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Abstract: This paper describes methods for modeling the dependence of the level and
rate of growth of pulmonary function during childhood on two physiologic variables,
age and height, and for assessing the effects of individual and environmental risk
factors on measures of pulmonary function. Descriptive analyses stratified by age
suggest that the relation between pulmonary function and height in children is linear
but age-dependent. Thus, we consider models in which pulmonary function level (or
rate of growth) depends linearly on height (or change in height), but with an age-
dependent intercept and slope. Regression splines are used to describe the change in
intercept and slope with age. To accommodate repeated measures and heterogeneity
of variance, robust variance estimates are derived for the estimated regression coef-
ficients. The methods presented provide a flexible family of growth curves, quantify
the effects of covariates on level and rate of growth, and have attractive clinical and

epidemiological interpretations.
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1. Introduction

The extensive literature on mathematical models for human growth is con-
cerned primarily with models for the dependence of a single outcome variable
(such as height) on age. The earliest work focused on the modeling of height
growth as a function of age. Many different models were proposed, including
the Jenss curve and more recently, double and triple logistic functions. The sta-
tistical literature initially emphasized the theory of polynomial growth curves,
but has, in recent years, contained many papers on nonlinear models for growth.
These papers have discussed inference on both individual and population growth
curves, goodness of fit, assessing the influence of covariates, and prediction (see,
for example, Bock and Thissen (1980), Berkey and Laird (1986), Rao (1987), and
the references therein). Recently there has been much interest in nonparametric
and semiparametric approaches for modeling a response variable as a function of
a single time metameter, including book length treatments of smoothing splines



330 DAVID WYPIJ, MARIAN PUGH AND JAMES H. WARE

and kernel estimators by Eubank (1988) and Muller (1988), respectively. To
model growth velocities, the analysis of successive differences has been suggested
by several authors, including Hills (1968) and Schwertman and Heilbrun (1986).
The methods discussed in these reports are not, however, relevant to the setting
in which the physiologic variable of primary interest depends not only on age but
also on a second physiologic variable that is also age-dependent.

The measurement and modeling of pulmonary function has gained wide ac-
ceptance as a simple method of monitoring for chronic respiratory disease and
assessment of risk factors (Bates (1989)). Lung function in a healthy individual
increases with age until the early to midtwenties, when a slow, natural decline
begins (Ferris et al. (1981), Sherrill et al. (1991)). About 20% of the population
(mostly, but not all smokers) reach a level of pulmonary function associated with
disability. Beaty et al. (1985) and Speizer et al. (1989) have shown that subjects
with lower levels of pulmonary function have an excess risk of mortality.

This paper focuses on models for the development of lung function in children
and adolescents, rather than the decline in adults. Because a single simple model
for lung function does not give accurate predictions in all situations, researchers
have introduced a variety of models for pulmonary function measurements. Since
pulmonary function (PF) is strongly affected by age in years (AGE) and height in
centimeters (HT), these terms are commonly included in models. Other measure-
ments such as body surface area or body mass index can replace or supplement
AGE or HT as growth metameters. We briefly review models for lung function
in children and adults before focussing on our methodology.

Since the paper by Kory et al. (1961), when modeling adult pulmonary func-
tion it has become common practice to use a gender-specific multiple regression
model of the form

E(PF) = By + B1AGE + B HT,

such as used in the prediction models of Knudson et al. (1983). Cole (1975)
compares a variety of models on independent data sets and finds support for the
model

E(PF) = HT? x (8o + 1AGE),
which allows pulmonary function to vary proportionally, rather than linearly, to

height. Dockery et al. (1985) and Ware et al. (1990) modeled age-related changes
in adult pulmonary function levels using

E(PF/HT?) = o + /1AGE + B AGE®.

The division by HT? adjusts for body size and makes the residuals more ho-
moscedastic, while the quadratic age term reflects more rapid pulmonary func-
tion decline in older adults. Nonparametric and semiparametric approaches have
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also recently been suggested. For example, Sherrill et al. (1991) used polynomial
smoothing splines to model lung function as a flexible function of single metame-
ter (AGE), but their approach does not easily accommodate a second growth
metameter (HT) and estimation of the effects of pulmonary risk factors.

