n∑

k=1

G(Zk,xl)
) D−→Y ∗

m

(
G(m)

∞ (0,x1), . . . , G(m)
∞ (0,xl)

)
,

(4.2)
with the an,m as before. Indeed, for any j = 1, . . . , l, convergence in the jth
component follows directly from that statement if m(xj) = m. If m(xj) > m,
then, applying (2.3) with p = m and γ ∈ (0, α),

E
([an,m

n

n∑
k=1

G(Zk,xj)
]2) ≤ Cxj (γ)C2

m(β)
Lm(n)

max
( 1
n1−mα

,
1

nα−γ

)
→ 0 ,

but because G
(m)
∞ (0,xj) = 0, the claimed convergence in the jth component holds

again.
Since we assumed nbd

n/a2
n,m → 0, the second additional condition holds by

(4.2) with the choice of An ≡ an,m.

Proof of Theorem 3. The proof of Theorem 3 in Csörgő and Mielniczuk (1999)
remains valid if (4.2) is substituted for the present sequence {Zk}∞k=1.
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Proof of Lemma 2. Consider mα(x) = max {k ∈ {1, . . . ,m(x) − 1} : kα < 1}.
Distinguishing the two cases m(x) − 1 < 1

α ≤ m(x) and 1 < 1
α ≤ m(x) − 1,

where the second case can occur only if m(x) ≥ 3, we see that mα(x) = m(x)−1
in the first case, while in the second case mα(x) = 1

α − 1 if 1
α ∈ N and, with

�·� standing for integer part, mα(x) = � 1
α� > 1

α − 1 if 1
α /∈ N. Hence in both

cases mα(x) ≤ m(x) − 1 and (mα(x) + 1)α ≥ 1. Since G
(r)
∞ (0,x) = 0 for all

r = 1, . . . ,m(x)− 1 by the definition of the rank m(x), denoting by D2
n(p,x) the

left-hand side of (2.3), we have

M2
n(x) = D2

n(mα(x),x) ≤ Cx(γ) max(n, n2−(mα(x)+1)α+γ) ≤ Cx(γ)n1+γ

for every γ > 0.

Proof of Theorem 2*. Uniting the opening discussion in the proof of Theorem
2 above and that of Theorem 2* in Csörgő and Mielniczuk (1999), it suffices to
show that

Wn(xj) :=

√
nbd

n

n

n∑
k=1

G(Zk,xj)
P−→ 0 for each j = 1, . . . , l.

Since m(xj)α ≥ 1 and nbd+4
n → 0, by Lemma 2 we obtain

E(W 2
n(xj)) =

bd
n

n
M2

n(xj) ≤ Cxj(d/(d + 4)) nd/(d+4) bd
n → 0 ,

so the desired convergence follows for each j = 1, . . . , l.
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