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Abstract: Motivated by applications in bio and syndromic surveillance, this arti-

cle is concerned with the problem of detecting a change in the mean of Poisson

distributions after taking into account the effects of population size. The family

of generalized likelihood ratio (GLR) schemes is proposed and its asymptotic opti-

mality properties are established under the classical asymptotic setting. However,

numerical simulation studies illustrate that the GLR schemes are at times not as

efficient as two families of ad-hoc schemes based on either the weighted likelihood

ratios or the adaptive threshold method that adjust the effects of population sizes.

To explain this, a further asymptotic optimality analysis is developed under a new

asymptotic setting that is more suitable to our finite-sample numerical simulations.

In addition, we extend our approaches to a general setting with arbitrary probability

distributions, as well as to the continuous-time setting involving the multiplicative

intensity models for Poisson processes, but further research is needed.
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1. Introduction

Early detection of abrupt changes in the properties of stochastic signals and
dynamical systems finds application to on-line fault diagnosis in complex techni-
cal systems, edge detection in images, monitoring a noisy environment for target
tracking or threat assessments, etc. The methodologies for detecting changes
are based on results coming from sequential change-point detection, or simply
change-point detection theory, which builds on the sequential analysis theory de-
veloped by Wald (1947). The classical change-point detection theory is mainly
motivated from engineering and manufacturing applications such as quality con-
trol. Pioneering foundational work in the field includes Page (1954), Shiryaev
(1963), Roberts (1966), Lorden (1971), Pollak (1985), Moustakides (1986), Ritov
(1990), Yakir (1994), and Lai (1995). For recent reviews, we refer to Basseville
and Nikiforov (1993), Lai (2001), Peskir and Shiryaev (2006), and Poor and
Hadjiliadis (2008).
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Change-point detection, or more generally sequential methodology, finds
challenging new areas of application in the modern information age. In partic-
ular, we find that bio and syndromic surveillance provides fruitful new research
opportunities for change-point detection and sequential methodology, not only as
a source of new “customers” but also as an inspiration for the development of an
updated theory. For introductory discussions of bio and syndromic surveillance
as well as their statistical challenges, see Fienberg and Shmueli (2005), Woodall
(2006), and Tsui et al. (2008).

The specific data motivating this article concerns male thyroid cancer cases
(with malignant behavior) in New Mexico during 1973-2005; the data have been
studied before in the biosurveillance literature in other contexts, see, for exam-
ple, Kulldorff (2001) and Sonesson (2007). The data set is available from the
Surveillance, Epidemiology, and End Results (SEER) Program at the National
Cancer Institute that collects information on cancer incidence, mortality, and
survival from the population-based cancer registries in the United States. Figure
1 plots three different curves related to this data set: (1) yearly total number of
cancers with malignant behavior; (2) yearly population size (of males) in New
Mexico; and (3) yearly (crude) incidence rate per 100,000 (male) population.

From the viewpoint of sequential change-point detection or sequential method-
ologies, the classical theories and methods are applicable to this data set when
one wants to investigate whether the yearly total number of male thyroid can-
cer cases of this data set increases over time or not, since such a problem can
be formulated as detecting a change in the mean of Poisson distributions in the
discrete-time setting. From the biosurveillance viewpoint, however, a more in-
teresting goal is to determine whether or not the risk for male thyroid cancer
increases over time. The term risk here essentially means the probability of
developing thyroid cancer in a given year, which can be characterized by the
incidence rate per 100,000 (male) population; see the plot in the bottom panel
of Figure 1. It turns out that for the problem of detecting a change in the risk,
the classical change-point detection theory and methods need to be adapted to
take into account the effect of population size.

The remainder of this article is as follows. Section 2 states the mathemati-
cal formulation of the problem; Section 3 offers the generalized likelihood ratio
(GLR) based scheme and establishes its asymptotic optimality properties under
the classical asymptotic setting. Section 4 proposes two families of schemes to
take into account the effect of population size. The GLR scheme and the two pro-
posed alternative schemes are applied to the male thyroid cancer data in Section
5, and simulation results are reported in Section 6. To gain a deeper insight, and
to better reflect finite-sample numerical simulation results, Section 7 presents
an asymptotic optimality theory in a new setting and studies the corresponding
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Figure 1. Three time series data of male thyroid cancer in New Mexico during
1973-2005. Top: the left panel plots the total number of male thyroid cancers
over years, and the right panel illustrates the trend of the male population.
Bottom: the plot is of the crude cancer incidence per 100,000 population
over years.

asymptotic properties of the three proposed schemes. Section 8 discusses exten-
sions to general probability functions and the continuous-time setting with the
multiplicative intensity model for the Poisson process. Section 9 includes a sec-
ond thought on optimality theory by incorporating the information of population
sizes directly in the performance measures instead of the detection schemes. Sec-
tion 10 contains some concluding remarks. The proofs of all theorems in Section
7 are included in the Appendix.
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2. Mathematical Formulation

In the problem of detecting a change in the risk of male thyroid cancer, it is
assumed that one observes two-dimensional random vectors (ln, Yn) over time n,

where Yn has a Poisson distribution with mean µn = lnλn. Here ln, Yn, and λn

can be thought of as the population size (in the units of 100,000 population), the
number of disease cases, and the (unobservable true) incidence rate per 100,000
(male) population at the n-th year, respectively. It is useful to think that we
model the observation Yn’s by the binomial distribution with parameters ln and
λn, which can then be approximated by the Poisson distribution with the same
mean. In addition, we also assume that the observations Yn’s are independent
conditional on the population sizes ln’s.

Under a very simplified setting, the λn’s, e.g., the incidence rates per 100,000
(male) population, are assumed to change from one value λ0 to another value λ1

at some unknown time ν, and we want to detect such a change as soon as possible
if it occurs. Note that we are only interested in detecting a change in the risk
λn’s, and the population sizes ln’s can be either pre-specified constants or ob-
servable (possibly dependent) random variables whose distributions are nuisance
parameters that are left unspecified.

In the change-point detection problem, a detection scheme is a stopping time
T with respect to the observed data sequences {(ln, Yn)}n≥1. That is, the decision
{T = n} only depends on observations in the first n time steps, and {T = n}
means that we raise an alarm at time n to indicate that a change has occurred
somewhere in the first n time steps.

To give the change-point detection problem a rigorous formulation, denote by
Pν and E ν probabilities and expectations when the change in the risk λn’s occurs
at time ν for ν = 1, 2, . . . , and denote the same by P∞ and E∞ when ν = ∞,

i.e., when there are no changes in the λn’s. Intuitively, we seek a stopping time T

that makes the Pν-distribution of (T−ν)+ stochastically small for all 1 ≤ ν < ∞,

subject to the constraint that the P∞-distribution of T be stochastically large.
Denote by Fn the sigma algebra generated by all observations up to time n. To
incorporate the uncertainty of the change-point ν, in the literature it is standard
to consider the following “worst case” detection delay criterion, proposed by
Lorden (1971),

E 1(T ) = sup
1≤ν<∞

ess sup E ν

(
(T − ν + 1)+|Fν−1

)
,

where the essential superum takes the “worst possible observed data before the
change” in the sense of providing no (or possibly false) information about the true
change. A standard minimax formulation of the change-point detection problem
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is then to minimize the detection delay E 1(T ) under Lorden’s criterion subject
to a constraint on the average run length (ARL) to false alarm

E∞(T ) ≥ γ, (2.1)

for some given (large) constant γ.