Models proposed for pulmonary function in young children have been similar.
For preadolescent children aged 6 to 11, Dockery et al. (1983) proposed gender-
specific models of the form

E(log (PF)) = Bo + b1 log (HT).

Here, any “age effect” is effectively controlled by the log(HT) metameter. Kauft-
mann et al. (1989) applied models similar to those of Kory et al. (1961) to children
aged 6 to 10, with an additional term for the child’s weight. Because simple linear
models do not fit well throughout the whole childhood range, a common theme
has been to break up the age range into disjoint pieces. For example, Tashkin et
al. (1984) used models containing body surface area (BSA) measurements as in

E(PF) = By + B1AGE + BHT + 3BSA

fit separately to children aged 7 to 11 and 12 to 17. Burchfiel et al. (1986) applied
models similar to those of Kory et al. (1961) to children aged 10 to 15, but found
no significant AGE effects in a model for 16 to 19 year olds. Schwartz et al. (1988)
extended the model of Dockery et al. (1983) to include body mass index (BMI).
The resulting model

E(log (PF)) = Bo + b1 log (HT) + B2 log (AGE) + 33 log (BMI)

is fit separately to children aged 6 to 11, boys aged 12 to 20, and girls aged 12 to
17.

During adolescence, pulmonary function grows at an age-dependent rate that
is closely related to the height changes associated with the adolescent growth
spurt (Wang et al. (1993)). We have found the simple models above to be inade-
quate in describing lung function growth from childhood through age 18. There
are several important challenges in obtaining pulmonary function models for chil-
dren and adolescents. Models must be flexible enough to follow the changing rela-
tionship between level and growth of lung function and other growth metameters
from childhood through the adolescent growth spurt and into young adulthood.
Since the data consist of repeated measurements on individual subjects, within-
subject correlations must be considered. The large size of epidemiological data
sets and the number of different risk factors, including air pollution, asthma
status, and personal and parental smoking, makes computational demands a
concern.
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The approach we use is to model the relationship between pulmonary func-
tion, height, and age using regression splines. Regression splines allow the fitted
curves to be smooth and flexible, yet their parametric form permits use of famil-
iar techniques for model-based inference and assessment of covariates. Robust
methods of variance estimation (Liang and Zeger (1986)) are used to adjust the
estimated standard errors for repeated measures.

In Section 2 we describe our data and motivate our approach. Section 3
presents the specifics of the model and estimation methods and applies the meth-
ods to our data. Section 4 discusses the advantages and limitations of our method-
ology, and makes brief comparisons with alternative approaches.

2. The Motivating Example

The Six Cities Study of Air Pollution and Health is a longitudinal study of
the natural history of respiratory health and the health effects of air pollution. As
part of this study, cohorts of school children were enrolled in first or second grade
and examined annually to determine changes in respiratory symptom status and
growth of pulmonary function. During the 15 years of the study, a cohort of
13,737 children, born in 1967 or later, was examined in six communities across
the United States (Watertown, MA; Kingston and Harriman, TN; Steubenville,
OH; a geographically defined section of St. Louis, MO; Portage, WI; and Topeka,
KS). The design of the study and the selection of the communities have been
previously described (Ferris et al. (1979)).

Pulmonary function can be measured by spirometric testing, in which the
subject takes the largest inspiration possible and exhales as rapidly as possible
into the spirometer, a recording device. The spirogram obtained from this ma-
neuver can be interpreted as a volume-time curve (see Figure 1), and several
outcome measures are used by epidemiologists. The forced vital capacity (FVC)
is the total volume of air exhaled, usually after, at most, six seconds. The forced
expiratory volume in t seconds (FEV,) is the volume exhaled during the first ¢
seconds (often t = 1 second is used). Maximal effort occurs from the start of ex-
piration and the FEV, is approximately 95% of the FVC in children. The mean
forced expiratory flow (FEF) is measured between two designated percentages of
the forced vital capacity. Thus, FEF2s.75 is the average flow or slope measured
between the times at which 25% and 75% of the vital capacity have been exhaled.

