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IN GENERALIZED ESTIMATING EQUATIONS WITH

APPLICATION TO THE LUNG HEALTH STUDY
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Abstract: The generalized estimating equation (GEE) approach is becoming more

and more popular in handling correlated response data, for example in longitudi-

nal studies. An attractive property of the GEE is that one can use some working

correlation structure that may be wrong, but the resulting regression coefficient

estimate is still consistent and asymptotically normal. One convenient choice is the

independence model: treat the correlated responses as if they were independent.

However with time-varying covariates there is a dilemma: using the independence

model may be very inefficient (Fitzmaurice (1995)); using a non-diagonal working

correlation matrix may violate an important assumption in GEE, producing biased

estimates (Pepe and Anderson (1994)). It would be desirable to be able to distin-

guish these two situations based on the data at hand. More generally, selecting

an appropriate working correlation structure, as an aspect of model selection, may

improve estimation efficiency. In this paper we propose some resampling-based

methods (i.e., the bootstrap and cross-validation) to do this. The methodology is

demonstrated by application to the Lung Health Study (LHS) data to investigate

the effects of smoking cessation on lung function and on the symptom of chronic

cough. In addition, Pepe and Anderson’s result is verified using the LHS data.

Key words and phrases: Bootstrap, cross-validation, GEE, GLM, model selection,

PMSE.

1. Introduction

Correlated responses are common in biomedical studies. One typical ex-
ample is the longitudinal study where each subject is followed over a period of
time, and repeated observations of the response variable and relevant covariates
are recorded. Since repeated observations are made on the same subject, ob-
served responses are generally correlated. For continuous responses that can be
treated as approximately normal, the linear mixed-effects models can be applied.
However for categorical responses, intractability of discrete multivariate distribu-
tions hampers, at least partly, the development of corresponding likelihood-based
methods. Since the publication of the seminal paper of Liang and Zeger (1986),
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the generalized estimating equation (GEE) approach has become increasingly im-
portant in handling multivariate continuous/discrete responses. There are many
attractive points of the GEE. For instance, it is not likelihood-based: only some
lower-order moments, such as the mean and variance, of the response need to be
specified. Furthermore, one does not even have to model the correlation structure
of the response variable correctly; one only needs to use some working correlation
structure to obtain consistent and asymptotically normal estimates. One con-
venient choice is the independence model, i.e., the identity matrix serves as the
correlation matrix. It has been shown that in many cases the GEE estimates un-
der the independence model (or some other structure) maintain a high efficiency
(Zeger (1988), McDonald (1993)).

There are exceptions. For a time-varying covariate, use of the independence
model may result in an inefficient estimate (Fitzmaurice (1995)). On the other
hand, Pepe and Anderson (1994) have shown that if a non-diagonal working
correlation matrix is used, it may lead to seriously biased estimates. Thus either
using or not using the independence model may produce bad estimates. It is
one of our goals here to demonstrate on a real data set that the straightforward
use of a “reasonable” non-diagonal correlation matrix may in fact lead to biased
estimates.

It would be desirable if one could choose an appropriate correlation matrix
based on available data. In this paper, we propose some new methods to select
one from a given set of candidates. The selection criterion is designed to mini-
mize the (estimated) predictive mean squared error (PMSE). For ordinary linear
regression, this leads to Akaike’s information criterion (AIC) (Akaike (1973)). In
our current setting, estimates of PMSE in closed form are not available, and we
resort to resampling methods, i.e., to the bootstrap and cross-validation (Efron
and Tibshirani (1993), Shao and Tu (1995)).

This paper is organized as follows. In Section 2 we introduce the GEE and
the issues involved in using working correlation structures. We propose some new
methods for its selection in Section 3. Simulation results are presented in Section
4 to show possible pitfalls of using different working correlation matrices, and the
effectiveness of our methods in making an appropriate selection. Section 5 applies
the methods to a large clinical trial study. We comment on some practical issues
of marginal modeling in Section 6, followed by a brief discussion.

2. Background

We consider the situation in which repeated measurements of the response
variable are correlated, as frequently occurs in a longitudinal study. Each sub-
ject (or cluster) i (1 ≤ i ≤ N) is observed at times t = 1, . . . , Ni, with the
corresponding response values Yi = (Yi1, . . . , YiNi)

′ and covariate matrix Xi =
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(xi1, . . . , xiNi)
′. For i �= j, Yi and Yj are independent, but generally the compo-

nents of each Yi are correlated. The marginal distribution of Yit is specified by a
generalized linear model (GLM) (McCullagh and Nelder (1989)): g(µit) = x′

itβ,
where µit = E(Yit|xit) and g is a given link function. The unknown regression
coefficient (vector) β is of primary interest.