3. The GLR Scheme and Its Asymptotic Optimality Properties

In the change-point detection problems, a basic tool to construct statistical
tests or procedures is the generalized/maximum likelihood ratios (GLR) method.
Note that the change-point detection problems can be thought of as testing the
null hypothesis H0 : ν = ∞ (no change) against the composite alternative hy-
pothesis H1 : 1 ≤ ν < ∞ (a change occurs), the logarithm of the corresponding
GLR statistic of the first n observations, {(li, Yi)}n

i=1, is given by

Wn = max
1≤ν<∞

log
dPν

dP∞

(
(l1, Y1), · · · , (ln, Yn)

)
.

Now given the li’s, the Yi’s are conditionally independent with a conditional
probability density function (pdf) f0(Yi|li) = e−liλ0(liλ0)Yi/(Yi!) if i < ν, but
with a conditional pdf f1(Yi|li) = e−liλ1(liλ1)Yi/(Yi!) if i ≥ ν. Moreover, the
distribution of the ln’s is assumed to be the same under P∞ or Pν , and for the
first n observations, {(li, Yi)}n

i=1, their Pν-distribution is the same as their P∞-
distribution when ν > n, due to the uniqueness of the pre-change distribution.
Hence, the logarithm of the GLR statistic can be rewritten as

Wn = max
1≤k≤n+1

n∑
i=k

log
f1(Yi|li)
f0(Yi|li)

= max
1≤k≤n+1

n∑
i=k

[
Yi log

λ1

λ0
− li(λ1 − λ0)

]
, (3.1)

where
∑n

i=n+1 = 0. Thus, under our setting, the GLR scheme raises an alarm at
time

TGLR(a) = first n ≥ 1 such that Wn ≥ a, (3.2)

(= ∞ if such n does not exist), where the constant a is chosen to satisfy the false
alarm constraint in (2.1). For the purpose of online implementation, it is easy to
see that Wn in (3.1) enjoys a recursive formula of the classical CUSUM statistics:

Wn = max
{

0,Wn−1 +
[
Yn log

λ1

λ0
− ln(λ1 − λ0)

]}
.
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It is interesting to note that no matter whether the population sizes ln’s are
(observable) random variables or pre-specified constants, the form of the GLR
scheme TGLR(a) is the same. To gain deeper understanding of the effects of
population sizes from the theoretical viewpoint, from now on we assume that the
population sizes ln’s are pre-specified constants, implying that the observations
Yn’s are independent but not necessarily identically distributed Poisson random
variables.

The following theorem establishes the asymptotic optimality properties of
the GLR scheme TGLR(a) under the classical asymptotic setting:

Theorem 3.1. Assume that as n → ∞, the population sizes li’s satisfy

1
n

k+n∑
i=k+1

li → l∗ > 0 uniformly for all k ≥ 0. (3.3)

Then for any stopping time T (γ) satisfying the false alarm constraint in (2.1),
we have

E 1(T (γ)) ≥ (1 + o(1))
log γ

l∗I(λ1, λ0)
, (3.4)

as γ → ∞, where

I(λ1, λ0) = λ1 log
(λ1

λ0

)
− (λ1 − λ0). (3.5)

Moreover, the family of the GLR schemes {TGLR(a)} in (3.2) attains the infor-
mation bound (3.4) asymptotically.

Proof. The proof follows the lines of Lorden (1971) or Lai (1998), and thus is
omitted here (similar arguments are in the proofs of Section 7). Also see Yao
(1993) for similar results in the context of linear regression for normal distribu-
tions.

Note that the uniform convergence assumption in (3.3) is needed to prove
the asymptotic optimality of the GLR schemes {TGLR(a)}, but a much weaker
condition is sufficient to derive the information bound (3.4). See Section 7 below
for more discussion of the assumption (3.3).

4. Two Alternative Methods

So far we have “solved” the problem by our favorite GLR methods, but
perhaps not solved it in practice. To illustrate that despite its nice asymptotic
optimality properties, the GLR scheme may not necessarily be as effective as one
expects in application, we propose two ad-hoc methods for comparison.
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Intuitively, two features of the GLR scheme seem questionable in the context
of non-stationary population sizes: (i) the GLR statistic Wn in (3.1) assigns the
same weight to the individual log-likelihood ratio statistic log f1(Yi|li)/f0(Yi|li)
regardless of population size li’s, although the Yi’s with larger population sizes
li’s surely provide more information, and (ii) the GLR scheme TGLR(a) uses the
constant threshold value a over time. Accordingly, we propose two alternative
detection schemes to take into account the effects of population sizes.

The first scheme is based on the quasi-log-likelihood ratio statistics that nor-
malize each term log f1(Yi|li)/f0(Yi|li) in (3.1) by their (conditional) variances,
or equivalently, by the population sizes li’s (up to a constant). This leads to the
detection statistic

Ŵn = max
1≤k≤n+1

n∑
i=k

1
li

log
f1(Yi|li)
f0(Yi|li)

= max
1≤k≤n+1

n∑
i=k

[Yi

li
log

λ1

λ0
− (λ1 − λ0)

]
. (4.1)

Thus, for any given constant b, we can define the weighted likelihood ratio (WLR)
scheme

TWLR(b) = first n ≥ 1 such that Ŵn ≥ b. (4.2)

Another motivation for the WLR scheme TWLR(b) in (4.2) is based on Yn/ln, a
natural estimator of the risk or the disease rate per 100,000 population. To see
this, if we pretend that Yn/ln is Poisson distributed with mean λn (this is not true
under our setting, but we can still use it to construct detection schemes), then
the problem becomes the classical problem of detecting a change in the Poisson
mean from λ0 to λ1, and the corresponding GLR (or CUSUM) procedure is just
the WLR scheme TWLR(b) in (4.2).

The second scheme we propose is to use the GLR-based statistic Wn in (3.1),
but with adaptive thresholds to take into account population size effects. Ideally,
one would like to use the optimal thresholds or boundaries, say, by some Bayesian
or non-Bayesian arguments, but such boundaries seem to be too complicated to
derive explicitly. For simplicity, we use the linear boundaries: lnc (see Section
8.1 below for more explanation). Specifically, the proposed adaptive threshold
method (ATM) raises an alarm at time

TATM (c) = first n ≥ 1 such that Wn ≥ lnc, (4.3)

for some constant c > 0, where Wn is the GLR statistic defined in (3.1).
It is important to point out that when the population sizes ln’s are equal

to a constant l > 0, then the three detection schemes, TGLR(a), TWLR(b) and
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TATM (c), not only are equivalent (when a = lb = lc), but also hold the exact
optimality properties of Page’s CUSUM procedures proved in Moustakides (1986)
and Ritov (1990).

When the population sizes ln’s vary, the conclusions are obscure. On the one
hand, under the uniform convergence assumption of Theorem 3.1, the population
sizes ln’s converge to a constant value l∗, and thus these three schemes seem to
be equivalent and efficient from the asymptotic viewpoint. On the other hand,
when the population sizes ln’s vary, these detection schemes are generally not
equivalent and thus likely have different finite-sample properties; this is the focus
of the remainder of this article.

5. Example Revisited

The purpose of this section is to illustrate that the GLR scheme does not
necessarily work as effectively as the ad hoc schemes WLR and ATM for the
male thyroid data in New Mexico. Of course, we should acknowledge that our
proposed methods are oversimplified for this data set. Nevertheless, as a starting
point, we can look at the performances of the three procedures for this data set.
Other simulation results will be presented in the next section.