In this paper we analyze 28,473 FEF,s5.75 observations on 5,030 Caucasian
boys between the ages of 10 and 18 for whom information on height, asthma
status, and personal smoking was available. In recent years, there has been in-
creased focus on FEF5.75 in respiratory epidemiology studies, and we have found
this variable to be a sensitive indicator of the adverse effects of asthma/wheeze
status. Analogous methods can be used to model FVC or FEV;. Table 1 presents
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descriptive statistics in our sample. The median number of observations per sub-
ject is six, regardless of asthma/wheeze status at entry, though it appears that
asthmatic children drop out of the study slightly earlier than non-asthmatic chil-
dren. As we might expect, FEF35.75 and log(FEFg5.75) values are significantly
different at entry for the asthma/wheeze groups, while AGE, HT, and log(HT)
values are not.

Age-specific means of the level and annual growth velocities of log(HT) and
log(FEF5.75) are plotted in Figure 2. The growth velocities are defined to be
the successive differences of the log(FEF2s.75) and log(HT) between annual ex-
aminations. The pulmonary outcomes have a complicated dependence on height
and age, with the HT growth spurt occurring about six months prior to the
FEF,5.75 growth spurt. Preliminary analyses showed that simple modifications
of the “adult” or the “pre-adolescent” models described above failed to provide a
good fit to the data through the adolescent growth spurt and into early adulthood.
However, plots of age-specific means of log(FEF25.75) versus log(HT), given in
Figure 3, suggest that the relationship between log(FEF25.75) and log(HT) looks
approximately linear within age groups, but the intercepts and slopes vary with
age. This motivates an age-dependent model of the form

E(log(FEF25.75)) = f1(AGE) + f2(AGE) x log(HT), (2.1)

for particular functions f1(-) and fa(-). We have found that logarithmic trans-
formation of both HT and FEFg5.75 gives models that are more linear and ho-
moscedastic. Model (2.1) allows a more complicated dependence on AGE than
the simpler models proposed by Kory et al. (1961) and Dockery et al. (1983).

An alternate parameterization, suggested by a reviewer, would center the
log(HT) term by an age-dependent smoothing of log(HT) on AGE. This would
allow the intercept function f1(-) to be interpreted as the smoothed log(FEF 25.75)
on AGE, which is more useful than the uncentered intercept. However, this would
require an additional smoothing of the log(HT) values, and could also affect
standard error estimates.

In other contexts, Hills (1968) and Schwertman and Heilbrun (1986) mod-
eled growth velocities for a single outcome variable using successive differences.
Modeling successive differences can simplify the characterization of the mean and
covariance structure and may be helpful for assessing the effects of time-varying
risk factors on growth. In our setting, preliminary age-specific analyses (see
Figure 3) show approximately linear relationships between A log(FEF;5.75) and
A log(HT), suggesting models of the form

E(Alog(FEF5.15)) = fs(AGE) + f4(AGE) x Alog(HT),  (2.2)
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for particular functions f3(-) and fa(+), where A denotes annual differences. When
modeling velocities, we required successive exams to be nine to fifteen months
apart. For convenience, we use the age at the end of the interval as the metameter.
Similar results are obtained when using the age from the beginning or middle of

the interval or standardizing by AAGE.

3. Estimation Methods

3.1. Regression splines

A plethora of parametric and nonparametric smoothing methods have been
suggested recently, including smoothing splines (Wegman and Wright (1983),
Silverman (1985), Eubank (1988)), kernel estimators (Miiller (1988)), and gener-
alized additive models (Hastie and Tibshirani (1990)). We use polynomial regres-
sion splines for functions f1(-) and fa(-) in model (2.1) or f3(-) and f4(*) in model
(2.2). Regression splines use piecewise polynomials with continuity conditions
imposed at the knot points to smoothly approximate a functional relationship
between a single response and a single metameter, such as AGE. In our applica-
tion, the “response variables” are age-dependent intercepts and slopes of a more
complicated functional relationship.