The GEE approach estimates β by solving the estimating equations (Liang
and Zeger (1986), Prentice (1988)):

N∑

i=1

D′
iV

−1
i (Yi − µi) = 0, (1)

where Di = Di(β) = ∂µi(β)/∂β′, and Vi is the working covariance matrix of Yi.
Vi can be expressed in terms of a correlation matrix R(α): Vi = A

1/2
i R(α)A1/2

i ,
where Ai is a diagonal matrix with elements var(Yit) = V (µit), specified as func-
tions of the means µit, α is some unknown parameter. The parameter α can
be estimated through moment methods or another set of estimating equations
(Prentice (1988)). An attractive point of the GEE approach is that it yields
consistent estimator of β, β̂ = β̂(R), even though R is far from a true R0. Aside
from the independence model, R = I, other convenient choices include compound
symmetry (CS), Rij = ρ for any i �= j, or the first-order autoregressive (AR-1)
with Rij = ρ|i−j|, where Rij denotes the (i, j)th element of R. The choice of R

will influence estimation efficiency: in general, it is more efficient to use an R that
is closer to the true correlation. For time-independent covariates, this is not a
critical issue. Many studies have shown that β̂ obtained under the independence
model is relatively efficient (Zeger (1988), McDonald (1993)), at least when the
correlation between responses is not large. However, for time-varying covariates
(i.e., cluster-specific covariates), Fitzmaurice (1993) shows that the resulting es-
timate from the independence model may be inefficient; its efficiency may be as
low as 60% compared to the estimate obtained by using the correct correlation
structure. This will be verified in our simulation study in Section 3.

However, this is not the whole story. Pepe and Anderson (1994) point out an
implicit assumption behind the GEE approach: the desired statistical properties
(e.g., consistency) of β̂ rely on the unbiasedness of the estimating equations (1).
When a non-diagonal working correlation matrix R is used, a sufficient condition
for the estimating equations (1) to be unbiased is that

E(Yit|xit) = E(Yit|xij, j = 1, . . . , Ni). (2)

In practice this assumption may or may not hold. On the other hand, when a
diagonal matrix is used, the resulting estimate of β enjoys the aforementioned
desirable properties of the GEE. Thus if (2) is violated, one might use the inde-
pendence model. Note that with time-independent covariates xit, (2) is trivially
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satisfied. Although either side of (2) can be modeled, we only call the modeling
of E(Yit|xit) marginal modeling, unless otherwise specified.

In view of this discussion, it is desirable to choose an appropriate working
correlation matrix based on available data. In the next section we propose some
resampling methods for doing this.

3. Selecting the Working Correlation Matrix

The problem can be viewed as one of model selection. As in GLM with
independent data, it can be done by minimizing the (predictive) mean squared
error (Shao and Tu (1995)). Other approaches include an extension of AIC
(Pan (2001a)) and minimizing a (predictive) bias of estimating equations (Pan
(2001b)).

We denote our current data as D = {(Yi,Xi), i = 1, . . . , N}, a random sample
from some distribution F . If we can repeatedly draw two independent random
samples of new observations D(k) = {(Y (k)

i ,X
(k)
i ) : Y

(k)
i =(Y (k)

i1 , . . . , Y
(k)

iN
(k)
i

)′,X(k)
i

= (x(k)
i1 , . . . , x

(k)

iN
(k)
i

)′, i = 1, . . . , N}, k = 1, 2, from F , it appears reasonable to

select a working correlation matrix R that minimizes the predictive mean squared
error (PMSE):

PMSE = E(1)E(2)
N∑

i=1

1
N

N
(2)
i∑

t=1

1

N
(2)
i

[Y (2)
it − µ̂

(2)
it (β̂(D(1), R))]2

V (µ̂(2)
it (β̂(D(1), R)))

= E(1)E(2)L(D(2)|D(1), R). (3)

Here the expectations E(k) are taken with respect to D(k), k = 1, 2, while
µ̂

(2)
it (β̂(D(1), R)) = g−1(x(2)′

it β̂(D(1), R)) is the estimated mean of Y
(2)
it based on

β̂(D(1), R), which is estimated by GEE using the data D(1) and working corre-
lation matrix R. Implicitly we assume that parameters in R are also estimated
in GEE. We use L(D(2)|D(1), R) to denote the squared error obtained by using
D(1) to estimate the regression parameters and using D(2) to predict the squared
error. Note that in (3) we do not consider the correlation within each subject i.
Recently Pan and Le (2001) considered an unweighted version of PMSE without
the variance term in the denominator of (3). It was shown that in the context
of variable selection the unweighted version may have a better performance than
the above weighted one.