5.1. Model for population growth

In our application or in simulations, we need a model to generate population
sizes beyond the observed ones so that we can determine the threshold values of
detection schemes that satisfy the false alarm constraint (2.1). In the literature,
it is common (e.g., Pinheiro and Bates (2000)) to model the growth curve by the
logistic model

ln = ψ(n) + εn =
φ1

1 + exp[−(n − φ2)/φ3]
+ εn, (5.1)

where E[εn] = 0 and V ar[εn] = σ2. Here φ1 indicates an asymptotic upper limit
of population size, φ2 the middle point of the S-shaped curve, and φ3 the scale
adjustment of time periods.

In our specific application, we fit (5.1) to the observed population sizes by a
nonlinear least-squares method (we treat year 1972 as time 0, and the population
sizes are in the units of 100,000). Using the statistical software R version 2.8.0,
the estimated parameters for the logistic model (5.1) are summarized in Table 1.

Figure 2 plots the actual observed population sizes and the estimated growth
curve in New Mexico during 1973-2005. From the plot, one sees that the two
curves are close to each other, implying that the logistic model is reasonable in
our application. One may also wonder that population sizes seem to increase
linearly and ask why not just fit a linear model for population sizes? The answer
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Figure 2. Population and estimate in New Mexico during 1973-2005. The
plot shows the actual observed and model-estimated male population sizes
in New Mexico during 1973-2005.

Table 1. Estimated parameters for the population growth model in (5.1)

Parameter φ1 φ2 φ3 σ
Estimate 13.8065 ± 0.9552 11.8532 ± 3.7438 26.4037 ± 2.3127 0.0907

depends on how large the false alarm constraint γ in (2.1) is. When γ is around
30, the linear model may be reasonable, since the observed 32 population sizes
indeed seems to be linear. However, if γ is moderately large, say 100, it seems
unrealistic to assume that population sizes increase linearly over 100 years, and
the logistic model (5.1) may be more suitable. In our simulations, we are more
interested in a moderately large value of γ, and thus we use the mean curve of
(5.1) with the estimated parameters in Table 1 to generate population sizes.

5.2. Parameters in the change-point problem and detection schemes

To implement our schemes, we need to specify the pre-change rate λ0 and
the post-change rate λ1. This is not an easy task, especially in the context of
bio and syndromic surveillance where the baseline model is not well-defined. To
have some estimated values (not necessarily the best ones) for these parameters,
one possible approach is to use the time period 1973-1983 as a training period,
and then to estimate the pre-change rate λ0 and the post-change rate λ1 by the
median and the maximum of the crude incidence rate per 100,000 during 1973-
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Figure 3. The left panel plots the GLR statistics Wn over time n, as well as
the alarm boundaries of TGLR(a) (solid line) and TATM (c) (the dotted line)
when γ = 300. The right panel plots the WLR statistic Ŵn as well as the
boundary of TWLR(b).

1983, respectively. For our data, we have λ̂0 = 2.4 and λ̂1 = 3.8. Thus, we chose
λ0 = 2.4 and λ1 = 3.8 when implementing our proposed schemes. These choices
are intended only for illustrations.

We also need to specify the false alarm constraint γ in (2.1), since the choice
of γ clearly affects the detection thresholds a, b, and c in the proposed schemes.
Unfortunately, there are no well-accepted guidelines to choose the constraint γ.

Here we tried γ = 100, 200 or 300. That is, on average we wanted all detection
schemes to take at least 100 (or 200 or 300) years before raising the first false
alarm when the risk of cancer is λ0 = 2.4 per 100,000 population and when there
are no changes on the disease risk. Numerical simulation was then conducted to
find the detection threshold values to satisfy the false alarm constraint γ in (2.1)
with each different value of γ when population sizes were generated from (5.1)
with the parameters in Table 1. For instance, when γ = 300, the corresponding
threshold values for TGLR(a) in (3.2), TWLR(b) in (4.2) and TATM (c) in (4.3)
were a = 3.6870, b = 0.2975, and c = 0.2975, respectively (based on 100,000
replicates). When γ = 100 or 200, the detection threshold values were smaller
than those for γ = 300, but not by much.

5.3. When to raise alarm?

We then applied the GLR scheme and two alternative schemes, the WLR and
ATM, to monitor the cancer risk for the male thyroid cancer data in New Mexico
starting from year 1984. Figure 3 plots the GLR statistics Wn in (3.1) and the
WLR statistic Ŵn in (4.1) over the time, as well as the detection boundaries of
the schemes when the false alarm constraint is γ = 300. From the plots, the WLR
and ATM schemes, TWLR(b) and TATM (c), trigger an alarm in year 1993, whereas
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the GLR scheme TGLR(a) raises an alarm in year 1997. In addition, when the
false alarm constraint γ = 100 or 200, we reached the same conclusion. These
results seem to suggest that for the male thyroid cancer data in New Mexico,
the ad-hoc alternative schemes, TWLR(b) and TATM (c), are better than the GLR
scheme TGLR(a) in the sense of raising an alarm earlier when the false alarm
constraint γ = 100, 200 or 300.

6. More Simulation Study

In this section we perform further simulation studies to compare the GLR
scheme with two alternatives. In particular, we want to see whether or not the
poor performance of the GLR scheme is a fluke.

In this numerical simulation study, we borrowed from the previous section,
but with two modifications. The first one is that we took the post-change risk
λ1 = 2.7 instead of λ1 = 3.8 (we still held the pre-change risk at λ0 = 2.4).
The reason was to investigate a smaller change, since a larger change may be
easily detected by any reasonable method. Indeed, in the previous section the
detection statistics Wn or Ŵn were 0 before crossing the detection thresholds
for the WLR and ATM detection schemes, indicating that the detection delays
of these methods is very small (at most 1) due to a larger change. The second
modification was to increase the false alarm constraint to γ = 1,000. We hoped
that a larger value of γ might lead to a larger detection delay, so that we could
better understand the properties of the three detection schemes.

In our simulations, we took the population sizes from the logistic model in
(5.1) with different parameter values. The following three cases were studied
(φ̂1, φ̂2, φ̂3 and σ̂ are the estimates in Table 1):

• Case A (Increasing): ln = φ̂1/{1 + exp[−(n − φ̂2)/φ̂3]}; this is the model we
used in our data example.

• Case B (Fast Increasing): ln = 2φ̂1/{1 + exp[−(n − (φ̂2 + 26))/φ̂3]}, where
φ̂2 + 26 is chosen so that population sizes ln’s increase quickly over time to a
stationary value, as compared to the data application.

• Case C (Decreasing): ln = [φ̂1/2.4]/{1 + exp[(n − φ̂2)/φ̂3]} + 1; this leads to
population sizes ln that decrease over time. Here the constant 1 ensures that
the population size ln decreases to a nonzero constant.

Note that in the models of population sizes, 2φ̂1 in Case B and φ̂1/2.4 in Case C
are necessary to make sure that the initial population size l0 is the same as the
observed value l0. The top left panel of Figure 4plots the three population size
models.

For each population size model, we first determined the detection thresh-
old values through 100,000 replicates, so that the detection schemes satisfy the
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Figure 4. The population sizes are from the smooth model in (5.1). The
top left panel plots three different population size curves that correspond to
the three cases considered. The other three panels illustrate the detection
delays of the three detection schemes as a function of change-point ν under
different cases of the population size models.

false alarm constraint (2.1) with γ ≈ 1,000 (within sampling error) and the pre-
change risk λ0 = 2.4. Then we simulated the detection delay ess supE ν

(
(T − ν +

1)+
∣∣Fν−1

)
at different change-point ν with the post-change risk λ1 = 2.7. The

simulated detection delays were based on 50,000 replicates.
The detection delays of the three schemes are plotted in Figure 4 for the

three population size models. From Figure 4, it is interesting to note that if the
population sizes are decreasing (Case C), the GLR scheme TGLR(a) seems to be
the best in the sense of smallest detection delay at each change-point ν, while
the WLR scheme TWLR(b) seems to be the worst. However, if the population
sizes are increasing (Cases A and B), the order is reversed.