A spline is completely characterized by the order of the spline 7, which, by
convention, is one more than the order of the polynomial, an ordered sequence
of knot points, kg < k1 < -+ < ky < kpr+1, where the interval (Ko, kr+1)
encompasses the range of metameter values (ie., AGE), and a vector (n1, - -- , UM )
specifying the number of continuity conditions at each interior knot. We choose
to impose no continuity conditions at the end knots. In particular, n; =0 if the
spline is not required to be continuous at ki:n; = 1 if the spline is required to be
continuous at k;, but no condition is placed on the first derivative; and n; may
range up to 7 — 1, which requires the derivatives up to order r — 2 be continuous.
For example, a cubic spline of order 7 = 4 may have up to r — 1 = 3 continuity
conditions imposed at each interior knot, on the function value and the first and
second derivatives.

Any spline function S(-) can be written as a unique linear combination of
piecewise polynomials of the same order as S(-). Two possible choices of basis
functions are the truncated power basis and the B-spline basis. The truncated
power basis provides a simple framework for hypothesis testing (Smith (1979)),
but the basis functions are highly correlated, leading to ill-conditioned design
matrices. In contrast, B-splines require recursive evaluation, making their in-
terpretation more complicated, but are more nearly orthogonal, leading to a
well-conditioned design matrix. This is because each B-spline basis function is
positive only over part of the metameter range, and has limited nonzero overlap
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with other basis functions. DeBoor (1978) presents algorithms for constructing
the B-spline basis functions, B;(-), and derives their properties. We can write
any spline as a linear combination of B-splines S(z) = Zf.__l B; Bi(x), where the
dimension of the B-spline basis is given by

M
d=(M—+—1)xr—Zni.

i=1

The B-spline basis allows us to construct very general splines. In practice,
splines of order higher than cubic (r = 4) are rarely used because matching second
derivatives produces a curve which is smooth to the eye. If smoothness is not an
issue, a linear spline basis with r = 2 or a point spline basis with 7 = 1 (consisting
of M + 1 indicator functions) may be useful, giving piecewise linear or piecewise
constant spline functions. It is possible to construct splines with less than full
continuity, but we have not found much use for these.

For regression spline modeling of pulmonary function level we use models of
the form

d d
E(log(FEF25.75)) = > _ BiBi(AGE) + Y B4+iBi(AGE) x log(HT),  (3.1)
=1 =1

with 2 x d columns in the design matrix. The first d columns contain the B-spline
basis vectors Bi(-), ..., Ba(+), and the next d columns contain these same vectors
multiplied by the log(HT) values. The regression spline framework is convenient
since it gives a parametric (in fact, linear) model, allowing standard techniques
for model-based inference. Models for successive differences, i.e., Alog(FEF5.75)
values, are defined in an analogous manner using A log(HT).

Figure 4 plots age-dependent intercepts and slopes, together with a stratified
(point), linear, and cubic spline model of the form (3.1) using integer knot points
(10,11,...,19) for log(FEF25.75) and the analogous model for Alog(FEF25.75).
Age-dependent mean fitted values are also plotted. The three orders of the spline
lead to similar fits.

3.2. Inclusion of covariate effects in the mean structure

The effects of individual or environmental risk factors can be modeled with
additive or multiplicative adjustments to (3.1). As an example, we compare out-
comes for five categories of asthma/wheeze status. The “active asthma” group
consisted of subjects who reported a history of asthma and current wheeze symp-
toms. The “inactive asthma” group consisted of subjects who reported a history
of asthma but no current wheeze symptoms. The “active wheeze” group con-
sisted of subjects who reported current wheeze symptoms, but no history of
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asthma. The “inactive wheeze” group consisted of subjects who reported no
current wheeze symptoms and no history of asthma, but who had a history of
wheeze. The baseline comparison group consisted of subjects who never reported
asthma or wheeze. These five categories are mutually exclusive, although an indi-
vidual could move between categories in different years (e.g., from never reporting
asthma or wheeze, to active wheeze, then to inactive wheeze).