In practice, we have only one sample of observations D and cannot cal-
culate PMSE directly. However, resampling methods, such as the bootstrap
and cross-validation (Efron and Tibshirani (1993)) can be used to provide ef-
fective estimates. A bootstrap sample D∗ is formed by randomly drawing N
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observations from D with replacement. To preserve the correlation structure,
the appropriate resampling unit is subject, i.e., (Yi,Xi) (Rice and Silverman
(1991)). Denote a bootstrap sample by D∗ = {(Y ∗

i ,X∗
i ) : Y ∗

i = (Y ∗
i1, . . . , Y

∗
iN∗

i
)′,

X∗
i = (x∗

i1, . . . , x
∗
iN∗

i
)′, i = 1, . . . , N}. A bootstrap estimate (BOOT) of PMSE is

BOOT (R) = E∗L(D|D∗, R),

where the expectation E∗ is taken over all bootstrap samples D∗. A similar
estimate was proposed by Shao (see Shao and Tu (1995), p.344) for GLM with
independent responses.

Another bootstrap estimate (BOOT2), suggested by Efron (1983) in the
context of estimating the error rate of a prediction rule, is a sum of the apparent
error and excess error

BOOT2(R) = L(D|D, R) + E∗ {L(D|D∗, R) − L(D∗|D∗, R)} .

The first term is called apparent error since the same data set is used twice: in
both estimating β (and thus µi) and predicting the error. The apparent error is a
biased estimate of PMSE. The second term corrects the bias of the apparent error
in estimating PMSE. An analogous estimate was used in Breiman and Spector
(1992) for the usual independent linear regression.

Cross-validation (CV) is another widely used resampling method. CV esti-
mates are in general almost unbiased but may have large variability. Breiman
(1995) and Efron and Tibshirani (1997) have suggested using bootstrap to smooth
unstable estimators. Here we give a bootstrap-smoothed CV (BCV) estimate of
MSE. Let D∗− = D − D∗ denote the set of observations not appearing in the
bootstrap sample D∗. Then the BCV estimate of PMSE is

BCV (R) = E∗L(D∗−|D∗, R).

Hence in BCV, as in the usual CV, no observation is used twice: an observation
is used either in estimating β (if it is in D∗) or in predicting the error (if in
D∗−).

In practice, the bootstrap expectation E∗ can be approximated by Monte
Carlo simulation. If we draw B bootstrap samples D∗b, b = 1, . . . , B, then for
any function f , E∗f(D∗) ≈ ∑B

b=1 f(D∗b)/B (Efron and Tibshirani (1993), Shao
and Tu (1995)). To improve simulation efficiency, the balanced bootstrap can be
employed (Efron and Tibshirani (1993)): each subject observation (Yi,Xi) in D
appears a total of B times in the B bootstrap samples D∗b, b = 1, . . . , B. Our
experience with the balanced bootstrap (which is used throughout the paper)
suggests B = 25 works reasonably well.
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4. Simulations

4.1. A continuous response variable

Consider the situation in which (2) is violated. Pepe and Anderson (1994)
bring in Model 1: Yit = αYi,t−1 + βxit + εit, where Yi0 = 0, xit and εit are
independent of each other and of Yi,t−1 with a standard normal distribution
N(0, 1); and Model 2: Yit = Yi,t−1 ∗ βxit + εit, where Yi0 = 1 and β = 1; xit, εit

and Yi,t−1 are independent of each other, xit ∼ N(1, 1), and εit ∼ N(0, 1). We
also consider a random-effects model given as Model 3: Yit = bi + βxit + εit,

where bi, xit and εit are independent of each other and are all distributed as
N(0, 1).