Under Lorden’s worst-case detection delay E 1(T ) criterion, similar conclu-
sions still hold. Specifically, the GLR scheme is the best scheme with the smallest
worst-case detection delay E 1(T ) if the population sizes are decreasing, but it is
the worst scheme if the population sizes are increasing; the WLR scheme is the
worse scheme if the population sizes are decreasing, but the best if the population
sizes are increasing. The adaptive threshold scheme TATM (c) seems to be robust
in the sense of small detection delays E 1(T ) under Lorden’s criterion, no matter
whether the population sizes are increasing or decreasing.
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It is also interesting to see from Figure 4 that for TGLR(a), the detection
delays ess supE ν

(
(T − ν + 1)+

∣∣Fν−1

)
seem to be decreasing (increasing) as a

function of the change-point ν when the populations sizes are increasing (de-
creasing). However, the detection delays of the WLR scheme TWLR(b) seem to
be an increasing (decreasing) function of the change-point ν when the popula-
tions sizes are increasing (decreasing). In all simulations, the three schemes had
similar detection delays, ess supE ν

(
(T − ν + 1)+

∣∣Fν−1

)
, when the change-point

ν was large, but they had very different detection delays when the change-point
ν occurred at an earlier stage.

In summary, our simulations suggest that when one has prior information
that population sizes are increasing or decreasing, one use the best among these
three schemes. When there is uncertainty about the trends of population sizes,
one may want to use the adaptive threshold scheme TATM (c) to take advantage
of its robustness properties. In particular, despite its asymptotic optimality
properties, the GLR scheme indeed can perform very poorly in finite-sample
numerical simulations, especially in the typical scenarios of biosurveillance when
the population sizes are increasing.

7. New Asymptotic Analysis

The main purpose of this section is to develop some theory to “explain” our
simulation results in the previous section. To find an appropriate setting, we
note that the GLR scheme is at times efficient and at times inefficient in our
simulations, and thus it is natural reaction to check whether the condition (3.3)
required in Theorem 3.1 holds or not. On the one hand, (3.3) holds since in our
simulations, the population sizes are from the logistic model and monotonically
increase or decease to the stationary value l∗. Hence the GLR scheme is asymp-
totically optimal in our simulation study, regardless of whether the population
sizes are increasing or decreasing. On the other hand, our simulations violate the
spirit of (3.3). To be more specific, the false alarm constraint γ is only moder-
ately large in our simulation in view of the uniform convergence in (3.3). That
is, since the false alarm constraint γ is not too large, the post-change sample size
n is generally not too large, and thus the value of (1/n)

∑k+n
i=k+1 li for small k can

be very different from the corresponding value for large k.

We now assume that the population sizes ln’s reach the stationary value l∗

at some finite time ω. Then Theorem 3.1 deals with ω much much smaller than
γ, i.e., fix ω and let the false alarm constraint γ go to ∞. However, simulations
had ω comparable to the false alarm constraint γ. For instance, when fitting the
logistic model to the data, the population sizes were close to the stationary value,
numerically, around time ω ≈ 120 while the false alarm constraint γ =1,000.
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In order to reflect finite-sample numerical results, we consider a new asymp-
totic setting in which the population sizes reach the stationary value l∗ at some
finite time ω, where ω = ωγ ≤ Cγ for some constant 0 < C < 1, as the false
alarm constraint γ goes to ∞. Note then that as n → ∞, (1/n)

∑k+n
i=k+1 li con-

verges to l∗ point-wise for each k, but this convergence is no longer uniform over
k as required by (3.3). Section 7.1 presents an asymptotic theory under the new
setting, and Section 7.2 reports on further simulations to illustrate our theory.
The proofs of theorems in this section are postponed to the appendix.

7.1. Asymptotic optimality analysis

We first construct an asymptotic lower bound on the detection delays as the
false alarm constraint γ in (2.1) goes to ∞. Then we see whether a specific family
of schemes attains the lower bound asymptotically.

Theorem 7.1. Assume that the population sizes ln’s reach the stationary value
l∗ > 0 at some finite time ω, where ω = ωγ < Cγ for some constant 0 < C < 1.

Then for any stopping time T (γ) satisfying the false alarm constraint in (2.1),
(3.4) holds.

Theorem 7.2. (i) For the GLR scheme, we have E∞(TGLR(a)) ≥ exp(a) for
all a > 0.

(ii) For the WLR scheme, if infn≥1 ln = l∗ > 0, then as b → ∞,

E 1(TWLR(b)) ≤ b

I(λ1, λ0)
+ M,

where I(λ1, λ0) is defined at (3.5) and

M =

√
1 +

λ1

l∗

(
λ1 −

λ1 − λ0

log λ1 − log λ0

)−2
.

In order to derive the asymptotic optimality properties of the GLR or WLR
schemes subject to the false alarm constraint γ in (2.1), we need to derive the
detection delays of the GLR scheme TGLR(a) and/or to establish the relationship
between the threshold value b in the WLR scheme TWLR(b) and the false alarm
constraint γ. These are challenging problems. In addition, for the ATM scheme,
it is non-trivial to investigate its false alarm or detection delay properties. We
make two simplifications in order to go forward.

First, we focus on two kinds of changes on the disease risk: when the change
occurs at time ν = 1 and when the change occurs at ν = ω. The change-point
ν = 1 is used to indicate the detection delays for small values of change-point ν;
the change-point ν = ω is interesting because the detection delay ess sup E ν

(
(T−
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ν + 1)+|Fν−1

)
is the same for all change-point ν ≥ ω, since the observations Yn

are i.i.d. with the same population sizes ln = l(1) for n ≥ ω. This motivates us
to consider

D(T ) = max
[
E ν=1(T ), ess sup E ω

(
(T − ω + 1)+|Fω−1

)]
,

which provides a lower bound on Lorden’s worst-case detection delay E 1(T ).
The second simplification is to assume that the initial population size ln

are constant, l(0), for a reasonably long period so that we can use the classical
results on Page’s CUSUM procedures to derive the detection delay E ν=1(T ) for
the GLR and ATM schemes. Specifically, we now assume that population sizes
can be modeled by the step function

ln =


l(0), if n < ω′,
some values, if ω′ ≤ n < ω,
l∗, if n ≥ ω,

(7.1)

where ω′ >> log γ and ω < Cγ for some 0 < C < 1, and the ln between time
[ω′, ω] can be some arbitrary positive values bounded between two pre-specified
positive constants L0 and L1.

There is a subtle but important issue on the step function (7.1) for the
population sizes model: we do not want ω′ in (7.1) to be too large compared to
the false alarm constant γ, since otherwise the problem is essentially the classical
change-point detection problem with constant population sizes l(0). Thus, to be
meaningful, we need to make sure that, for the proposed three schemes, the false
alarms during the initial stage with the constant population l(0) are negligible as
compared to those during the latter stage with the constant population l∗. We
assume ω − ω′ = O(1) and ω′ = o(γ(1−η)l(0)/l∗) for some constant 0 < η < 1.