Figure 5 consists of two separate plots. First, we plot age-dependent means of
the log transformed data separately by asthma status (with five categories). We
also plot the mean fitted values versus age for model (3.1) estimated separately
for observations from each of the five categories, using a linear spline with integer
knot points (10,11,...,19). The predicted values of the stratified model follow
the observed data quite well, lending support to our regression spline models.
The predicted values are also remarkably close to being parallel, giving justifi-
cation for a simple additive effect for asthma status. In practice, we have found
additive effects for asthma status to fit the data well and to be easy to interpret,
since additive effects on the logged scale correspond to multiplicative effects on
the unlogged scale. More complicated covariate effects, such as asthma by age
interactions, could be easily incorporated into the model.

3.3. Adjustments for the covariance structure

Due to the within-subject correlations, assuming independence of repeated
measures on a subject could lead to incorrect inferences. When the true correla-
tion structure is not known or when heteroscedasticity is present, the generalized
estimating equations (GEE) of White (1980) and Liang and Zeger (1986) can
be used to obtain more efficient estimates of the model parameters and robust
estimates of their variances. For the linear model, their method assumes an inde-
pendence or other “working” covariance model and uses generalized least squares
to estimate the regression parameters. Let Y; denote the n; x 1 vector of responses
for the ith subject and E(Y;) = X;3, where X; is the n; x p design matrix for
the ith subject (including the B-spline basis vectors), B is a p X 1 parameter

vector, and ¢ = 1,..., N, where N is the number of subjects. If V; is the current
“working” covariance matrix for the ith subject, then
~ N ~ _—1 N -~
B = { > X{V;lxi} S XV, (3.2)
1=1 i=1

is the generalized least squares estimator of 3. An iterative procedure is used,
alternately estimating 3 using (3.2) and estimating V; using the method of mo-
ments on the residuals. The regression parameter estimates are consistent under
mild conditions, although they need not be efficient, with the efficiency rising as
the working covariance structure approaches the true covariance structure.
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White (1980) and Liang and Zeger (1986) also give a consistent “sandwich”
estimator of the variances of the regression parameters, valid even if the working
correlation model is misspecified. We estimate the variances of the regression

parameter estimates by

N -1 N N -1
Var(3) = {me—lxi} > X[V lee; i—lxi{ ZX{V[lXi} . (3.3)
1=1 =1

where é; denotes the residuals from the ¢th subject. The estimated GEE standard
errors for the parameter vector are given by the square roots of the diagonal
elements of (3.3).

This method for calculating variances is not likelihood based, and inferences
will be valid only if any missing data are missing completely at random (Little
and Rubin (1987)). Missing data are an important concern in any longitudinal
study, as non-randomly missing data can affect not only variance estimation, but
can also result in biased point estimation. In the pulmonary function study, the
population was initially healthy and the reasons for missingness (vacations, mov-
ing from the study area, etc.) were not expected to be associated with pulmonary
function outcome. Thus we expect that the robust variance methods should be
valid in this setting.

As our primary goal is to estimate the effects of covariates on pulmonary func-
tion level or growth velocity, we view the within-subject correlations as nuisance
parameters. To increase efficiency, an approximate working covariance structure
is required. To motivate particular choices, we analyzed the residuals from a lin-
ear regression spline model with integer knot points, assuming independence of
all the observations (see Table 2). For modeling pulmonary function level, the au-
toregressive working assumption is approximately valid, in which the correlation
between residuals from the same subject ¢ years apart is given by pf,t =1,2,...
In fact, the correlations drop off more slowly than the autoregressive assumption,
and more complicated working structures could be used. For simplicity we used
the autoregressive working assumption, and estimated p using the method of mo-
ments on the “lag one” correlations. For modeling pulmonary function growth
velocities, the one-step dependence working assumption is approximately valid,
where the correlation of residuals from growth in adjacent years is assumed to be
7, and residuals from rates of growth in intervals more than one year apart are
assumed to have correlation zero. Table 2 also suggests some mild age-dependent
heteroscedasticity in the A log(FEF;5.75) residuals.

3.4. Comparison of pulmonary function outcome fits

Table 3 reports regression results for six models corresponding to level of
log(FEF25.75). Based on the results of Figure 5, indicator variables correspond-
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ing to the four asthma/wheeze categories were added to model (3.1), with the
baseline comparison group reporting no history of asthma or wheeze. The spline
intercept and height slope terms are not shown. Comparisons can be made be-
tween different orders of the spline and different working covariance assumptions.