It can be verified that for Models 1 and 2, the marginal model E(Yit|xit) =
βxit holds but (2) is not satisfied. Hence we expect that using either CS or AR-1
as the working correlation matrix in GEE will lead to biased estimates of β. Some
theoretical results on Model 1 are presented in Emond, Ritz and Oakes (1997)
and Pan, Connett and Louis (2000). For Model 3, the above marginal model is
also valid, and the true correlation matrix for Yi is the CS. A simulation study
was conducted in Splus. We used N = 50 or 100, Ni = 5, and β = 0.5 or 1. We
considered selecting a working correlation matrix from the independence model,
CS and AR-1. The results are shown in Table 1. To facilitate comparison, we
also include the results using the unstructured (UN) matrix (i.e., without any
restriction on its form) as the working correlation matrix. In addition, the mean
squared errors (MSEs) and (some) variances of the regression coefficient estimates
are presented to illustrate the bias-variance property. As shown in Section 4.3,
the MSE can be decomposed into the sum of variance and bias-square. From
Table 1, it appears that the two bootstrap methods work well while BCV is less
effective. For Models 1 and 2, both bootstrap methods select the independence
model more often than the others, and the resulting estimates have MSEs close
to that of the independence model estimates. Also, for Models 1 and 2, it is
verified that there is a relatively larger bias contribution to the MSE of the GEE
estimate when the working CS or AR-1 structure is used than when the working
independence model is used. For Model 3, all three criteria select the correct CS
matrix in the majority of cases, though BOOT chose the identity matrix many
times. There may be some concerns about the achieved frequency of selecting
the best working correlation matrix, since for several set-ups no one method did
this correctly more than 60% of trials. However, if we compare the MSEs of the
resulting estimates (after selecting the working correlation matrix) with those
of the “raw” estimates (without correlation matrix selection), the two bootstrap
methods are slightly better than using the working independence model. We
suspect that the less than impressive performance of the proposed methods here
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may be related to the small MSEs of the GEE estimates under any working
correlation structure. For such small MSEs and the given small sample size,
the proposed methods may not estimate the PMSE well enough to be able to
distinguish the best working correlation structure (CS) from others. For Model
1, when either the sample size is increased to N = 100, or the dependence of
E(Yit) on xij with j < t is strengthened by increasing α to 1, the performance of
all three methods improve. Moreover, when α = β = 1 (and n = 50) in Model 1,
the two bootstrap methods chose the independence model in all 100 independent
replications, whereas the BCV did so 95 times.

Table 1. Frequency of the working correlation matrix selected by differ-
ent criteria, and the mean squared error (MSE) and variance (VAR) of the
resulting estimate β̂, from 100 independent replications.

Model 1 Model 2 Model 3

α = β = 0.5, N = 50 β = 1, N = 50 β = 0.5, N = 50

Criterion Indp. CS AR-1 MSE Indp. CS AR-1 MSE Indp. CS AR-1 MSE

(VAR) (VAR) (VAR)

BOOT 60 24 16 .0056 59 13 28 .2976 40 49 11 .0072

BOOT2 50 24 26 .0061 50 12 38 .2864 19 53 28 .0061

BCV 29 27 44 .0067 34 14 52 .3259 15 62 23 .0057

Indp. 100 0 0 .0050 100 0 0 .2687 100 0 0 .0079

(.0045) (.2450) (.0070)

CS 0 100 0 .0078 0 100 0 .3421 0 100 0 .0041

(.0038) (.1551) (.0039)

AR-1 0 0 100 .0126 0 0 100 .3197 0 0 100 .0047

(.0031) (.1090) (.0045)

UN - - - .0142 - - - 22.68 - - - .0047

Model 1 Model 1 Model 1

α = β = 0.5, N = 100 α = 1, β = 0.5, N = 50 α = 1, β = 1, N = 50

Criterion Indp. CS AR-1 MSE Indp. CS AR-1 MSE Indp. CS AR-1 MSE

(VAR) (VAR) (VAR)

BOOT 85 13 2 .00265 78 8 14 .0199 100 0 0 .0206

BOOT2 71 21 8 .00306 68 11 21 .0241 100 0 0 .0206

BCV 56 27 17 .00349 52 6 42 .0309 95 0 5 .0293

Indp. 100 0 0 .00258 100 0 0 .0146 100 0 0 .0206

(.00243) (.0136) (.0189)

CS 0 100 0 .00512 0 100 0 .0550 0 100 0 .2034

(.00203) (.0057) (.0073)

AR-1 0 0 100 .01065 0 0 100 .0592 0 0 100 .2290

(.00186) (.0024) (.0027)

UN - - - .01161 - - - .0862 - - - .2285

4.2. A binary response variable

We now consider the model used in Fitzmaurice (1995) to show the inef-
ficiency of the independence model. The response variable is binary, and the
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marginal logistic regression model is Model 4: logit(µit) = β0 + β1xit + β2(t −
1), t = 1, 2, 3, where xit is a dichotomous covariate: xit = 0 or 1 with probability
0.5, and β0 = 0.25 = −β1 = −β2. We are interested in comparing estimates of
β1. The true correlation matrix is one of the identity, CS or AR-1. We used
ρ = 0.5 and N = 50 or 100. The joint distribution of the Yi was simulated from
Bahadur’s (1961) representation (see Fitzmaurice (1995) for more details).