These additional assumptions are a little more restrictive than what one may
prefer, but they allow us to derive the asymptotic optimality properties of the
three proposed schemes.

Theorem 7.3. Assume that the population sizes ln obey (7.1) such that infn≥1 ln
= l∗ > 0, and the observable times ω′ = ω′

γ , ω = ωγ and the false alarm constraint
γ in (2.1) satisfy log γ << ω′ ≤ ω < Cγ, ω − ω′ = O(1) and ω′ = o(γ(1−η)l(0)/l∗)
for some 0 < η < 1 as γ → ∞. Then, subject to the false alarm constraint in
(2.1),

D[TGLR(a)] = (1 + o(1))
log γ

min{l(0), l∗}I(λ1, λ0)
,

D[TWLR(b)] = (1 + o(1))
log γ

l∗I(λ1, λ0)
,
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D[TATM (c)] = (1 + o(1))
log γ

l∗I(λ1, λ0)
,

as γ → ∞, where I(λ1, λ0) is defined at (3.5).

We can now state the asymptotic optimality or sub-optimality of the WLR
and GLR schemes under Lorden’s worst-case detection delay criterion.

Corollary 7.1. Under the assumptions of Theorem 7.3, the WLR scheme
TWLR(b) is asymptotically optimal under Lorden’s worst-case detection delay cri-
terion E 1(T ), subject to the false alarm constraint in (2.1). Moreover, when
l(0) < l∗, the GLR scheme TGLR(a) is asymptotically suboptimal under Lorden’s
worst-case detection delay criterion.

Proof. For the WLR scheme TWLR(b), by Theorem 7.3, the threshold b ∼ log γ

is sufficient to satisfy the false alarm constraint γ in (2.1). Combing this with
Theorem 7.2 yields E 1(TWLR(b)) ≤ (1 + o(1)) log γ/(l∗I(λ1, λ0)). Therefore, the
WLR scheme attains the lower bound on the detection delays in Theorem 7.1,
and is asymptotically optimal under Lorden’s worst-case detection delay criterion
E 1(T ).

Meanwhile, if l(0) < l∗, the suboptimality properties of the GLR scheme
TGLR(a) follow at once from Theorem 7.3, its comparison with the asymptotic
optimal scheme TWLR(b), and the fact that E 1(T ) ≥ D(T ) :

lim
γ→∞

E 1(TGLR(a))
E 1(TWLR(b))

≥ lim
γ→∞

D(TGLR(a))
(1 + o(1)) log γ/(l∗I(λ1, λ0))

=
l∗

min(l(0), l∗)
> 1,

completing the proof.

Remarks. The above results are consistent with our finite sample simulation
results: when the population sizes increase, the WLR scheme is the best scheme
and the GLR scheme is the worst. On the other hand, when the population
sizes decrease, i.e., when l(0) > l∗, the three detection schemes are (first-order)
asymptotically equivalent in that D(T ) ∼ log γ/[l∗I(λ1, λ0)] for any of them.
However, our simulations in Section 6 do not support this claim. This is partly
because the asymptotic optimality theorem for the WLR scheme requires that
all population sizes ln’s are bounded below by l∗ > 0, but the lower bound l∗ in
our numerical simulations is too small (l∗ = 1). We conduct a further simulation
below to check the case of l(0) > l∗.

Note that TWLR(b) and TATM (c) are (first-order) “equalizer rules” in the
sense that ess sup E ν

(
(T − ν + 1)+|Fν−1

)
is the same (up to the first-order)

for ν = 1 or ω, but the TGLR(a) is not. The property of “equalizer rule” is
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Figure 5. The detection delays of the three proposed detection schemes at
different change-points ν when the population sizes are given by the step
functions. Left Panel: the step function is increasing. Right Panel: the step
function is decreasing.

essential to the establishment of the exact optimality of the CUSUM procedure
in the simplest i.i.d. models, and our results suggest that TGLR(a) may lose this
property in the finite-sample setting when the population sizes vary.

7.2. Numerical simulations

Here we conduct a numerical study when the population sizes are modeled by
(7.1) with ω′ = ω = 200. We assume that the false alarm constraint is γ =1,000,
so that the choice of ω′ = ω = 200 is consistent with log γ << ω′ ≤ ω < Cγ for
some 0 < C < 1. Two cases are considered: increasing with l(0) = 6 and l∗ = 12,

and decreasing with l(0) = 12 and l∗ = 6. As in Section 5, we assume that the
pre-change and post-change risks are λ0 = 2.4 and λ1 = 2.7, respectively.

For the increasing case, our simulations showed that, subject to the false
alarm constraint (2.1) with γ ≈ 1,000, the threshold values for TGLR(a) in (3.2),
TWLR(b) in (4.2) and TATM (c) in (4.3) were a = 4.540, b = 0.453, and c = 0.452,

respectively. For the decreasing case, the corresponding thresholds were a =
4.265, b = 0.661, and c = 0.665, respectively.

Figure 5 illustrates the detection delay at different change-points ν for each
of the three detection schemes. For the increasing case, note that the detection
delay of the GLR scheme TGLR(a) is a decreasing function of ν (decreasing from
36.9± 0.1 at ν = 0 to 19.1± 0.1 at ν = 200). However, the (simulated) detection
delay of either TWLR(b) or TATM (c) is an increasing function of ν (increasing
from 20.4 ± 0.1 at ν = 0 to 23.1 ± 0.1 at ν = 200). Hence, under Lorden’s
worst-case detection delay criterion, the worst-case detection delays E 1(T ) of
TGLR(a), TWLR(b) and TATM (c) were 36.9±0.1, 23.1±0.1, 23.1±0.1, respectively.
In the increasing case, the schemes TWLR(b) and TATM (c) are better than the
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scheme TGLR(a) in the sense of smaller detection delays under Lorden’s worst-
case detection delay criterion; this is consistent with our asymptotic theory for
the increasing population sizes with l(0) < l∗.

In the decreasing case, we get the reverse pattern: the detection delay is
an increasing function of the ν for TGLR(a), but a decreasing function of ν for
either TWLR(b) or TATM (c). Under Lorden’s worst-case detection delay criterion,
the worst-case detection delays E(T ) of TGLR(a), TWLR(b) and TATM (c) were
34.4 ± 0.1, 35.0 ± 0.1, 34.7 ± 0.1, respectively. Hence, in the decreasing case,
despite significantly different (individual) detection delay curves as illustrated
in the right panel of Figure 5, the three schemes have similar properties under
Lorden’s criterion. This is also consistent with the asymptotic theory developed
in Section 7.1 for the decreasing case.

Finally, Figure 5 shows that, as compared to the GLR scheme, the detection
delay curves for T = TWLR(b) or TATM (c) look to flatter with respect to ν, no
matter whether the population sizes are increasing or decreasing. This supports
our claim that the GLR scheme TGLR(a) is not an “equalizer rule” even at the
first-order.

8. Extensions

Here we discuss two extensions of our methods and ideas: the first is to allow
other distributions than the Poisson, and the second is to the continuous-time
setting with non-homogenous Poisson processes.

8.1. General setting

We begin by noting that if one uses some variance-stabilizing transforma-
tion, e.g., the square root Y ∗

n = 2
√

Yn or the Anscombe transformation Y ∗
n =

2
√

Yn + 3/8, that transforms Poisson observations (with large mean) into approx-
imate normal observations with constant variance, then the problem of detecting
disease risks becomes the problem of detecting a change in slope in a simple linear
regression where the (independent) observations Y ∗

n are i.i.d. N(xiβ0, 1) before
the change and i.i.d. N(xiβ1, 1) after the change, where xi = 2

√
li, β0 =

√
λ0, and

β1 =
√

λ1. Yao (1993) shows that under (3.3), the GLR scheme is asymptotically
optimal as the false alarm constraint γ goes to ∞. Still, since the post-change
distributions depend on the change-point ν through non-homogeneous popula-
tion sizes, even for normal distributions, some modifications of the GLR scheme
can be made to improve finite sample performances.