As we would expect if the autoregressive working assumption was closer to
the truth than assumed independence, the autoregressive working assumption
has higher efficiency and gives slightly smaller standard error estimates than the
independence working assumption. There are only minor changes in the asthma
estimates as the order of the spline changes. It is remarkable that the regression
results are also almost identical when the number or placement of knot points
changes (results not shown). For example, a linear spline with only half of the
knot points of the linear spline model in Table 3 gives parameter estimates and
standard errors equal to those shown (to the accuracy of the displayed values).
This is due, in part, to the relatively large size of the data set. The fitted
pulmonary function values are also quite consistent across models (results not
shown).

The regression results have a simple interpretation. The additive asthma
effects on log pulmonary function imply that the lung function deficit associ-
ated with asthma or wheeze remained constant in percent throughout childhood.
In absolute terms, however, the children with asthma continue to lose ground
throughout childhood, since pulmonary function increases with age. For exam-
ple, the linear and cubic spline models with the autoregressive working covariance
structure suggest that an asthmatic child is predicted to have exp(—0.101) = 0.90,
i.e., 90%, of the FEF5.75 of a child reporting no history of asthma or wheeze.

Modeling pulmonary function growth velocities is similar to modeling level,
and only two such models are included in Table 3. The models for growth velocity
do not show as strong a covariate effect as our models for level of pulmonary
function, due to the relatively large variability in growth of PF and HT from year
to year. A more sophisticated growth velocity analysis would require refinement
in the asthma categories (e.g., perhaps separating currently inactive asthmatics
who reported asthma symptoms in the previous year from those who had not
reported asthma symptoms for several years).

4. Discussion

The methods presented in this paper are attractive from a statistical, epi-
demiological, and clinical perspective. The basic structure of the models is moti-
vated by the data, and the regression spline methodology offers a flexible way to
model the complex dependence of pulmonary function on two growth metame-
ters, age and height. Staying in the linear model framework allows relatively
simple adjustments for heteroscedasticity and repeated measures. We prefer the
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computational advantages of regression splines over other nonparametric or semi-
parametric approaches when analyzing large data sets with multiple outcome
variables (FEF35.75, FVC,FEV, and the ratio FEV;/FVC are standard respira-
tory response variables), several stratification variables (gender, race), and many
covariates (air pollution, asthma status, personal and passive smoking, etc.). The
models for annual change are inherently longitudinal, although “cross-sectional”
methods are used in the analysis.

The literature on smoothing splines and kernel estimators emphasizes the
selection of smoothing parameters or bandwidths using cross-validation or other
methods, while work on regression splines has concentrated on the choice of num-
ber and placement of knot points. For regression spline modeling of pulmonary
function, the estimation of risk factors was insensitive to the particular order
of spline, knot points, or continuity conditions prespecified. Thus, the extensive
computational demands of a smoothing spline or other method were not expected
to alter the epidemiologic findings.

In a study of pulmonary function decline in adults, Sherrill et al. (1991)
give graphical presentations of polynomial smoothing splines for different strata
(males/females, smokers/nonsmokers, and asymptomatic/symptomatic subjects).
However, they were not able to obtain simple summary measures of covariate ef-
fects. Further work is needed with more general smoothing methods to account
for complicated covariate patterns (including continuous covariates) and to model
complex dependencies of the response variable on more than one metameter.

Regression splines are the natural extension of stratified models, used so
often in epidemiology. For example, Wang et al. (1993) present linear models for
log(PF) on log(HT) stratified by integer age, which are effectively linear spline
formulations of (3.1) without imposing continuity conditions at the (integer) knot
points. In this case, the fitted values are discontinuous at each knot point. With
the regression spline approach, we can easily enforce continuity in the intercept
and height slopes of (3.1) at the knot points, to ensure that the fitted values will
be a continuous function of both HT and AGE.