Table 2. Frequency of the working correlation matrix selected by differ-
ent criteria, and the mean squared error (MSE) and variance (VAR) of the
resulting estimate β̂ in the marginal logistic regression Model 4, from 100
independent replications.

R0 =AR-1, N = 50 R0 =CS, N = 50 R0 =Indp., N = 50

Criterion Indp. CS AR-1 MSE Indp. CS AR-1 MSE Indp. CS AR-1 MSE

(VAR) (VAR) (VAR)

BOOT 14 30 56 .0774 19 56 25 .0748 48 22 30 .1165

BOOT2 12 33 55 .0771 17 52 31 .0722 35 31 34 .1155

BCV 5 32 63 .0780 6 65 29 .0795 40 30 27 .1180

Indp. 100 0 0 .1349 100 0 0 .1346 100 0 0 .1216

(.1348) (.1335) (.1210)

CS 0 100 0 .0895 0 100 0 .0831 0 100 0 .1237

(.0895) (.0828) (.1231)

AR-1 0 0 100 .0805 0 0 100 .0860 0 0 100 .1278

(.0803) (.0858) (.1271)

UN - - - .0833 - - - .0859 - - - .1317

R0 =AR-1, N = 100 R0 =CS, N = 100 R0 =Indp., N = 100

Criterion Indp. CS AR-1 MSE Indp. CS AR-1 MSE Indp. CS AR-1 MSE

(VAR) (VAR) (VAR)

BOOT 19 21 60 .0344 21 47 32 .0359 38 30 32 .0479

BOOT2 18 23 59 .0342 18 48 34 .0337 30 34 36 .0480

BCV 13 17 70 .0343 12 51 37 .0342 38 25 37 .0480

Indp. 100 0 0 .0549 100 0 0 .0579 100 0 0 .0491

(.0543) (.0569) (.0455)

CS 0 100 0 .0396 0 100 0 .0350 0 100 0 .0502

(.0394) (.0346) (.0468)

AR-1 0 0 100 .0340 0 0 100 .0364 0 0 100 .0506

(.0338) (.0361) (.0472)

UN - - - .0353 - - - .0365 - - - .0489

The results are shown in Table 2. First, if the true correlation structure
R0 is not the independence model, β̂(I) may be inefficient: its relative efficiency
against β̂(CS) or β̂(AR-1) may be as low as 60%. However, any one of our pro-
posed methods is most likely to select the correct correlation matrix. The three
methods have a close performance: their resulting estimates have almost equal
MSEs to those of the estimates obtained using the correct correlation matrix.
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Second, when the true correlation structure is the independence model, the GEE
estimate from any one of the three working correlation matrices is almost equally
efficient. Even though all of our proposed methods select the three working ma-
trices with almost the same frequency, the resulting estimates have MSEs close
to those obtained under the correct independence model. This is not surprising
since, in this situation, there is essentially no difference in using any one of the
three correlation matrices. Note that both the CS and AR-1 models include the
independence model (ρ = 0).

When the sample size is increased, the frequency of selecting the correct
correlation matrix does not increase very much, though the MSE of the resulting
estimate is still competitive when compared with using the correct correlation
matrix or UN. For Model 4 all the GEE estimates using any working correlation
matrix are consistent. Even though β̂(R0) is the most efficient, there is no guar-
antee that for any given data, β̂(R0) is closer to the true β than other estimate,
say β̂(R), is. This is analogous to variable selection using AIC. As the sample size
increases, AIC will minimize the PMSE but may still choose too large models.
Since the motivation of selecting the working correlation matrix is to increase the
efficiency of the resulting estimate, this is not of concern as long as the resulting
estimate has a small MSE.

Finally we note that, as expected, the MSE contribution from the bias of the
regression coefficient estimates for any working correlation matrix is negligible in
all cases.

4.3. Performance analysis

We first outline a heuristic argument for using the PMSE in a simplified
situation. Suppose that Z1 and Z2 are two independent random variables from a
distribution with mean µ and variance σ2. We use Ei to denote the expectation
with Zi, i = 1, 2. We also use µ̂1 to denote an estimate of µ based on Z1. Then
we have

PMSE = E1E2(Z2 − µ̂1)2 = E1E2(Z2 − µ + µ − µ̂1)2

= E1[E2(Z2 − µ)2 + 2E2(Z2 − µ)(µ − µ̂1) + E2(µ̂1 − µ)2]

= σ2 + E1(µ̂1 − µ)2.