In general, suppose that there are two sequences of known densities: {fn}∞n=1

and {gn}∞n=1 with fn 6= gn. Assume that we observe a sequence of independent
random variables Y1, Y2, . . . such that the density of Yn is fn if n < ν and gn if
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n ≥ ν, where the change-point ν is unknown. Under this general setting, the
GLR and WLR statistics can be written as

Wn = max
1≤k≤n+1

n∑
i=k

log
gn(Yn)
fn(Yn)

and Ŵn = max
1≤k≤n+1

n∑
i=k

1
I(gn, fn)

log
gn(Yn)
fn(Yn)

,

where I(gn, fn) = E gn

{
log[gn(Y )/fn(Y )]

}
is the Kullback-Leibler (K-L) infor-

mation number. Hence, the GLR and WLR schemes can be taken as comparing
appropriate statistics with some constant thresholds. For the ATM scheme, a
simple choice of the threshold boundary uses the K-L information number by
choosing cn = I(gn, fn)c for some constant c > 0, which can lead to “equalizer
rules” under certain conditions.

8.2. Continuous-time model: multiplicative intensity model

We have studied the change-point detection problems in the discrete-time
setting and now look at the corresponding continuous-time version involving a
Poisson process. This may be useful in the modern information age when bio-
surveillance systems can observe events (cancer cases) in (nearly) continuous
time. The problem of detecting the intensity of a Poisson process has been
studied in the literature, and some recent advances can be found in Baron and
Tartakovsky (2006) and Peskir and Shiryaev (2006). We look to extend the Pois-
son process model to the multiplicative intensity model of Aalen (1978) that has
been applied to survival analysis, birth and death processes, and time-continuous
Markov chains on finite state spaces.

In the simplest form of the multiplicative intensity model, one observes count-
ing processes Y = (Yt)t≥0 and l = (lt)t≥0, where Y = (Yt)t≥0 is a Poisson process
with intensity Λ(t) = λlt for some nonnegative constant λ. In the context of
change-point detection, it is assumed that λ changes from λ0 to λ1 at some un-
known time ν > 0. Based on the continuously observed trajectories of both Y

and l, one wants to raise an alarm as soon as possible after the change occurs.
It is not difficult to see that, for this continuous-time model, the log-likelihood

process in testing P∞ (i.e., no change) against Pν=0 (i.e., a change occurs at time
0) is

Zt = log(
λ1

λ0
)Yt − (λ1 − λ0)

∫ t

0
lsds.

Hence, the log-GLR process is given by W ∗
t = Zt − inf0≤s≤t Zs. Similarly, the

continuous-time version of the WLR scheme is based on the process Ŵ ∗
t = Ẑt −

inf0≤s≤t Ẑs, where the “normalized” log-likelihood ratio process is

Ẑt = log(
λ1

λ0
)
Yt

lt
− (λ1 − λ0)t.
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With these detection statistics, it is straightforward to define the corresponding
GLR, WLR and ATM detection schemes in the continuous-time version.

In biosurveillance applications, a typical scenario has λ1 > λ0 (risk increases)
when the population size lt is a non-decreasing function of time t. From the
asymptotic viewpoint, the arguments for the discrete-time model can be easily
extended to the continuous-time model in this case, since it is asymptotically
optimal to raise alarms only at the times when a new event Y occurs. As in
the discrete-time models, the detection schemes T ∗

WLR(b) and T ∗
ATM (c) seem to

be more efficient than the GLR scheme T ∗
GLR(a) in the finite sample setting (it

is straightforward if lt is a step function, and it would be interesting to find a
rigorous proof of this in general).

It is also be interesting to investigate the situation if λ1 < λ0 or if lt is
decreasing. In these scenarios, one may need to raise an alarm even though no
new events Y arrive. Hence it is very challenging to develop the optimal detection
schemes under either the minimax or Bayesian formulation, and it is beyond the
scope of this article.

9. A Second Thought on the Optimality Theory

We have looked at procedures evaluated by two classical performance mea-
sures: the ARL to false alarm, and Lorden’s worst-case detection delay. It is now
well-known that, while these two classical performance measures are meaningful
and informative for detecting a change in the i.i.d. model, they may be mis-
leading or inappropriate when the observations are dependent; see, for example,
Mei (2008). As one reviewer pointed out, it is natural to question their useful-
ness in our context where the observations are independent but not identically
distributed.

For instance, with non-homogenous (Poisson) observations, the ARL to false
alarm can no longer be interpreted as “raising a false alarm once every γ time
units” as in the i.i.d. models (though it can still be interpreted as “taking at
least γ time units before raising the first false alarm”). In addition, one would
expect to have a smaller detection delay in a region where more information is
available, but Lorden’s worst-case detection delay criterion puts the same weights
at different individual detection delays. Since the two alternative schemes, WLR
and ATM, are designed specifically to outperform the GLR scheme under the
classical performance measures (when the population sizes are increasing), it is
natural to ask whether the improvement is due to the choice of the classical
performance measures? In other words, is it possible that even under the new
asymptotic setting in Section 7, the GLR scheme is still (asymptotically) optimal
under some alternative performance measures?
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The answer is a resounding “Yes.” As mentioned in Pollak (2008), instead of
minimizing detection delays, one can also minimize the expected number of cases
after a change occurs until an alarm is raised. That is, when the change occurs at
time ν and a scheme raises an alarm at time T ≥ ν, the detection delay criterion
T −ν =

∑T
i=ν 1 can be replaced by λ1(

∑T
i=ν li). Likewise, the ARL to false alarm

criterion E∞(T ) can be replaced by E∞(
∑T

i=1 li). It is interesting to see that
in our context, these alternative criteria are just the so-called Kullback-Leibler
divergence criteria in Moustakides (2004), which proves that the GLR scheme
is (exactly) optimal in detecting changes in the drift of a Brownian motion.
In view of Section 8.1, in the problem of detecting a change in the drift of a
Brownian motion from xtβ0 to xtβ1, it follows from Moustakides (2004) that
under the asymptotic setting in Section 7, the GLR scheme TGLR(a) is still
optimal under the new Kullback-Leibler divergence criteria. Further research is
needed for Poisson processes or discrete-time models, and will be investigated
elsewhere.

The above discussions lead a tough question in practice: should we incorpo-
rate the information of unequal population sizes in the detection schemes them-
selves, as in the WLR or ATM scheme, or should we incorporate such information
directly in the performance measures by considering some new performance mea-
sures such as the Kullback-Leibler divergence criteria? We think the answer will
depend on the goal or objective of the specific applications. If one is more inter-
ested in the speed of detecting a change, say, based on low-frequency observations
(e.g., yearly data), it seems to be more appropriate to keep the classical perfor-
mance measures and use the detection schemes such as the WLR or ATM. On
the other hand, with high-frequency observations (e.g., daily data), one might
be more interested in minimizing the expected number of post-change cases until
an alarm is raised. In such a case, instead of the classical performance measures,
it would be better to evaluate the schemes under some alternative performance
measures such as the new Kullback-Leibler divergence criteria, for which our
favorite GLR schemes are still efficient.