The regression spline approach is flexible, allowing stratification and subject-
specific or time-varying categorical or continuous predictors (e.g., pack-years of
cigarette smoking or annual levels of air pollution). The spline approach offers a
convenient way to model PF growth from childhood into adulthood, and model
(3.1) applied to PF level or growth velocity has a longitudinal focus. Our models
for level of PF are age-dependent functions of log(HT), and children who mature
earlier (i.e., those whose HT values are larger at an earlier age) will have a higher
predicted log(PF) value (since the log(HT) slopes are positive). Similarly, models
for Alog(PF) depend on the Alog(HT) changes between examinations. Lagged
effects can also be implemented. For example, PF growth for a particular interval
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can be modeled as a function of HT growth for the same length interval six
months previous to the PF interval (as possibly suggested by Figure 2), although
our data would only allow an interpolation to approximate the HT growth for
lagged intervals. Derivatives of the spline also can be calculated if necessary. We
did not detect any influence of asthma or wheeze on height or height growth,
though extensions of our methodology could be made to accommodate such a
situation.

The random effects models of Laird and Ware (1982), Berkey and Laird
(1986), and Lindstrom and Bates (1988) offer an alternate approach to the anal-
ysis of this type of data. For modeling pulmonary function, two approaches were
tried and rejected. First, we fitted various nonlinear random effects models to
PF, PF/HT2 (a transformation suggested by data on adults), or similar outcomes.
Two-stage estimation methods had convergence difficulties due to the relatively
small number of observations per subject, and no parametric form seemed ade-
quate to model the effects of the adolescent growth spurt on PF. Random effects
spline models were also tried, but could only be fitted for the simplest of cases. We
were unable to estimate random effects models as complex as (3.1) with integer
knot points due to convergence difficulties.

Using successive differences to model pulmonary function growth velocities
as a function of height growth is convenient and more readily interpretable than
including previous responses as independent variables in the model, as suggested
by Rosner et al. (1985) (see also Stanek et al. (1989)). As successive differences
from an individual are almost independent, the independence working assumption
gives high efficiency compared to more complicated models. Our enthusiasm
for this approach is tempered, however, by the fact that height is measured
with small, though definite, errors, which impact the Alog(HT) values more
significantly. An approach which accounts for this measurement error may be
appropriate.

The regression spline approach offers a convenient way to accommodate the
dependence of pulmonary function on two metameters. Similar methodology
may be beneficial in other growth curve and longitudinal data settings, such
as in modeling weight as a function of height and age, or blood pressure as a
function of age and weight. We hope our techniques will stimulate the use of
spline methodology and provide further insights into the development of lung
function and in the study of individual and environmental risk factors.
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exhaled.
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Figure 2. Age-specific means of level and annual growth velocities of log(HT) and
log(FEF,5.75) grouped by quarter year of age. Left panel plots means of log(HT)
and log(FEF,s.75) as a function of age. Right panel plots means of Alog(HT) and
Alog(FEF,s.75) as a function of age at the end of the interval.
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Figure 3. Age-specific means of level and annual growth velocities of log(FEF,5.15) as
a function of height. Top panel plots means of log(FEF,s.75) as a function of log(HT).
Bottom panel plots means of A log(FEF.+5) as a function of Alog(HT). In the panels,
0 denotes subjects aged 10, 2 denotes subjects aged 11 to 12, 4 denotes subjects aged 13
to 14, 6 denotes subjects aged 15 to 16, and 8 denotes subjects aged 17 to 18.
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Figure 4. Age-specific intercepts, height slopes, and mean predicted values of level and
annual growth velocities of log(FEF,s.75). Left panel is for level of log(FEF5.45) as a
function of age. Right panel is for Alog(FEF,s.;s) as a-function of age. The three
curves correspond to stratified (point), linear, and cubic spline formulations using knot
points (10,11,...,19). Asterisks correspond to age-specific intercepts and height slopes
for observations grouped together by quarter year of age.
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Figure 5. Age-specific means and predicted values of log(FEF,s.;5) grouped by quarter
year of age and asthma status. Left panel plots means of log(FEF,5.15) as a function of age
for five groups of children: Children never having reported asthma or wheeze symptoms,
children with no current wheeze symptoms but with a history of wheeze but not asthma,
currently wheezing children with no history of asthma, children with a history of asthma
but who were not currently reporting wheeze, and children with a history of asthma who
were currently reporting wheeze symptoms. Right panel plots means of fitted values for
separate linear spline formulations for each asthma status group, each using knot points
(10,11,...,19).
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Table 1. Characteristics of sample of 5,030 Caucasian boys