The last equality is obtained since Z1 and Z2 are independent. It is thus
obvious that PMSE is minimized when E1(µ̂1 − µ)2, the MSE of the estimate
µ̂1, is also minimized. In a GLM, we can regard Zi as a pair of the response
variable and covariates (Yi,Xi), and µi depends on the regression coefficient β

through g(µi) = Xiβ. By the monotonicity of the link function g() and a first
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order Taylor expansion, we can argue that the MSE of µ̂1 is (approximately)
minimized when the MSE of the corresponding regression coefficient estimate β̂1

is also minimized.
For correlated data PMSE is defined under the working independence as-

sumption, but this does not imply that it will favor the working independence
model in GEE, as demonstrated in our simulations. The reason is that PMSE
is based on the predictive performance of the estimator in predicting future ob-
servations, not the performance of predicting the data used in estimating the
regression parameters.

Our simulation results show that (i) BCV is much less effective than the other
two bootstrap methods when (2) is violated, but (ii) it performs almost equally
well as the other two when (2) holds. The second observation was expected
but the first is surprising. In this regard, we recall that the motivation for
using CV is to avoid double use of data: any observation is used in estimating
either β or PMSE, but not both. Double use of data leads to a downward-
biased PMSE estimate. However, it also implies that the evaluation set used in
calculating PMSE is smaller, leading to larger variability in CV. Often, including
when (2) holds, there is a nice trade-off between the bias and variance in CV.
However, when (2) is violated, this is not the case. More specifically, we compare
BOOT and BCV. For a given bootstrap sample D∗, BOOT involves evaluating
L(D|D∗, R) while BCV uses L(D∗−|D∗, R). Any observation (Y ∗

i ,X∗
i ) in D∗

is used in calculating PMSE through evaluating L((Y ∗
i ,X∗

i )|D∗, R) for BOOT,
but not for BCV. Suppose Rd is a diagonal correlation matrix and Rnd is a
non-diagonal one. Though L((Y ∗

i ,X∗
i )|D∗, R) is in general a downward biased

PMSE estimate, however, because of the bias of β̂(Rnd) we still expect that more
likely L((Y ∗

i ,X∗
i )|D∗, Rnd) > L((Y ∗

i ,X∗
i )|D∗, Rd), leading to a higher chance

of obtaining BOOT (Rnd) > BOOT (Rd). In contrast, a part of this relevant
information is not used in BCV.

4.4. Other simulation results

We tried bootstrap replication number B = 50. The results were close to
those shown in Tables 1 and 2. We also used the m-out-of-N bootstrap with
m = N/2 (Shao and Tu (1995)), but its performance was not as good as the
usual bootstrap.

5. Example

Taking the Lung Health Study (LHS) (Connett et al. (1993)) data as an
example, we first verify that Pepe and Anderson’s result is a real issue in prac-
tice. Second, we show the effectiveness of our proposed methods in selecting the
working correlation matrix.
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Specifically, we consider the effect of the change of smoking status on lung
function and chronic cough in the LHS. The LHS was a multi-center, randomized
controlled clinical trial designed in part to determine whether smoking interven-
tion has a positive effect on the annual rate of decline in lung function. The
participants were smokers between the ages 35 and 60 at the beginning of the
study. They were randomized into one of three treatment groups: Smoking In-
tervention plus inhaled ipratropium bromide (SIA), Smoking Intervention and
an inhaled placebo (SIP), and Usual Care (UC, no intervention). A behavioral
intervention program was provided to all participants in the two intervention
groups to encourage and help them quit smoking. The participants were fol-
lowed for five years. At each annual visit information about changes in smoking
habits since the last visit was collected along with other relevant information.

We first take the forced expiratory volume within one second (FEV1) as the
response variable. To ease the comparison between cross-sectional and longitu-
dinal methods, we only include the participants with complete follow-up exami-
nations at five annual visits in our data sets. Three such data sets were formed
by taking the first 100, 500 and 1000 participants with five annual examina-
tions. A linear regression model was fitted at each of the five visit years with
the following covariates: the current-year smoking-status, treatment group and
some baseline characteristics (age, gender, body mass index, body weight, smok-
ing pack-years, cigarettes smoked per day, systolic blood pressure and FEV1).
We are most interested in how the smoking status of a participant at the year
of examination influences his/her FEV1 measure. Previous studies have shown
that quitting smoking is associated with a positive effect on FEV1. From Table
3, it is confirmed that quitting smoking is associated with an increase of FEV1