10. Conclusion

In this paper we have studied the problem of detecting a change in the
mean of Poisson distributions after taking into account the effect of population
sizes. Such a problem has an important application in biosurveillance when
one is interested in monitoring whether a disease risk changes or not. Despite its
asymptotic optimality properties under the classical asymptotic setting, the GLR
scheme can have poor finite sample properties as compared to two alternative ad-
hoc schemes: weighted likelihood ratio (WLR) and adaptive threshold method
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(ATM). To understand why the GLR is at times efficient and is at times ineffi-
cient, a new asymptotic setting was studied by assuming that the time at which
the population sizes reach the stationary value is comparable to the false alarm
constraint. Asymptotic properties of the three schemes were established under
the new asymptotic setting, and consistent with our finite-sample simulations.
Extensions to other probability functions or to the continuous-time setting, as
well as new alternative performance measures, were briefly discussed.

There are a lot of open interesting questions for future research. It is impor-
tant to find efficient robust schemes, or at least to develop a protocol or guideline
to derive such schemes, when the population sizes are observable random vari-
ables instead of pre-specified constants. Additionally, in practice the assumption
of known pre-change and/or post-change risks λ’s is too restrictive, and it will
be interesting to develop efficient detection schemes when the λ’s are partially
specified or unknown. Moreover, in biosurveillance, one is generally monitoring
multiple locations (states, counties, or cities) to see whether there is any change
in any locations, and thus the extension to spatio-temporal detection is essential
for global monitoring in applications. We hope this paper will inspire further
research on sequential change-point detection in the modern information age.
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Appendix

Appendix A: Proof of Theorems 7.1 and 7.2

The proof of Theorem 7.1 is similar to that of Theorem 1 in Lai (1998)
with a very minor twist. Let m be the largest integer ≤ (log(γ − ω))2, and thus
m < γ − ω when γ is sufficiently large. A key observation is that if E∞(T ) ≥ γ,

then for some ν ≥ ω,

P∞(T ≥ ν) > 0 and P∞(T < ν + m|T ≥ ν) ≤ m

γ − ω
.

Now the observations Yn’s are i.i.d. Poisson distributed with constant population
size l∗ for all n ≥ ν. Following the arguments in Lai (1998), it is straightforward
to show that

E ν(T − ν|T ≥ ν) ≥ (1 + o(1))
log(γ − ω)
l∗I(λ1, λ0)

.
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Theorem 7.1 then follows at once from the fact that log(γ − ω) = log γ + O(1)
when 0 < ω < Cγ for some constant 0 < C < 1, since log γ ≥ log(γ − ω) ≥
log(γ − Cγ) = log γ + log(1 − C).

To prove Theorem 7.2, the false alarm properties of the GLR scheme in part
(i) is just a special case of Theorem 4 in Lai (1998). Let us now focus on part (ii)
for the detection delays of the WLR scheme. Let ξi = Yi/li log λ1/λ0 − (λ1 −λ0),
and define Sn =

∑n
i=1 ξi for n ≥ 1 and S0 = 0. Consider the open-ended test

τ = inf
{
n ≥ 1 :

n∑
i=1

ξi ≥ b
}
.

Following the ideas in Lorden (1971), denote by τk the stopping time obtained
by applying τ to Yk, Yk+1, . . . . Then TWLR(b) = infk≥1{τk + k − 1}, and thus it
suffices to show that [b/I(λ1, λ0)] + M is a uniform bound on E ν=k(τk) over all
k ≥ 1.

To prove this, let us focus on the open-ended test τ under the probability
measure Pν=1. To simplify notation, in the following proof we simply use E to
denote the expectation under Pν=1. Letting V = λ1(log(λ1/λ0))2, it is easy to
see that E (ξi) = I(λ1, λ0) > 0 and V ar(ξi) = V/li is uniformly bounded by V/l∗.

Hence τ < ∞ a.s. By a modification of Wald’s equation (on the independent
random variables with the same mean), E (Sτ ) = I(λ1, λ0)E (τ). One the one
hand, by the definition of τ, we have Sτ ≥ b and thus E (τ) ≥ b/I(λ1, λ0). On
the other hand, using the fact that Sτ−1 < b, we have

I(λ1, λ0)E (τ) = E (Sτ ) = E (Sτ−1 + ξτ ) < b + E |ξτ |

≤ b + sup
i≥1

E |ξi| ≤ b + sup
i≥1

√
E (ξ2

i )

= b + sup
i≥1

√
(E ξi)2 + V ar(ξi) = b +

√
(I(λ1, λ0))2 +

V

l∗
,

which implies that b/I(λ1, λ0) ≤ E (τ) ≤ b/I(λ1, λ0)+M, where M is the constant
given in the theorem. Part (ii) of the theorem then follows at once by applying
this relation to the τk’s for all k, and from the fact that infi≥k li ≥ l∗ holds
uniformly over all k ≥ 1.

Appendix B: Proof of Theorem 7.3

Let us first illustrate the fundamental ideas before presenting a rigorous
proof. It is well-known that the detection delays are of the order of log γ, subject
to the false alarm constraint in (2.1). Since log γ << ω′, for each of the proposed
schemes, the detection delay E ν=1(T ) when the change-point occurs at ν = 1 is
mainly determined by the first stage when the population size ln = l(0). Thus all
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three schemes become Page’s CUSUM procedure with constant population sizes
l(0) and the classical results can be applied to determine E ν=1(T ). Similarly, the
detection delay ess sup E ω

(
(T − ω + 1)+|Fω−1

)
is just the detection delay in

the classical change-point detection problem with the i.i.d. models in which one
detects a change in Poisson mean from l∗λ0 to l∗λ1. As the thresholds a, b, and
c go to ∞, the detection delays of the three proposed schemes when the change
occurs at time ν = 1 or ω can be summarized in the following table:

detection scheme T E 1(T ) ess sup E ω

(
(T − ω + 1)+|Fω−1

)
TGLR(a) (1 + o(1)) a

l(0)I(λ1,λ0)
(1 + o(1)) a

l∗I(λ1,λ0)

TWLR(b) (1 + o(1))b/I(λ1, λ0) (1 + o(1))b/I(λ1, λ0)

TATM (c) (1 + o(1))c/I(λ1, λ0) (1 + o(1))c/I(λ1, λ0)

We also need to establish the relationship between the false alarm con-
straint γ in (2.1) and the threshold values a, b, and c in the three schemes
TGLR(a), TWLR(b) and TATM (c). Intuitively, since we now assume ω << γ,

the stage with constant population sizes l∗ is the most important stage in or-
der to satisfy the false alarm constraint in (2.1), and we have to take at least
γ − ω ∼ γ observations from the stage with constant population sizes l∗. Now at
the stage with constant population size l∗, all three schemes become the classical
CUSUM procedure under the i.i.d. model, and thus the classical results imply
that a ∼ log γ, b ∼ log γ/l∗, and c ∼ log γ/l∗ (the rigorous proof is tedious but
straightforward, and is thus omitted). Here x ∼ y means that x = (1 + o(1))y as
y goes to ∞. Combining these with the above results on detection delays yields
the desired result in the theorem.

Let us now provide some rigorous arguments. To highlight our main ideas,
we rigorously prove b ∼ log γ/l∗ for the WLR scheme TWLR(b), as the methods
can be easily extended to all other arguments on the detection delay or false
alarm properties of the three schemes. Note that for any stopping time T,

E∞(T ) ≤ ω + E∞(T − ω|T ≥ ω)P∞(T ≥ ω) ≤ ω + E∞(T − ω|T ≥ ω).