Asthma/wheeze status at entry®

Never reporting
asthma or wheeze

Having active or
inactive wheeze, but

Having active
or inactive

symptoms no asthma history asthma
(n = 2920) (n = 1685) (n = 425)
No. of observations
1-3 646 (22.1%) 378 (22.4%) 108 (25.4%)
4-6 872 (29.9%) 507 (30.1%) 156 (36.7%)
7-9 1402 (48.0%) 800 (47.5%) 161 (37.9%)
Age at entry
11.46 + 1.56° 11.54 £ 1.79 11.62 £ 1.67
HT at entry (in meters)
1.47 £0.11 147 +0.12 147+ 0.12
log(HT) at entry
0.38 £ 0.07 0.38 £0.08 0.38 £ 0.08
FEF,5.75 at entry (in liters/second)®
2.64 £0.77 2.59 +£0.84 2.34 +£0.88
log(FEF,;5.75) at entry©
0.93 £0.28 0.90 £ 0.31 0.79 £0.36

@ At entry refers to the first available observation between ages 10 and 18.

b Mean + Standard deviation.
¢ Using ANOVA test, p < 0.001.
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Table 2. Standard deviations (in parentheses) and within-subject correlations of residuals
grouped by integer age, based on linear spline models of the form (3.1) with knot points
(10,11,...,19), and assuming independence of all observations.

10

11

12
Age 13
14
15
16
17
18

Age

For level of log(FEF,s5.75)

Age

10 11 12 13 14 15 16 17 18

(.23) .75 .74 .72 .70 .66 .68 .67 .60

(.23) .77 a7 .74 71 .72 70 .68

(23) 79 .76 73 72 72 .65

(.23) .82 .78 a7 .74 .69

(23) 83 .80 .76 .73

(.22) .83 .79 75

(.23) .84 77

(.23) .82

(.23)

For growth velocity or A log(FEF5.75)
Age

11 12 13 14 15 16 17 18
11/(.16) —42 00 -01 -.03 .00 —-.05 -.01
12 (.15) —48 01 .01 -05 .04 .01
13 (.15) -39 -.03 .05 —-.09 -.03
14 (13) —-.39 —.04 —.01 .03
15 (13) —.43 —.05 —.08
16 (13) —.38 —.03
17 (13) —-.37
18 (.13)
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Table 3. Estimated asthma coefficients and GEE standard errors (in parentheses) from
regression results for various spline orders and working covariance assumptions, with
knot points chosen to be (10,11,...,19). The asthma/wheeze categories are mutually
exclusive. The baseline comparison group consists of subjects never having reported

asthma or wheeze.

For level of log(FEF25.75) with
independence working assumption

For growth velocity or A log(FEF2s5.75)

with independence working assumption

Point spline Linear spline Cubic spline
—.190 (.014) —.190 (.014) —.190 (.014)
—.098 (.014) —.099 (.014) —.099 (.014)
—.056 (.006) —.057 (.006) —.057 (.006)
—.028 (.007) —.029 (.007) ~—.029 (.007)

Active asthma
Inactive asthma
Active wheeze

Inactive wheeze

For level of log{(FEF25.75) with

autoregressive working assumption

Linear spline
.0019 (.0034)
.0051 (.0043)
—.0031 (.0021)
.0009 (.0015)

For growth velocity or Alog(FEF2s.75) with
one-step dependence working assumption

Linear spline
.0010 (.0025)
.0042 (.0032)

—.0010 (.0017)
.0011 (.0012)
7 = -.399

Point spline Linear spline Cubic spline

—.099 (.009) —.101 (.009) —.101 (.009)

—.087 (.010) —.089 (.010) —.089 (.010)

—.019 (.004) —.021 (.004) —.021 (.004)

—.014 (.004) —.017 (.004) —.017 (.004)
p = .804 p =.803 p = .803

Active asthma
Inactive asthma
Active wheeze

Inactive wheeze
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