by about 0.09 to 0.19 liters. Now we fit a linear model with all the covariates
mentioned above plus the visiting year (treated as a categorical variable), using
the GEE to combine the results from year 1 to year 5. Three working correlation
structures are used: independence model, CS and AR-1 matrices. The last two
correlation structures appear plausible considering the likely correlation of the
five FEV1 measures arising from the same participant. It is interesting to note
that the point estimates given by GEE/CS or GEE/AR-1 are all smaller than
any of the cross-sectional estimates. The GEE/Indp. estimates appear to be
more reasonable. In this example, it is plausible that condition (2) is violated:
given the previous and current years of smoking status, it appears likely that
FEV1 is not completely determined by one’s current year smoking status. In
other words, even though FEV1 tends to increase if one quits smoking in the
current year, it may also depend on when the participant stopped smoking.—A
five-year sustained quitter is likely to have a different (expected) FEV1 from
a one-year quitter. The independence correlation matrix was selected as the
working correlation structure in GEE for each of the three data sets.
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Table 3. Estimated regression coefficient (standard error) for the effect of
the current year smoking-status on FEV1 by cross-sectional and longitudinal
(GEE) methods. Also included are the GEE estimates of the regression
coefficients for the treatment effects, SIA or SIP vs UC group, for n = 1000.

Cross-sectional Longitudinal
n Year 1 Year 2 Year 3 Year 4 Year 5 Indp. CS AR-1

100 .1308 .1435 .1266 .2629 .1876 .1641 .0739 .0699
(.0447) (.0483) (.0462) (.0512) (.0590) (.0354) (.0190) (.0222)

500 .1145 .1349 .1358 .1812 .1656 .1447 .0781 .0982
(.0212) (.0201) (.0213) (.0218) (.0236) (.0161) (.0113) (.0212)

1000 .0951 .1146 .1340 .1693 .1783 .1384 .0815 .0785
(.0157) (.0158) (.0163) (.0167) (.0172) (.0123) (.0084) (.0084)

SIA .0439 .0591 .0570
(.0161) (.0160) (.0158)

SIP .0060 .0190 .0220
(.0158) (.0158) (.0157)

Note that the biasedness of a regression coefficient estimate may influence
other estimates of regression coefficients in the model. In Table 3, we also attach
the GEE estimates for the treatment effects for sample size n = 1000. It can be
seen that there are some differences between the estimates obtained under the
working independence model and those under CS/AR-1, though the differences
are not dramatic for this data set.

Table 4. Estimated regression coefficient (standard error) for the effect of the
current year smoking-status on FEV1 by the longitudinal (GEE) methods
(after considering the interaction between the smoking-status and visiting
year and using different working correlation matrix R), with sample size
n = 1000.

R Year 1 Year 2 Year 3 Year 4 Year 5
Indp. .0867 .1123 .1323 .1732 .1805

(.0150) (.0154) (.0158) (.0159) (.0164)
CS .0250 .0514 .0669 .1120 .1361

(.0122) (.0109) (.0110) (.0111) (.0116)
AR-1 .0365 .0509 .0602 .1016 .1327

(.0111) (.0109) (.0116) (.0114) (.0119)
UN .0315 .0492 .0564 .0959 .1214

(.0115) (.0109) (.0114) (.0115) (.0120)

From Table 3, it appears that the effect of smoking status changes over time.
As confirmation we fit a larger marginal model, which treats the visiting year
as a categorical variable and includes a two-way interaction term of the visit-
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ing year and smoking status, to the data set containing 1000 participants. We
can compare the result from cross-sectional analysis (in Table 3) with that from
the longitudinal analysis as presented in Table 4. The same phenomenon as ob-
served above persists: the independence model gives results closer to those from
the cross-sectional approach, whereas the CS and AR-1 models seem to underes-
timate the effects of quitting smoking. We also tried an unstructured (UN) work-
ing correlation matrix and obtained results similar to the other two non-diagonal
working correlation structure methods. Note that because of the presence of the
other covariates, the GEE estimates using the working independence model in
the longitudinal analysis are not exactly equal to the corresponding ones from
the cross-sectional models.

Now we consider the end point as whether the participant reported chronic
cough during each year. Two data sets are used with sample sizes n = 500 and
1000, respectively. A logistic regression model is fitted with the aforementioned
covariates. The results are presented in Table 5. Comparing the estimates from
cross-sectional and longitudinal methods, we note that there is a similar trend as
shown in Tables 3 and 4. It is possible that both GEE/CS and GEE/AR-1 give
downward-biased point estimates of the regression coefficient for the current year
smoking-status (i.e., the odds ratio of coughing for a current year smoking quitter
vs. a smoker), whereas the GEE estimate under the independence model is more
consistent with the cross-sectional estimates. Again our proposed methods all
correctly selected the working independence model for each sample size.