If the stopping time is T = inf{n : Rn ≥ A}, with a recursive form for non-
negative detection statistics Rn = h(Rn−1, Yn) and R0 = 0, then we can define a
new statistic R∗

n with the same Makov structure but with an initial value R∗
0 = x,

and consider the corresponding stopping time T ∗
x = inf{n : R∗

n ≥ A}. In many
interesting cases, including the GLR and WLR statistics considered in this paper,
we have T ∗

x ≤ T ∗
x′ when 0 ≤ x < x′. Now condition on time ω, let Fω denote the
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distribution of the statistic Rn=ω conditional on the event {T ≥ ω}, so that

E∞(T − ω|T ≥ ω) =
∫ A

0
E∞(T ∗

x )dFω(x) ≤
∫ A

0
E∞(T ∗

x=0)dFω(x) = E∞(T ∗
x=0).

Now for the WLR scheme T, the corresponding T ∗
x=0 simply becomes Page’s

CUSUM procedure with constant population sizes l∗ and the detection threshold
l∗b, since all incoming new post-change observations have the constant population
size l∗. Thus, E∞(T ∗

x=0) = C1(1+o(1))el∗b for some constant C1, and this implies
that

E∞(T ) ≤ ω + E∞(T − ω|T ≥ ω) ≤ ω + C1(1 + o(1))el∗b.

To satisfy the false alarm constraint γ in (2.1), it is necessary to have

b ≥ [log(γ − ω) − log(C1) − log(1 + o(1))]
l∗

=
(1 + o(1)) log γ

l∗

since log(γ − ω) = log γ + O(1) when 0 < ω < Cγ.

Now it remains to show that b = (1 + o(1)) log γ/l∗ is also sufficient, which
requires us to find a lower bound on E∞(TWLR(b)). Recall that such a lower
bound on E∞(TGLR(a)) is presented in Theorem 7.2 for the GLR scheme, but
it involves more mathematics for the WLR or ATM schemes. Note that for any
stopping time T,

E∞(T ) ≥ E∞(T ; T ≥ ω) ≥ E∞(T − ω; T ≥ ω).

Now when T = T (A) = inf{n : Rn ≥ A}, using the previous notation, for some
constant d ∈ (0, A) we have

E∞(T − ω|T ≥ ω) =
∫ A

0
E∞(T ∗

x )dFω(x) ≥
∫ d

0
E∞(T ∗

x )dFω(x)

= E∞(T ∗
x=d)P∞(Rω ≤ d|T ≥ ω),

and thus

E∞(T ) ≥ E∞(T − ω; T ≥ ω) ≥ E∞(T ∗
x=d)P∞(Rω ≤ d; T ≥ ω)

≥ E∞(T ∗
x=d)P∞( max

1≤i≤ω
Rω ≤ d)

= E∞(T ∗
x=d)P∞(T (d) ≥ ω),

where the definition of T (d) is similar to that of T = T (A) except with a new
detection threshold d.

With a suitable choice of d, the problem now reduces to finding lower bounds
on both E∞(T ∗

x=d) and P∞(T (d) ≥ ω) for the WLR scheme. To find a lower
bound on E∞(T ∗

x=d), note that for the WLR scheme, T ∗
x=d is just Page’s CUSUM
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procedure with an initial value l∗d and the detection threshold l∗b, and thus it
is bounded below by the corresponding Shiryaev-Robert procedure. Specifically,
consider the Shiryaev-Robert procedure N∗

SR = inf{n : Un ≥ el∗b} with U0 = el∗d

and
Un+1 = (1 + Un)

f1(Yn|ln)
f0(Yn|ln)

= (1 + Un)
[
(
λ1

λ0
)Yne−ln(λ1−λ0)

]
.

Then, it is clear that T ∗
x=d ≥ N∗

SR. Observe that Un − n is a martingale for the
Shiryaev-Robert statistics Un’s under P∞; by the Optional Stopping Theorem,
we have E∞(UN − N) = E∞(U0) for the stopping time N = N∗

SR, see Pollak
(1985). Thus,

E∞(T ∗
x=d) ≥ E∞(N∗

SR) = E∞(UN∗
SR

) − E∞(U0) ≥ el∗b − el∗d,

since UN∗
SR

≥ el∗b by the definition of N∗
SR and U0 = el∗d is a constant.

Meanwhile, the lower bound on P∞(T (d) ≥ ω) for the WLR scheme involves
a few technical details. Over the time interval n ∈ [ω′, ω], define a sequence of
new detection statistics R∗

n = R∗
n(x) recursively as in the WLR statistics Ŵn

except that the “initial” value at time n = ω′ is x. That is, R∗
n = max(0, R∗

n−1 +
(1/ln) log f1(Yn|ln)/f0(Yn|ln)) for n ≥ ω′, and R∗

ω′ = x. Since it is assumed that
ω−ω′ = O(1) and the sample sizes ln’s are bounded over the interval [ω′, ω], i.e.,
|ω−ω′| ≤ D for some constant D > 0, and each observation only generates finite
information, it is evident that maxω′≤i≤ω R̂∗

n(0) has a finite distribution when
the “initial” value of R∗

ω′ = 0. Hence, for any 0 < ε < 1 there exists a constant
K > 0 such that P∞(maxω′≤i≤ω R∗

n(0) > K) ≤ ε. In addition, for any “initial”
values x ≥ 0, it is easy to verify that R∗

n(x) ≤ x + R∗
n(0) for the WLR-type

detection statistics. Thus, for d > K, whenever max1≤i≤ω′ Ŵi ≤ d − K, i.e.,
when T (d − K) ≥ ω′, the probability that T (d) ≤ ω is at most ε. Hence, for
d > K,

P∞(T (d) ≥ ω) ≥ P∞(T (d) ≥ ω; T (d − K) ≥ ω′)

= [1 − P∞(T (d) ≤ ω|T (d − K) > ω′)]P∞(T (d − k) ≥ ω′)

= (1 − ε)P∞(T (d − k) ≥ ω′).

For the WLR scheme, at the stage with constant population sizes l(0), the cor-
responding T (d − K) is just Page’s CUSUM procedure with detection threshold
l(0)(d − K), and thus

P∞(T ≥ ω′) = (1 + o(1)) exp
(
− ω′e−l(0)(d−K)

)
.

This holds since it is well-known that Page’s CUSUM procedure with a detection
threshold d′ is asymptotically exponentially distributed with mean exp(d′) under
P∞, see, for example, Siegmund (1985).
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Therefore, for the WLR scheme T = TWLR(b), as b → ∞, let d = (1− η/2)b,
where η is given in the theorem such that ω′ = o(γ(1−η)l(0)/l∗). Combining the
above results yields

E∞(TWLR(b)) ≥ (el∗b − el∗(1−η)b)(1 − ε)(1 + o(1)) exp
(
− ω′e−l(0)(d−K)

)
.

A simple calculation shows that when γ → ∞, the choice of b = (1+o(1)) log γ/l∗

is sufficient to guarantee that E∞(TWLR(b)) ≥ (1+o(1))γ. Treating (1+o(1))γ as
the true false alarm constraint and using the fact that (1+o(1)) log γ/(1 + o(1)) =
(1+o(1)) log γ, we can see that the choice of b = (1+o(1)) log γ/l∗ is also sufficient
to satisfy the false alarm constraint in (2.1). This completes the proof of the claim
that b ∼ (1 + o(1)) log γ/l∗ for the WLR scheme.
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