Table 5 also shows the GEE estimates for the treatment effects for the sample
size n = 1000. Again there are some differences between the estimates obtained
under the working independence model and those under the CS/AR-1.

Table 5. Estimated regression coefficient (standard error) for the effect of the
current year smoking-status on coughing by cross-sectional and longitudinal
(GEE) methods. Also included are the GEE estimates of the regression
coefficients for the treatment effects, SIA or SIP vs UC group, for n = 1000.

Cross-sectional Longitudinal
n Year 1 Year 2 Year 3 Year 4 Year 5 Indp. CS AR-1
500 2.351 2.813 1.930 2.615 2.215 2.325 1.776 1.860

(.398) (.447) (.335) (.388) (.346) (.204) (.186) (.178)
1000 1.864 2.735 2.209 2.138 2.243 2.209 1.766 1.841

(.244) (.312) (.253) (.241) (.240) (.144) (.129) (.126)
SIA .3100 .3855 .3680

(.1300) (.1281) (.1271)
SIP .3218 .3787 .3780

(.1253) (.1244) (.1229)



488 WEI PAN AND JOHN E. CONNETT

In practice, the data analyst may forget questioning condition (2) and con-
sider using a non-diagonal working correlation matrix due to the strong possibility
of existence of correlation of the response variable across the time. This is in fact
what motivated our work. Furthermore, even after it is detected that condition
(2) is violated, one may still want to find a working correlation structure that
works best. Our proposal of using PMSE provides such an approach.

6. More on Marginal Modeling

In this section, we discuss marginal modeling when the time-varying covari-
ates of the same subject are correlated. In Pepe and Anderson’s orginal paper,
only independent time-varying covariates were discussed.

Consider the following model where (2) is violated:

E(Yit|xij , j = 1, . . . , Ni) = α +
t∑

j=1

βjxij , t = 1, . . . , Ni.

So far we have assumed that all xij ’s are independent. In practice, it is more
likely that xi1, . . . , xiNi are correlated. It is then natural to ask what is the
corresponding marginal model. In general, denote E(xij |xik) = fjk(xik) for some
function fjk for any given j �= k. Then the marginal model is E(Yit|xit) =
α +

∑t−1
j=1 βjfjt(xit) + βtxit, which may not be a linear model in the first place.

However, if for any j �= k,

E(xij |xik) = αjk + γjkxik, (4)

then the marginal model has the usual form

E(Yit|xit) = αt + β∗
t xit, (5)

where αt = α +
∑t−1

j=1 βjαjt and β∗
t =

∑t−1
j=1 βjγjt + βt. Hence it is required to fit

the marginal model using time-varying intercepts and slopes.
We believe that (4) is a convenient but still reasonable assumption. When

(xi1, xi2, . . . , xiNi) has a multivariate normal distribution, (4) is satisfied. Thus
transforming continuous covariates to make them appear normal will be helpful
in marginal modeling. Many multivariate discrete distributions (Johnson and
Kotz (1969), Chapter 11) have properties satisfying (2). In our example, xij

corresponds to the smoking status of person i at year j. Since each xij is bi-
nary, it appears reasonable to model it as a binomial (or Bernoulli) Bin(1, pi).
To introduce correlation among (xi1, . . . , xi5), we further model pi as a random
variable from a beta distribution. In other words, if xit’s are modeled as from a
beta-binomial distribution, it can be shown following Johnson and Kotz ((1969),
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p.309) that (4) is satisfied with constant αjk = α0 and γjk = γ0 for any j �= k.
Both α0 and γ0 depend on the parameters of the specified beta-binomial distri-
bution.

7. Discussion

In this article we have discussed selecting the working correlation structure in
GEE for GLMs with dependent response data. We motivated our study mainly
in light of Pepe and Anderson’s result: using a non-diagonal working correlation
matrix may lead to biased estimates of regression parameters if the implicit
assumption (2) for GEE is violated.

A seemingly straightforward solution to the issue is to model E(Yit|xij , j =
1, . . . , Ni), rather than E(Yit|xit). Pepe and Anderson argued that in some situa-
tions the latter is preferred. Pepe, Whitaker and Seidel (1999) demonstrated one
of its interesting applications. In principle, with the presence of time-varying
covariates, condition (2) should be checked. If it is clear that (2) is violated,
then the working independence model should be used. However, one may not al-
ways check (2). Our proposal to select an appropriate working correlation matrix
provides an alternative. Generally, selecting and using an appropriate working
correlation structure may improve estimation efficiency.
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